
Vol. 47 (2016) ACTA PHYSICA POLONICA B No 10

CONTROLLING SPREAD OF RUMOR USING
NEIGHBOR CENTRALITY

Anoop Mehta†, Bhaskar Mukhoty‡, Ruchir Gupta§

Department of Computer Science Engineering
Indian Institute of Information Technology, Jabalpur, India

(Received July 19, 2016; revised version received September 7, 2016)

Social networks are collaboration of individual entities where propaga-
tion of information, disease or ideas could take place because of the inter-
action between the entities. In such type of networks, it is often observed
that propagation starts from a few unknown nodes and spreads through
the whole network. However, propagation of a malicious information or a
disease is often not desired and tried to be restricted to as few nodes as pos-
sible, using some external interventions. Inoculation is one such strategy,
where few nodes are barred from further communication in order to restrict
the spread. Such inoculations are costly, as they could require actions such
as vaccination or disruption of normal operation of a node. Hence, we have
minimization objective on both the parameters the final number of affected
nodes and the number of inoculations. For such purpose, centrality mea-
sures, that rank the nodes according to some importance, are often used
in identifying the nodes to be inoculated. Such measures mostly require
the topology of the whole network in order to compute the centrality of the
nodes. We propose a new centrality measure that requires information only
on the neighboring nodes and can work in a distributed fashion depending
upon the local information, but can also be used in centralized global inoc-
ulations. We empirically show that the centrality outperforms the existing
ones in minimizing the spread in both the strategies.

DOI:10.5506/APhysPolB.47.2325

1. Introduction

Epidemic data dissemination in social networks and its control have been
extensively studied in recent past [1–3]. Compartmental models have consid-
ered the network as a collection of heterogeneous classes of nodes depending
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upon the behavior towards the propagation of information. The dynamics of
information propagation is studied under fraction of nodes, transiting from
one class to another. Generally, a viral information or rumor spreading in
a network may need to be restricted by external interventions like barring
certain nodes from further propagation. Such process of stopping nodes
from propagating the information is known as inoculation of the node. As
inoculations are expensive and disrupt the natural functioning of a node,
it is imperative to seek central nodes in the network, which would be most
effective to inoculate in order to restrict the spread to a minimum [4–6]. We
propose a control strategy under a twofold objective. The first step is to
restrict the rumor size to a minimum number of nodes and the second, to
minimize the number of inoculations.

Out of several models that are available for information dissipation [7],
one of the most popular is SIR model introduced for rumor dynamics by Da-
ley and Kendal (DK) [8] and its variation of by Maki–Thompson (MK) [9].
In DK model, nodes are divided into three categories known as ignorants,
spreaders and stifler. A node that is yet to receive the information is igno-
rant (I), while a rumor spreading node is termed as spreader (S). A spreader
node when stops propagating the rumor becomes a stifler (R). The nodes
interact among themselves using some probabilistic rules, parameterized by
the following three factors. The spreading rate, λ, denoting the probability
with which a spreader node propagates the information to an adjacent ig-
norant node, which then becomes a spreader. The stifling rate, σ, being the
probability with which a spreader node becomes a stifler in contact with an
adjacent spreader or stifler node. The model requires that the stifling rate
σ applies to both of the nodes if they are spreader, in contrast to the MK
model when a spreader node comes into contact with an adjacent spreader
node, then only initiating spreader becomes a stifler. Nekovee et al. [10]
introduced the probability termed as recovery rate, δ, with which a spreader
may become stifler independently, irrespective of its neighbors.

With the above probabilistic rules of propagation and some fraction of
randomly distributed informed nodes, the process of propagation takes place
to model the natural phenomenon of information spreading. A control strat-
egy might intervene in the process at the start by inoculating some fraction
of nodes selected using a centrality measure. The control strategy is as-
sumed to have no knowledge of the informed nodes, but decides on the
nodes to be inoculated by using topological structure of the network. There
are different kinds of centrality measures viz. degree [11], betweenness [12],
structural [13], Katz [14], eigenvector centrality [15] etc. that rank the nodes
according to certain kind of importance. Most of these requires structural
topology of the whole network and works in a centralized manner to iden-
tify the nodes to be inoculated. Such a strategy which requires the whole
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topological information of the network is called global inoculation strategy,
whereas a strategy which can work in distributed manner with information
about small part of the network is called a local strategy. We propose a
new centrality measure, called Neighbor Centrality (NC), which can work in
both global and local format. NC needs only the degree information of the
neighboring nodes, so that it is locally computable, and can be implemented
in a distributed manner, where each node in the network could carry out
the process of inoculation. The global inoculation strategy is assumed to
have the authority to inoculate a fraction of the nodes in the network in the
initial round.

