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We provide here a theoretical frame for Quantum Hadro-Dynamics
able to provide a well-behaved approximation scheme that preserves sum
rules and general theorems. This scheme is extended to strange particles.
A mean field evaluation follows, including strangeness in the ground state,
so to reproduce the hypernuclei properties. The theoretical frame is con-
structed in such a way that the calculation at the Next-To-Leading-Order
becomes only a numerical problem.
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1. Introduction

The present paper is devoted to the study of strange matter in the frame
of the Quantum Hadro-Dynamics (QHD). Our aim is on the one hand to
get some results for the thermodynamical properties of the strange matter
at the mean field (MF) level, but also, on the other hand, to provide a well-
behaved approximation scheme that preserves Ward identities and general
theorems of the theory and embodies the MF as its lowest level.

The theoretical frame we choose is the Boson Loop Expansion (BLE),
also known as modified loop expansion. We shall see that BLE has the ad-
vantage of remaining finite against a wild increase of the coupling constants.

At the beginning, the BLE was introduced in order to evaluate the nu-
clear response to an e.m. probe, the formal apparatus being exposed in [1]
and the most relevant outcomes in [2]. The same scheme (with the name
of “modified loop expansion”) was also introduced, in the frame of QHD, in
[3]. Later, the BLE has been used in the Λ–hypernuclei decay [4] and then
embedded in the QHD frame in [5], where a particular care has been devoted
to the renormalization of the theory.

The theoretical frame (BLE) will be shortly resumed in Sec. 3, but in a
nutshell it amounts to:

(2361)
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1. describe the observables in terms of Feynman diagrams;
2. shrink to a point each fermionic loop;
3. collect together all the (so modified) diagrams having the same number

of (bosonic) loops (in a potential theory a potential line is equivalent
to a bosonic one).

In this paper, we shall deal with the 0th (MF) order, extended to embody
strange baryons. We adapt the parameters in order to satisfactorily describe
the static properties of the symmetric nuclear matter. Then, by imposing
the SU(3) symmetry, we generalize the dynamics to include strangeness.
We thus may study systems with a sizeable strangeness component and
compare (in principle) the outcomes with the binding energies of the known
hypernuclei. In this sense, the theory is predictive.

As a matter of fact, however, the dynamics may be improved by going
to the Next-to-Leading Order (NTLO), a job that will be pursued in one or
more forthcoming papers.

2. The model

2.1. The Hilbert space (baryons and mesons)

We consider a baryons system interacting via (pseudo)scalar and (pseudo)
vector mesons.

The baryons are classified according to the SU(3) families, and at MF
level only the octet matters. The decuplet enters in the game only at the
NTLO (and there its contribution is relevant).

We denote with B the class of baryons of the octet: B = N,Λ,Ξ,Σ,
collected according to the SU(2) representations.

Mesons are classified as scalar (denoted with ϕs+), pseudoscalar (ϕs−)
vector (Aµv+) and pseudovector (Aµv−).

In describing a “realistic” dynamics many mesons are required, but at the
MF only few of them are active (pseudoscalar and strange mesons are ruled
out). The ones accounted for in this paper are listed in Table I together
with their masses and properties.

TABLE I

List of the mesons considered in this paper (the second column contains a possible
alternative name of the mesons

M JP I S

σ 550 0+ 0 0
ω 783 1− 0 0
δ a0(980) 980 0+ 1 0
ρ 770 1− 1 0



Generalized QHD in Baryonic Matter 2363

Their choice stems from phenomenological reasons [6]. First of all, we
remind that the original version of QHD (henceforth referred to as Ur-QHD)
required only the σ and ω mesons. The spirit was to reproduce the static
properties of the nuclear matter within a simple but fully covariant model
using meson masses and coupling constants as free parameters. In this sense,
the σ and ω were fictitious particles having no immediate contact with the
physical world.

A detailed study of the N–N scattering in the frame of the one boson
exchange potential has been carried out by the Bonn group, and Ref. [7]
nicely showed that the σ-meson exchange, largely responsible for the N–N
attraction in the original version of the Bonn potential [8], could be safely
replaced by the so-called box diagrams, namely a two-pion exchange with
the simultaneous excitation of one or two nucleons to ∆-isobars.

Nowadays, the existence of a broad resonance with the same quantum
numbers of the σ has been firmly established [the f(500)] and it could be
tempting to identify it with the QHD σ-meson. However, the Bonn group
analysis shows that introduction of the box diagrams is quite sufficient to
reproduce N–N phase shifts. This means the contribution of the f(500) only
leads to marginal corrections and the QHD σ just amounts to parametrizing
the box diagrams.

The inclusion of the ω is then consequent, since in the Dirac phenomenol-
ogy [9] an optical potential like ΣS+ΣVγ0 with a large cancellation between
the two terms describes quite well the elastic proton scattering. For this
reason, we try to group as far as possible our mesons in doublets with a
(pseudo)scalar and a (pseudo)vector meson.

We neglect the lowest meson octect (π, K, η, η′) because it is not allowed
by the MF dynamics. It, however, matters at the NTLO, where the two pions
exchange comes into play. Adding the ∆ resonance and other technicalities,
we recover, in fact, the whole 2-pion exchange that is almost sufficient to
give the nuclear binding: a striking example is given in Ref. [10].

Next, other mesons have been utilized previously in literature [6, 11–
14] to get a more accurate description of the nuclear matter ground state,
accounting for pressure and compressibility as well as for the stiffness of the
equation of state (δ, ρ, σ∗, φ).

Thus, we should include the scalar octet [15] composed by a0(980) (also
called δ), f0(980) and K∗0 (800). Again, strange mesons matter only at
the NTLO. The mixing between f0(980) and f0(500) is neglected. Thus,
presently only the δ-exchange matters. Its coupling is left free, while the
other couplings are fixed by the SU(3) symmetry.

Finally, we include the vector partners of the above octet, built up by
(tentatively) ρ(770), K∗(892) and φ(1020). Again, only the ρ is active.
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2.2. The Lagrangian

The dynamics described above can be written in a compact form by
means of the Lagrangian

L = L0B + L0s + L0v + LI − Uσ(σ)− Uω(ω) + Lf . (1)

L0B is the fermion Lagrangian

L(1/2)0B =
∑
B

B̄(i/∂ −MB)B , (2)

the free boson Lagrangian reads

L0s =
∑
s

1
2

[(
∂µϕ

i
s

) (
∂µϕis

)
− µ2s

(
ϕis
)]

(3)

for scalar or pseudoscalar bosons and

L0v =
∑
v

(
−1

4F
i
vµνF

µν,i
v + 1

2m
2
vA

i
vµA

µ,i
v

)
(4)

with
Fµν,iv = ∂µAν,iv − ∂νAµ,iv , (5)

for the (pseudo)vector ones.
Defining

Γ =

{
I for scalar or vector mesons ,
γ5 for pseudoscalar or pseudovector mesons :

(6)

the interaction term takes the form

LI =
∑
sBB′

gsBB′ϕ
i
sB̄ΓT

i
BB′B

′ +
∑
vBB′

gvBB′A
i
vµB̄Γγ

µT iBB′B
′ , (7)

where the T iBB′s are some suitable isospin matrices fixed by the Wigner–
Eckart theorem. Equation (14) tells us their explicit form.

In the MF approximation, only the diagonal part (B = B′) of the T iBB′s
(and hence only the T3 = 0 component of the mesonic field) matters. Take
now the representation of SU(2) carrying isospin T and let T Ti be the gen-
erators. We get TBB ∝ T T=I(B)

3 . Then, we put

JT (B) =

{
1 ∀B if T = 0 ,(
T I(B)
3

)
I3(B),I3(B)

if T > 0 (8)
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and redefine the coupling constants as

g̃uB = guBBJ
T (B) . (9)

Explicitly, 2JT (B) takes the value 0 for an isosinglet (Λ and Ω), = +1,−1
for an isodoublet (N ,Ξ,Ξ∗), +2, 0,−2 for an isotriplet (Σ, Σ∗) [and (not
directly relevant for us) +3,+1,−1,−3 for T = 3/2 (the ∆)].

It is customary in the literature to add to the interaction two self-
interaction terms for the σ and the ω in the form of

Uσ(σ) =
1

3
bMN (gσNNσ)3 +

1

4
c(gσNNσ)4 , (10)

Uω(ω) =
d

4!

(
g2ωNωµω

µ
)2
. (11)

These terms have a phenomenological origin (they help in controlling the
stiffness of the nuclear matter), but, in principle, they should exist for all
mesons. We consider only σ and ω in order to avoid an uncontrolled increase
of free parameters.

The last remark concerns renormalization. No infinities arise at the
MF, but in general, as it is, the theory is not renormalizable. However, this
disease may be overcome by introducing for each vector meson an associated
Stueckelberg ghost, whose effect is that of canceling the qµqν/m2 term in
each vector meson propagator [16].

2.3. The SU(3) limit

We classify, as far as possible, the mesons according to the SU(3) repre-
sentations.

To begin with, we look at the σ meson, whose nature is largely fictitious
in the QHD scheme. We do not attribute presently to the σ the role of chiral
partner of the π and consider it as a singlet in SU(3), so that each B–B–σ
vertex has the same coupling. The same holds for the ω.

Next, we consider a boson octet. To exemplify, we call the mesons π,
K and η, with the η′ that can be assumed to be a singlet (neglecting his
mixing with the η).