In the following section, we introduce some of the important centrality
measures in use. In Section 3, we introduce the new centrality measure
NC which turns out to be very effective for the purpose of inoculation.
Section 4 presents the global and local inoculation method implemented
with it. Experimental evaluations are conducted in Section 5 in order to
measure the relative performance of the proposed centrality with respect to
the existing ones. Section 6 concludes the paper.

2. Related work

In rumor dynamics, inoculation strategy is a way in which some nodes
are barred from communication in order to control the spread of information
in the network. Various inoculation strategies exist based on random and
targeted inoculation. In random inoculation, a fraction of nodes are inoc-
ulated randomly, but in targeted inoculation, nodes may be selected using
different centrality measures. Centrality measures rank the nodes in a net-
work according to some kind of importance. As the nature of the application
varies, the notion of importance also varies. A centrality measure suitable
for one application might be inappropriate for the other. In the context
of controlling the rumor spreading in a network, we consider a node to be
central depending upon whether its inoculation restricts the final number of
informed nodes or rumor size. Here, we discuss a few of the measures in this
context.

Degree centrality of a node in an undirected graph is the number of its
adjacent nodes [11]. The node with higher degree is considered to be central.
In the rumor spreading model, a high degree node is important because it
has the potential to spread information to many neighbors when it becomes
a spreader. In the degree centrality based inoculation, the fraction of nodes
with a higher degree will be inoculated to control information spreading. We
will show by an example that it is not always optimal to remove the highest
degree node in order to restrict the spread.
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The betweenness centrality [12] considers a node to be central if many
shortest paths go through the node. We take the ratios of the number
shortest paths that pass through node i with the number of all possible
shortest paths between the nodes s and t. We get the betweenness centrality
of node i by adding up all such ratios obtained from the possible pairs of
nodes s and t, other than i. If a particular node in the network is located such
that most of the nodes pass information through it, then it has the potential
to control the connectivity. Thus, in betweenness centrality a node which
lies in between the larger number of shortest paths is considered as a central
node. The main drawback of this centrality is its higher computational
complexity incurred on tracing all pairs of shortest paths.

The structural centrality measures which node is close to the center
according to the structure of the network in the Laplacian domain [13].
It is defined using the pseudo-inverse of the Laplacian matrix [16]. The
reciprocal of the diagonal elements l+ii of the pseudo-inverse matrix L+ gives
the centrality. The l+ii shows the squared distance of node i from the origin
in the network in that domain. A node i with a smaller value of l+ii lies close
to the center of the network and hence the value of the structural centrality
of a node i is higher and vice versa. Therefore, for node i, 1/l+ii is considered
as the structural centrality. This centrality is not viable for a large network
due to the high computational complexity and requires global information
which is not optimal for the large network.

The Katz centrality [14] of node i counts the number of distinct walks
that can emerge from node i discounting importance of a walk as the path
length increases. Suppose An×n is the adjacency matrix of a network with
A(i, j) = 1 if there is an edge from node i to j, otherwise A(i, j) = 0. Then,
A2(i, j) would represent the number of paths of length 2 from node i to j.
The Katz centrality of node i sums the number of paths to all nodes j in the
network, but discounting paths of length k, with αk, where α is a positive
quantity less than 1. Thus, the Katz centrality of a node i is given by

CKatz(i) =

∞∑
k=1

n∑
j=1

αkAk(i, j) .