The SU(3)-invariant interaction Hamiltonian is known from the early
days of the “eightfold way” [17]. The generalized Wigner–Eckart theorem
(see, e.g., [18]) tells us that a matrix element 〈B′|M |B〉, where |B〉 and
|B′〉 are members of a baryon octet and M belongs to a boson octet can
be expressed in terms of only two reduced matrix elements (while in SU(2)
only one is required).
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We follow de Swart [19] and define the isospin multiplets

N =

(
p
n

)
, Ξ =

(
Ξ0

Ξ−

)
, K =

(
K+

K0

)
, Kc =

(
K̄0

−K−
)

(12)

(isodoublets) and the isovectors ~π, ~Σ, ~Σ† and ~τ , the last embodying the
Pauli matrices. We also define (with a somehow incoherent notation) the
quantities

N † = (p̄γ5, n̄γ5) , Ξ† =
(
Ξ̄0γ5, Ξ̄

−γ5
)
, ~Σ† =

(
Σ̄+γ5, Σ̄

0γ5, Σ̄
−γ5

)
.

(13)
The matrix element of the Hamiltonian interaction can be expressed in

terms of only two parameters, g and α

HI/g = N †(~τ · ~π)γ5N − (1− 2α)Ξ†(~τ · ~π)γ5Ξ

+
2√
3

(1− α)
(
Λ†γ5 ~Σ + ~Σ†γ5Λ

)
· ~π − 2iα

(
~Σ† × γ5 ~Σ · ~π

)
+

1√
3

(4α− 1)N †γ5Nη −
1√
3

(2α+ 1)Ξ†γ5Ξη

+
2√
3

(1− α)Λ†γ5Λη −
2√
3

(1− α)
(
~Σ† · ~Σ

)
η

− 1√
3

(2α+ 1)
(
N †K

)
γ5Λ−

1√
3

(2α+ 1)Λ†γ5

(
K†N

)
+(1− 2α)

{
~Σ†γ5 ·

(
K†~τN

)
+
(
N †~τK

)
· γ5 ~Σ

}
−
{
~Σ†γ5 ·

(
K†c~τΞ

)
+
(
Ξ†~τKc

)
· γ5 ~Σ

}
. (14)

The pseudoscalar octet becomes relevant only at the NTLO. The second
octet we are interested in is regained with the substitutions

π → δ , K → K∗0 (800) , η → f0(980) , γ5 → 1 .

Finally, the third octet comes from

π → ρ , K → K∗(892) , η → φ , γ5 → γµ .

Needless to say, the above choice hides a huge amount of physics concerning
the nature and structure of these mesons. For example, the second octet
could have a large tetraquark component.
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2.4. The ground state

Finally, we must specify the ground state. We consider a system with
N particles in a volume V and we define the total density ρ as

N

V
= ρ =

k3F
3π2

(15)

that introduces a momentum kF, whose meaning is truly that of a Fermi
momentum only when one kind of particles is involved.

If the ground state contains many different baryons, we define their par-
tial densities and the corresponding Fermi momenta as

ρB =
NB

V
=
kFB
3π2

. (16)

Note: in the above, B denotes a single baryon and not a single multiplet.
To exemplify, consider the case of symmetric nuclear matter (SNM)

N = Np +Nn = 2NN

(the suffixes p and n denote protons and neutrons, N stays for nucleon).
Since this case is particularly relevant, we introduce a specific notation for
it, calling pF the usual Fermi momentum of the SNM, i.e., pF = kFN , so
that

ρN =
NN

V
=
k3FN
3π2

=
2p3F
3π2

=⇒ kF =
3
√

2 pF . (17)

The ground state |Φ0〉 may contain up to 8 Fermi spheres. Defining |ΦB0 〉
as the one pertaining to the baryon B with Fermi momentum kFB , we write

|Φ0〉 =
⊗
B

∣∣ΦB0 〉 . (18)

Note that, in general, the ground state is not isospin invariant (think of
a neutron star).

3. The theoretical frame

3.1. The partition function

The theoretical frame we adopt is the Boson Loop Expansion.
Let Ψ be a column vector collecting the baryons of the octet and Φ the

set of bosons. The partition function Z(β) can be represented as a path
integral by

Z(β) = Tr e−Ĥ =

∫
D
[
Ψ̄ ,Ψ ,Φ

]
e−

∫ β
0 dτ

∫
d3xLE(x,τ) . (19)
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Observe that

1. LE is the Lagrangian in the Euclidean world: if H is the Hamiltonian
density, then LE(x) = −H(x) provided the dependence of L upon time
derivatives is at most quadratic.

2. Calculations must be performed, in principle, at finite temperature,
and hence using suitable boundary conditions for the paths at τ = 0
and τ = β. Since, however, we shall eventually work in the limit
β →∞ these complications are uneffective and ultimately negligible.

Equation (19) represents the key issue of the formalism, its link with the
observables being provided by the next subsection.

3.2. Observables

Once Z is known, the ground state properties follow according to well-
known relations.

Binding energy

E0 =
〈
Ĥ
〉

= lim
β→∞

(
− logZ(β)

β

)
. (20)

The binding energy per particle is

BE

N
=
E0

N
=
ε

ρ
, (21)

where ε is the energy density.

Chemical potential : For each baryon B, we have

µB =
∂E

∂NB
=

∂

∂(V ρB)
V ε =

∂ε

∂ρB
. (22)

Pressure:
p = −ε− V ∂ε

∂V
= −ε+

∑
B

µBρB . (23)

Compressibility : According to [20], the compressibility is defined as

χ = − 1

V

∂V

∂p
= −1

ρ

(
∂p

∂ρ

)−1
. (24)

At a variance of [20], we define the compression modulus K as the
inverse

K =
9

ρχ
= −9

∂p

∂ρ
= −9

ρ

∑
BB′

∂2ε

∂ρB∂ρB′
ρBρB′ . (25)
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Our definition extends K∞ of [20], namely

K∞ = −9ρ20

[
∂2

∂ρ2
BE

N

]
ρ=ρ0

(26)

ρ0 being the equilibrium density. There is no contrast between the
two definitions, since the latter holds only at the equilibrium (p = 0)
where they exactly coincide.

3.3. The BLE action

The theoretical framework of the BLE has been described e.g., in [2, 21]
for the non-relativistic case and in [5] for its application to Ur-QHD. Here,
we only need to generalize it to many kinds of fermions what already has
been derived in [5]. The extension being trivial, we only quote the final
result.

The relevant steps are the following:

1. Evaluate the fermionic integrals in (19): what remains at the exponent
is the effective bosonic action.

2. Evaluate the minimum of the effective action. The resulting value
of Φ, denoted by Φ̄ is non-trivial, since at least 〈σ〉 6= 0.

3. Get rid of Φ̄ by means of a shift of the integration variable Φ.

Following [5], the effective bosonic action takes the form of

AB[Φ](β) = AB(β)mf +AB[Φ](β)1−loop +AB[Φ](β)int . (27)

The first term, namely

AB(β)mf = Tr log
[
S−1H

]
+

1

2

∫
Φ̄D−1Φ̄ (28)

describes the partition function of an assembly of non-interacting fermions.
Here, D is a diagonal matrix built with the propagators on the various
mesons, while SH is also a diagonal matrix constructed with the Hatree-
dressed fermions propagators, defined by

D−1Φ̄ = − SG

1 + SGΦ̄
= −SHG (29)

(that also defines the mean field Φ̄).
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The second term contains the quadratic part (with respect to the meson
field) of the action and reads

AB[Φ](β)1−loop = 1
2

∫
ΦD−1RPAΦ−

1
2 Tr[SHGΦ]2

.
= 1

2

∫
ΦD−1Φ− 1

2

∫
ΦΠHΦ

.
= 1

2

∫
ΦD−1RPAΦ , (30)

where ΠH is the Hartree-dressed relativistic Lindhard function
∫

dxdy
S(x − y)S(y − x) (see [22]) and DRPA is the RPA-dressed meson propa-
gator (see [5] for details).

Finally, the third term in (27), namely

AB[Φ](β)int = −Tr

∞∑
n=3

(−1)n

n
[SHGΦ]n (31)

plays the role of an interaction term. Here,G is a 3-indices matrix containing
the coupling constants, the indices corresponding to the two kinds of fermion
a of kind of the boson. As a shortcut ψ̄i(gijkφk)ψj ≡ Ψ̄GΦΨ .

Here, each [SGΦ]n
.
= Π(n)Φn describes a (non-local) n-point vertex built

by an n-point closed fermion loop with a factor GΦ attached to any vertex.
For the analytical properties of the Π(n)s, the reader is referred to [23, 24].

In the above, the meson self-interaction have been neglected.

4. The mean field equations

The mean field equation Φ̄ comes directly from Eq. (29). It has, however,
different structures for scalar and vector mesons.

Expliciting the interaction, the motion equation for a (pseudo)scalar bo-
son field reads(

2 + µ2s
)
ϕ̄s =

∑
BB′

gsBB′T
i
BB′〈Φ0|B̄′ΓB|Φ0〉 − U ′σ(σ̄)δsσ , (32)

where we have re-introduced the meson self-interaction. The index “s” runs
over all (pseudo)scalar mesons.

The matrix element 〈Φ0|B̄′ΓB|Φ0〉 is manifestly diagonal in the indices
B, B′. Furthermore, parity conservation rules out pseudoscalar mesons.
Thus, we are left with only scalar mesons having T = 0, 1 and T3 = 0.
Using translation invariance, we get

µ2s ϕ̄
s =

∑
B

g̃sB
〈
Φ0|B̄B|Φ0

〉
− U ′σ(σ)δsσ (33)

[Remember: σ ≡ ϕ̄σ].
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Note that ϕ̄s depends upon the whole set of baryonic densities.
Introducing the scalar density

ρS(k,M) = 2

∫
d3p

(2π)3
M

E(p,M)
θ(k − p) =

M

2π2

{
k E −M2 log

k+E
M

}
(34)

with E(k,M) =
√
k2 +M2, Eq. (33) becomes

µ2s ϕ̄s =
∑
B

g̃sBρS − U ′σ(σ)δsσ . (35)

To exemplify, take the case of the δ-meson. Applying our equation to
the octet, we find

µ2δδ
0
T=1 = 1

2gδNN [ρsp − ρsn] + gδΣΣ [ρsΣ+ − ρsΣ− ] + 1
2gδΞΞ [ρsΞ0 − ρsΞ− ] .