The eigenvector centrality of a node is defined on the principle that centrality
of a node should be defined by the cumulative centralities of its neighbors
[15]. It is an extension of the degree centrality. In the degree centrality,
all the neighbor vertices are considered equivalent which is not the case
because some of them are more connected to other nodes. In the eigenvector
centrality, a node is important if it is linked to other important nodes in the
network. This apparent cyclic definition can be resolved using eigenvector
of the adjacency matrix [17] defined as

Ax = λx ,
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where λ is the largest constant satisfying the criteria. The vector x then
gives the centralities of the nodes. All entries of x are guaranteed to be non-
negative in this case, λ is the largest such value, also known as the principle
eigenvalue.

All the above centralities have been used to inoculate nodes, but as
they are not defined for the specific purpose of inoculation, they could be
outperformed by a centrality designed for it. In the next section, we propose
the new centrality.

3. Proposed neighbor centrality

The proposed centrality method can be seen as a modification of the
degree centrality. Suppose two nodes in the network have equal degree,
with different average degree of the neighbors. In this case, the node with
higher average degree of neighbors has a greater chance that its neighbors
gets the rumor due to the higher number of connections they have in the
network. As our purpose is to isolate the nodes, so that they could not
get affected by the rumor, it would be more effective to inoculate the node
with lower average degree neighbors. Hence, we take the centrality to be
inversely proportional to the average degree of neighbors. Also as before,
the centrality should be directly proportional to the degree of the node as a
higher degree would signify more connections to spread the rumor. Hence,
we propose the centrality as the ratio of the degree of a node and the average
degree of its neighbors

CN(i) =
di(∑

j∈Ni
dj

)
/di

. (1)

Here, di is the degree of node i, Ni is the set of the neighbors of node i and
CN(i) denotes the neighbor centrality score. A higher score would signify
that it is more effective to inoculate the node in order to restrict the rumor
spreading.

As per example, in Fig. 1, both nodes 2 and 10 have the degree 5. It
would be more effective to inoculate node 10 rather than inoculating node 2,
as node 10 would isolate all its neighbors from getting information, which is
not the case for node 2, whose neighbors has further connections to get the
rumor. Later, using correlation matrix we show empirically that NC differs
significantly from the other centralities including the degree centrality.

If An×n is the adjacency matrix of a network and en×1 is a vector of all
ones, then (Ae)n×1 gives the degree of the nodes. eTi (Ae) gives the degree
of the ith node, where (ei)n×1 is a vector with unity in the ith position and
zero in all others. Now, (A2e)n×1 is the vector with the sum of the degree
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of the neighboring nodes for each node and eTi A
2e is the same for ith node.

Thus,

CN(i) =

[
eTi (Ae)

]2
eTi A

2e
. (2)

This would help to compute the centralities globally using matrix oper-
ations.

Fig. 1. Example showing effectiveness of NC.

4. Inoculation strategies

The inoculation strategy is a way in which nodes that going to be inocu-
lated are chosen. The method may be random, where we randomly select a
given fraction of nodes without any information of the network and inoculate
them — it is called random inoculation [18, 19]. The random inoculation
strategy performs very well in homogeneous network, because there is no
large variations in the degree distribution of the network. The random in-
oculation however, performs badly in heterogeneous network due to large
degree variation. It gives the same importance to all the nodes and does not
choose the influential nodes in the network. The heterogeneous networks
are strongly affected by targeted inoculation, where we find the influential
nodes in the network using different centrality measures and inoculate them
[20]. Below, there are the two main strategies in which targeted inoculation
is done, based on the information about the influential nodes in the network.

4.1. Global strategy

A global strategy lists all nodes in the network according to a centrality
measure, and inoculates a given fraction of nodes with top ranks. The inoc-
ulation takes place in the first round and the process stops when there is no
spreader node left in the network. The stopping of the process is guaranteed
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due to the recovery rate, δ. With this probability, a spreader becomes a sti-
fler at each round. Thus, after r rounds of propagation, the probability that
a spreader still remains a spreader is (1− δ)r, which exponentially decreases
to zero with r.

4.2. Local strategy

In contrast to the global strategy, a local strategy works in a distributed
manner from individual nodes with co-operation of its neighbors. Not all
centrality measures are locally computable. The neighbor centrality needs
information only on the neighbors, so local strategies can be implemented
with it. Local strategies have already been used for inoculation where a ran-
dom node from neighbors is inoculated. Since our centrality is locally com-
putable, we can use targeted inoculation instead of random acquaintances
inoculation [21]. Below, we give a simple local strategy for inoculation.