(36)
The above shows explicitly that the δ may have a non-vanishing MF only
if the isospin symmetry is broken by the structure of the ground state (for
instance in the case of asymmetric nuclear matter, where ρsp 6= ρsn).

The motion equation for a vector boson is

(
2 +m2

v

)
Āivµ =

∑
BB′

gsBB′B̄γµT
i
BB′B

′ − d

3!
g4ωN Ā

i
vµĀ

j
vλĀ

jλ
v δvωδi0 (37)

with the constraint
∂µĀivµ = 0 (38)

(Proca equations). The indices i, j denote the third component of the
isospin, while “v” runs over the kind of vector mesons. As for the scalar
mesons, the matrix element 〈Φ0|B̄ΓγµT iBB′B′|Φ0〉 is meaningful only for
B = B′. This, in turn, rules out all isospin components 6= 0. Further, in the
infinite nuclear matter limit, we observe that 〈Φ0|B̄Γ~γT iBB′B′|Φ0〉 = 0 by
rotational invariance. Thus, the above equations for the 3-vector component
of the meson become trivial and are solved by ~Aiv = 0; the only non-trivial
one is consequently ĀT3=0

v,µ=0.
So the relevant quantity in the r.h.s. of Eq. (37) is 〈Φ0|B̄Γγ0T iBBB|Φ0〉.

Consequently, the meson cannot change the strangeness. Furthermore, the
matrix element vanishes for pseudovector bosons. Thus, we are left with
vector isoscalar or isovector mesons only.

Defining, in parallel with the scalar case,

ρV
.
= 〈Φ0|Bγ0B|Φ0〉 =

k3FB
3π2
≡ ρB , (39)
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the equation of motion for the vector mesons reads

m2
vA

µ=0,i=0
v =

∑
B

g̃vBρB − U ′ω(ω)δvω (40)

restricted to non-strange bosons.
Observe finally, that at variance of ρsB, ρvB is independent of the masses.

The consequence is that the vector MF is kept out of the self-consistency
game and of the definition of the baryon effective mass, as observed long
time ago by the pioneering work of Lee and Wick [25].

To derive the equation of motion for a Dirac field, we take the action at
the former level, before fermion integration (see Eq. (19)). This procedure
is somehow incoherent, but on the other hand, a fully consistent treatment
is unnecessarily cumbersome.

Explicitly, we find

(i 6∂ −MB)B =
∑
sB′

gsBB′ϕ̄
τ3=0
s T 0

BB′B
′

+
∑
vB′

gvBB′Ā
µ=0,τ3=0
v γ0T 0

BB′B
′ , (41)

where the meson involved can neither be strange nor carry odd parity.
Note that in (41), the r.h.s. may couple different baryons, provided they

have the same quantum numbers. Luckily, this is not the case for the baryon
octet, so that the system decouples. We are not able, however, to disentangle
the nucleon dynamics from the one of a Roper resonance. This occurrence
deserves a careful separated study.

Presently, however, the non-diagonal terms in (41) vanish and we are left
with

(i 6∂ −MB)B = −
∑
s

g̃sBϕ̄
τ3=0
s B +

∑
v

g̃vBĀ
µ=0,τ3=0
v γ0B . (42)

It is then natural to define an effective mass

M∗B = MB −
∑
s

g̃sBϕ̄
0
s (43)

so that
(i 6∂ −M∗B)B =

∑
v

g̃vBĀ
µ=0,τ3=0
v γ0B . (44)

Note that the effective mass depends upon the full set of baryon indexes.
This is because the evaluation of the effective mass entails an average over
the ground state, which, in general, is not isospin-invariant.
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We also notice that any effective mass depends upon the whole set of
Fermi momenta {kFB}.

The presence of the effective masses implies a self-consistency require-
ment in Eq. (35), that now reads

µ2s ϕ̄
0
s =

∑
B

g̃sBρS(M∗B, kFB )− U ′σ(σ)δsσ (45)

with M∗B that depends, in turn, upon the MF values of the scalar bosons
through Eq. (43). Putting together Eqs. (35), (43) and (45), we get the
self-consistent equation

µ2s ϕ̄
0
s + U ′

(
ϕ̄0
s

)
δsσ =

∑
B

g̃sBρS

(
MB −

∑
u

g̃uBϕ̄
0
u, kFB

)
(46)

that can be solved numerically using the standard numerical methods based
on the fixed point theorem.