Algorithm 1 LocalStrategy
Input: Degree of the neighbors of node i, probability p

{rand is a random number in [0, 1]}
1: if rand < p then
2: for all nodes j ∈ Ni do
3: CN(j) =

d2j
(
∑

k∈Nj
dk)

4: end for
5: select s = argmax

j∈Ni

(CN(j))

6: inoculate s
7: end if

Assume each node in the network has the capability to inoculate its
neighbors and individual nodes participate in the inoculation process with
a probability p. Parameter p would control the fraction of inoculations that
takes place in the network on an average. A node that is participating in
the process computes the neighbor centrality of its neighboring nodes, and
then removes the node with the highest score. This happens only in the first
round, as it is the case with global strategies. The process stops when there is
no more spreader node left in the network. Algorithm 1 lists the inoculation
procedure as performed by the nodes of the network, individually. It requires
the degree of its neighbors and the probability p as input.

As an example, in Fig. 1, we have shown a network of 10 nodes, with
their corresponding NC score. The spreader nodes 2, 5, 6 and 10 are shown
as thick/red circles. According to the local strategy, let randomly selected
nodes with probability p be 4 and 6. Nodes 2 and 10 have respectively the
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highest NC score, as the neighbors of 4 and 6. Hence, nodes 2 and 10 would
be inoculated in the first round. Here, it bears no significance if the node to
be inoculated is a spreader or not.

4.3. Complexity analysis

It can be followed from Eq. (2) that the centrality of all the nodes can
be computed in linear time once we have vectors A(Ae) and Ae. Thus, the
centrality could be found in O(n2) time as required by multiplication of a
matrix to a vector. But if we perform the computation on every node and
the purpose is to find the centralities of the neighbors instead of the whole
network, then a node can compute the centrality of its neighbors in O(n)
time, thus greatly reducing the computation time.

5. Experimental results

5.1. Datasets

In the real world, most of the large scale networks follow the power law
degree distribution. Scale free networks have many features of real world
networks [22]. These types of networks have more nodes with low degree and
less nodes with high degree. For experimental validation of the centrality,
scale-free networks are generated using configuration model [23] with power
law degree distribution P (k) ∝ k−γ , where 2 < γ ≤ 3. To keep diversity in
the networks, we have taken γ = {2.5, 3}. 5 random networks are generated
from two of the distributions. The final results are obtained by taking a
mean on the set of 5 networks for each distribution. Every network has
5000 nodes. Below, we describe the SIR model of rumor dynamics taken for
simulating the spread of rumor.

5.2. SIR model

For performance measure and comparison with existing methods, we
have taken MK model [9] of rumor dynamics along with additions from
Nekovee et al. [10]. Below, we show the interactions between the nodes in
form of equations:

S + I
λ−→ S + S , (3)

S + S
σ−→ R+ S , (4)

S +R
σ−→ R+R , (5)

S
δ−→ R . (6)
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The process starts by taking 0.1 fractions of the nodes being spreaders
that are randomly scattered in the network and the remaining nodes are ig-
norant. In each round of discrete time, the following activities take place. A
spreader node tries to send the information to each of its ignorant neighbors
with the probability λ, as given in Eq. (3). Each of the spreader or stifler
node tries to convert its neighbors that are spreader to a stifler with the
probability σ, as shown in Eqs. (4) and (5). A spreader node also becomes
a stifler independently with probability δ, given by Eq. (6).

The values of λ, σ and δ have been taken from previous research as 0.2,
0.1 and 0.1, respectively. The experiment is assumed to be completed when
there is no spreader node left in the network.

5.3. Performance metric

In order to measure the performance of a centrality used in inocula-
tion, the final number of informed node or the rumor size should act as the
determining parameter. It is evaluated with different fraction of nodes be-
ing inoculated according to the centrality measure of nodes. Evidently, the
smaller the final rumor size, the better is centrality used for inoculation.