5. Mean field observables

Now, we need the expressions of the observables at the MF level. The
formal derivation is sometimes cumbersome but essentially straightforward;
thus we simply list the results. Actually, this section is the couterpart of
Subsec. 3.2.

Binding energy : The binding energy per particle reads

BE

N
=

1

ρ

∑
B

ρBE
∗
B

+
1

ρ

{
1

2

∑
s

µ2s (ϕ̄s)
2 +

1

2

∑
v

m2
v

(
Ā0

v

)2
+ Uσ(σ) + Uω(ω)

}
,

(47)

where E∗B is the energy of a Fermi sphere for baryons with effective
mass M∗B

E∗B =
dB
ρB

∫
d3k

(2π)3
E (k,M∗B) θ(kFB − k) . (48)

Remark: we have not subtracted here the nucleon mass for ease of
notation. The quantity customarily referred to as binding energy is
BE/N −M .
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Chemical potential : The chemical potential for the fermion B reads

µB = E∗B +
∑
v

g̃vB

∑
C g̃vCρC

m2
v + U ′′ω(ω)δvω

, (49)

where we have introduced the shortcut E∗B = E(kFB ,M
∗
B).

Pressure:

p =
1

4

∑
B

ρBE∗B −
1

4

∑
B

ρSBM
∗
B −

∑
s

[
1

2
µ2sϕ

2
s + Uσ(σ)δsσ

]

−
∑
v

[
1

2
m2

v

(
Ā0

v

)2
+ Uω(ω)δvω

]
+

(
∑

B g̃sBρSB)2

m2
v + U ′′ω(ω)δvω

. (50)

Compressibility : The expression for the compressibility is more involved:

K = −d

6

∑
B

ρBk
2
FB

E∗B
−
∑
v

(g̃vBρB)2

m2
ω + U ′ω(ω)δωv

+
d

6

∑
B

g̃σBρBM
∗
B

E∗B
Dσ

+
U

(3)
ω (ω) (

∑
B g̃ωBρB)2

3 (m2
ω + Uω)2

Dω , (51)

Dσ =
∑
B

kFB
∂σ

∂kFB
=

3d
2

∑
B
g̃σBρBM

∗
B

E∗B

µ2σ − 3d
2

∑
B
g̃2σBρB
E∗B

+ 3d
∑

B
g̃2σBρB
M∗B

+ U ′′σ (σ)
,

(52)

Dω =
∑
B

kFB
∂ω

∂kFB
=

3
∑

B g̃σBρBM
∗
B

m2
ω + U ′′ω(ω)

. (53)

6. The Ur-QHD

6.1. The equations of the Ur-QHD

In the initial form, QHD contained only σ, ω and nucleons. As a first
step, we consider an oversimplified model neglecting meson self-couplings
and only dealing with symmetric nuclear matter (SNM).

Observe that the nucleon dynamics at the MF level is only affected by
the tadpoles (Hartree contributions) associated to the σ and ω, that have
the structure g2σNN/µ

2
σρS and g2ωNN/m

2
ωρ. This suggests to introduce, con-

sistently with the past literature, the notation

fi =

(
g̃iN
µi

)2

=
f̃i
M2
N

, (54)

where the index “i” runs over all mesons, µi being the corresponding mass.
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In SNM, it is natural to replace kF with the true Fermi momentum of
the system defined in (17), namely pF = kF/

3
√

2. Then the self-consistent
equation reads

ς(pF) = 2fσρS(M∗(pF), pF)−
√
fσ
µσ

U ′σ

(
ς(pF)√
fσµσ

)
, (55)

where the rescaled field is ς(pF) = mσσ(pF).
The effective masses for the nucleons read

M∗(pF) = MN −
√
fσς(pF) . (56)

The 0th component of the ω meson is

A0(pF) = 2fωρ−
√
fω
mω

U ′ω

(
A0(pF)√
fωmω

)
(57)

being A0(pF) = mωω
0(pF).

6.2. Lee and Wick model

The model studied by Lee and Wick is even simpler and contains only
the σ-meson with Uσ = 0. The self-consistent equation

pFE∗

M∗
− log

∣∣∣∣pF + E∗

M∗

∣∣∣∣ =
π2

fσ

M −M∗

(M∗)3
(58)

determines M∗. Note that Eq. (58) in the limit pF → ∞ entails M∗ → 0,
i.e., chiral symmetry may be restored. The binding energy takes the form of(

BE

N

)
LW

=
(M −M∗)(2M −M∗)

4fσρ
+

3

4
E∗ (59)

and the pressure is

pLW =
1

4
ρ E∗ − (M −M∗)(2M −M∗)

4fσ
. (60)

The model at this stage has only one parameter, namely fσ. To exem-
plify, in Fig. 1 we have reported the binding energy for different coupling
constants. This plot clearly shows the inadequacy of the model, because
either (low coupling limit) no saturation point occurs or (mild values of gσ)
the system is over-bound at exceedingly high density.
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Fig. 1. The binding energy of the Lee–Wick for different coupling constants. We
have put gσ = 1, 2, 3, 4, 5 (in descending order) with mµ = 550 MeV. The nucleon
mass is subtracted.

6.3. Corrections to the Lee–Wick model

This outcome was expected indeed since the Dirac phenomenology im-
poses the introduction of the ω. According to the content of Subsec. 6.1, the
biding energy and pressure will be corrected as follows:(

BE

N

)
σω

=

(
BE

N

)
LW

+
fωρ

2
, (61)

pσω = pLW +
fωρ

2

2
, (62)

µ = E∗ + fωρ . (63)

Since the model has now two parameters, we can impose the two conditions
that fix the position of the stability point, namely a binding of −16 MeV at
pF = 1.36 fm−1. The binding energy is shown in Fig. 2. All the remaining
properties of the nuclear matter are then fixed. For instance, the effective
mass at the saturation point is M∗ = 0.55M , a value considerably lower
than all the reasonable available evaluations and the compression modulus
is K∞ = 543 MeV, twice as much as the expected result.

The minimal correction added to the Lee–Wick model is still unsatis-
factory. Thus, as usual in the literature, we account for the quadrilinear
self-interacting terms:

Uσ(x) = 1
4c(g̃σNx)4 , (64)

Uω(x) = 0 . (65)
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Fig. 2. The binding energy for the two-parameters model.

Using these definition, we write the observables as

BE

N
=

(
BE

N

)
LW

+
fωρ

2
+
cM(M −M∗)3

4ρ
, (66)

p = pLW +
fωρ

2

2
− 1

4
cM(M −M∗)3 , (67)

µ = E∗ + fωρ . (68)

The expression of K is more cumbersome, although elementary.
To fix the parameters, we impose the equilibrium conditions so that we

are faced with Eqs. (66) and (67) plus the self-consistency equation that,
after suitable manipulations, takes the form

ρS =
(M −M∗)

(
cfσ(M −M∗)2 + 1

)
fσ

(69)

(all equations are taken at the equilibrium density).
Equation (69) is then invoked to determine the effective mass. So we are

faced with four unknown, namely fσ, fω, c and M∗. It is convenient instead
to leave M∗ free: the other parameters are now fixed by the relations

fσ = − (M −M∗)2

ρ(ρSM/ρ− 2M + 2V0 + E)
, (70)

fω = −−M + V0 + E
ρ

, (71)

c =
ρ(ρs/ρ(2M −M∗)− 2M + 2V0 + E)

(M −M∗)4
. (72)

Thus, if we leave the effective mass at the equilibrium as a free parameter,
the model is analytically solvable.
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In Fig. 3, the parameters are plotted as functions of M∗, together with
the compressibility. In fσ a striking singularity appears. Nevertheless, it
does not affect the observables, since in all of them the limit fσ → ∞ is
regular.

Fig. 3. Panel (a): the parameter fσ as a function of M∗; Panel (b): the parameter
fω as a function of M∗; Panel (c): the parameter c as a function of M∗; Panel (d):
the compressibility as a function of M∗.

Also, the parameter c changes the sign forM∗ = 513.14 MeV. We remind
that the region c < 0 corresponds to an unstable system (the energy is
not bounded from below). Thus, this model provides the constraint M∗ >
513.14 MeV.

The other interesting quantity, for which we have some experimental
indication, is the compression modulus (panel (d) in Fig. 3). This plot
deserves some attention, as it displays a liquid-vapor phase transition when
K → 0, i.e., at M∗ = 896.92 MeV.

In Fig. 4, we plot the binding energy, still keeping the equilibrium point
fixed, for different effective masses. The results of the right panel are not
physically sound, as they refer to unrealistically high values of the effec-
tive masses, but are nevertheless amusing since they display the behavior
of the binding energy in proximity of the critical point of the phase tran-
sition. To complete this analysis, we list the parameters corresponding to
the more likely values of the effective mass, together with the corresponding
compressibility at the equilibrium in Table II. The masses of the mesons are
µσ = 550 MeV and mω = 783 MeV. The trend is clearly an overestimate of
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the compression modulus or of the effective mass. Further, with increasing
M∗, the repulsion is provided more by the self-interaction term and less by
the ω-meson exchange.
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Fig. 4. The binding energy per particle as a function of the effective mass. Left
panel: M∗/M = 0.55, 0.65, 0.75, 0.85 in descending order; right panel: M∗/M =

0.92, 0.94, 0.96, 0.98 in descending order.

TABLE II

Parameters and compressibility modulus at the equilibrium for different effective
masses.