We have taken three other performance metrics in order to comprehend
the overall effect of the inoculation process on a network. They are namely
the size of the giant component, a total number of components and a number
of edges removed for a given fraction of inoculation. All these parameters
are reported by taking the mean on a set of 5 networks.

The giant component is the largest connected component in an undi-
rected graph [18]. If removal of a node reduces the size of the giant compo-
nent significantly, then it should be understood that the node is important
for robustness of the network. The same could be claimed when removal of
a few nodes breaks the networks in more number of components. That is
connectivity of the network breakdowns rapidly.

5.4. Results

Figures 2 and 3 show the performance of the proposed centrality with
respect to other centralities as is given in Section 2. The results show that
the final rumor size is best reduced when the inoculation is done using the
neighbor centrality. This performance is followed by inoculation using the
degree and betweeness centrality. It can be observed that relative perfor-
mance of the centralities has not changed with the distribution parameter
γ = 2.5 and 3, which gives greater confidence on the success of the proposed
centrality in other distributions.
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Fig. 2. Rumor spread with global inoculations in networks from γ = 3.

Fig. 3. Rumor spread with global inoculations in networks from γ = 2.5.
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Figure 4 shows the performance of the neighbor centrality when used in
the local strategy. In a local strategy, we cannot remove the top fraction of
the nodes due to the required global comparison. Instead, a node partici-
pates in inoculation with some probability, which determines the number of
inoculated nodes on average, as each node participating in the inoculation
removes only one of its neighbors that has the highest NC score. We per-
formed the experiment with probability varying from 0 to 0.5. As centralities
that require the global information cannot be used in the local inoculation
method, the comparison could only be done with the random and degree cen-
trality. The figure depicts that the proposed centrality outperforms others
in γ = 3.

Fig. 4. Rumor spread with local inoculations in networks from γ = 3.

In Fig. 5, we plot the size of the giant component along with the fraction
of inoculation. It shows that the size of the giant component stays the same
for all centralities till 30 percent inoculation and decreases rapidly when the
removal of nodes is done using neighbor centrality. Figure 6 shows that till
30 percent inoculation, number of components remains comparable across
centralities and after that the network breaks quickly in smaller components
when NC is used for inoculation.

Next, in Fig. 7, we show the number of edges that get removed as an
effect of the inoculation performed on the network. It can be seen that NC
removes the maximum number of edges for a given percentage of inoculation,
followed by degree and betweenness.
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Fig. 5. Size of giant component vs. fraction of removed nodes, γ = 3.

Fig. 6. Number of components vs. fraction of removed nodes, γ = 3.
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Fig. 7. Number of deleted edges vs. fraction of removed nodes, γ = 3.

Finally, Table I gives the Pearson correlation [24] matrix of the central-
ity measures obtained on these networks. It shows that neighbor centrality
significantly differs from other centralities. The degree and betweenness cen-
trality have the highest correlation, which explains their relatively the same
performance in controlling rumor spreading. Similarly, the high correlation
of eigenvector and Katz centrality explains their close performance.

TABLE I

Correlation of the centralities.

Centrality NC DC BC SC KC EC

Neighbor 1 0.8168 0.7865 0.7680 0.3982 0.3582
Degree 0.8168 1 0.9978 0.9964 0.7856 0.7455
Betweenness 0.7865 0.9978 1 0.9671 0.7984 0.7934
Structural 0.7680 0.9964 0.9671 1 0.8174 0.7785
Katz 0.3982 0.7856 0.7984 0.8174 1 0.9976
Eigenvector 0.3582 0.7455 0.7934 0.7785 0.9976 1

6. Conclusion

We have proposed a new centrality measure which can work with both
centralized and distributed inoculation strategies and shown its effectiveness
in restricting the final rumor size in both strategies. Comparisons have been
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made with the other centrality measures to demonstrate the effectiveness
of the method and it can be seen that the proposed method outperforms
the existing methods. As the centrality is locally computable, it can also
be used in the distributed inoculation, where each node has the permission
to carry out the inoculation process on its neighboring nodes. This work
can be extended for directed or wighted network. We have also considered
rumor spreading rate to be constant — this can be modeled as a variable
entity which depends upon time.
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