M∗/M fσ fω gσ gω c K
0.65 2.856× 10−4 1.962× 10−4 9.29 10.97 2.42× 10−3 547.9
0.75 2.206× 10−4 1.297× 10−4 8.17 8.92 1.46× 10−2 438.1
0.85 1.6× 10−4 6.2× 10−5 6.96 6.16 0.137 257.6

7. Numerical results: full model

In this section, the dynamics is enlarged to include the isovector doublet
δ (scalar) and ρ (vector) so to ensure cancellation just as in the case of the
isoscalar doublet (σ,ω)

7.1. Asymmetric nuclear matter

The first step is the study of the SNM, and in this context the Ur-QHD
model acts as a starting point, to which we add the δ and the ρ.

However, as shown in Eq. (36), the driving term of the equation of mo-
tion for the δ is proportional to ρp − ρn plus terms carrying strangeness.
Thus, in the case of SNM the equation for the δ becomes homogeneous, and
the corresponding field vanishes. The ρ–meson does the same, since the co-
efficients in (36) stem only from isospin. Thus, no effect is expected at this
level.
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Of course, the cancellation is not complete in the ANM case. We choose
the coupling constant of the δ according to [6] (up to some cumbersome
transformations of the units), i.e., gδNN = 7.85, while the coupling of the
ρ is gρNN = 7.02. We assume further ρn = 0.6 and ρp = 0.4 (that is very
near to the asymmetry of Pb208) and its opposite ρn = 0.4 and ρp = 0.6.
A plot of the BE/N is meaningless, because the curves turn out to be almost
superimposed. A numerical calculation provides the following bindings: −14.4472 for ρn = 0.6 , ρp = 0.4 ,

−15.3699 for ρn = 0.5 , ρp = 0.5 ,
−14.6896 for ρn = 0.4 , ρp = 0.6

that is, a small repulsive contribution is added. A comment is in order:
the expected behavior like (ρn − ρp)2 is not reproduced simply because our
calculations have been performed with the true masses of n and p as in PDG,
so breaking the expected symmetry.

7.2. Strange nuclear matter

Next, we consider a nuclear system with a strangeness component. We
assume, to exemplify, a nucleus with 5 protons (boron), 4 neutrons and
one Λ. This corresponds to ρp = 0.5, ρn = 0.4 and ρΛ = 0.1. We observe
first of all that the vertices δΛΛ and ρΛΛ are not permitted by isospin
conservation. Hence, only the Ur-QHD dynamics matters.

We thus repeat the previous calculations, getting the results of Fig. 5 —
dashed line (red). We stress once more that the dynamics is too poor to draw
reliable conclusions, but it is worth noticing that the order-of-magnitude of

Fig. 5. BE/N for SNM and (Σ,Ξ,Λ)-nuclei. Solid line (black): SNM in the σω
model, dotted line (blue): nuclear matter with a 10% of Ξ, dot-dashed line (green):
nuclear matter with a 10% of Σ, dashed line (red): nuclear matter with a 10% of Λ.
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the jump from SNM to a Λ nucleus is about (mΛ−mN )/N (in our case less
or about 17 MeV) and that the model predicts a weakly bound state around
the equilibrium density of SNM.

Next, we come to the Σ-nuclei. Again, δ and ρ are decoupled from
Σ†0Σ0. Thus, along the same scheme as for the Λ we get, for ρΣ0 = 0.1, the
dot-dashed line (green) of Fig. 5.

Finally, we consider a Ξ-nucleus. The ground state energy is shown by
the dotted line (blue) of Fig. 5.

8. Outlook

The present paper provided us with the following outcomes:

1. A detailed theoretical frame for the construction of well-behaved ap-
proximation, i.e., that may be regarded as power expansions of one
or more parameters. The consequence is that, under suitable condi-
tions (almost always fulfilled), general theorems and sum rules, usually
proved in the general case, hold order-by-order in the power expansion.
Of course, the expansion parameter may be set to 1 after the expan-
sion, as is the case of the loop expansion, where the parameter is ~.
In the case of BLE, we multiply by α the term

Tr
∞∑
n=3

(−1)n

n
[SGΦ]n

of Eq. (31) and put α → 1 after having carried out the power expan-
sion. Note that the sum starts from n = 3 because we want to single
out and embody in the leading order all the terms quadratic in the
meson field.

2. The MF is described by means of the σ, ω, δ and ρ exchange. A reason-
able description of the nuclear static properties is obtained, without
introducing instabilities in the system (the σ self-interaction has a sta-
ble minimum for σ = 0, while in other parametrizations the above
point is unstable and a proper handling of the model leads to a col-
lapse). Further, we have shown that once the stability point of the BE
is fixed, then the model can be described analytically as a function
of the effective mass. The description of the strange matter is also
reasonable, although the poor dynamics introduced so far does not al-
low a reliable description of its phase diagram (in practice, we should
introduce at least the K meson, that at the MF is ineffective).

As already explained in the introduction, these achievements are the starting
points for new calculations, namely the next-to-leading order in BLE.
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