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In this article, we provide the canonically deformed classical Henon–
Heiles system. Further we demonstrate that for proper value of deformation
parameter θ, there appears chaos in the model.

DOI:10.5506/APhysPolB.47.2387

1. Introduction

There exist a lot of papers dealing with physical models of which dy-
namics remains chaotic; the most popular of them are: Lorentz system [1],
Henon–Heiles system [2], Rayleigh–Bernard system [3], Duffing equation [4],
double pendulum [5, 6], forced damped pendulum [5, 6] and quantum forced
damped oscillator model [7]. The especially interesting seems to be Henon–
Heiles system defined by the following Hamiltonian function:

H(p, x) = 1
2

2∑
i=1

(
p2i + x2i

)
+ x21x2 − 1

3x
3
2 , (1)

which in Cartesian coordinates x1 and x2 describes the set of two nonlinearly
coupled harmonic oscillators. In polar coordinates r and θ, it corresponds
to the particle moving in noncentral potential of the form of

V (r, ϕ) =
r2

2
+
r3

3
sin (3ϕ) , (2)

with x1 = r cosϕ and x2 = r sinϕ. The above model has been inspired by
the observational data indicating that star moving in a weakly perturbated
central potential should have apart of constant in time total energy Etot, the
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second conserved physical quantity I. It has been demonstrated with the
use of the so-called Poincaré section method that such a situation appears in
the case of Henon–Heiles system only for small values of control parameter
Etot. For high energies, the trajectories in phase space become chaotic and
the quantity I does not exist (see e.g., [8, 9]).

In this article, we investigate the impact of the well-known (simplest)
canonically deformed Galilei space-time [10–12]1,2

[t, x̂i] = 0 , [x̂i, x̂j ] = iθij (3)

on the mentioned above Henon–Heiles system. Particularly, we provide the
corresponding canonical equations of motion as well as we find the Poincaré
sections of the phase space trajectories of the model. In such a way, we
demonstrate that for proper value of deformation parameter θ and for proper
values of control parameter Etot, there appears chaos.

The paper is organized as follows. In the second section, we briefly
remind the basic properties of classical Henon–Heiles system. In Section 3,
we recall canonical noncommutative quantum Galilei space-time proposed
in article [12]. Section 4 is devoted to the new canonically deformed Henon–
Heiles model, while the conclusions are discussed in Section 5.

2. Classical Henon–Heiles model

As it was already mentioned, the Henon–Heiles system is defined by the
following Hamiltonian function

H(p, x) = 1
2

2∑
i=1

(
p2i + x2i

)
+ x21x2 − 1

3x
3
2 , (4)

with canonical variables (pi, xi) satisfying

{xi, xj} = 0 = {pi, pj} , {xi, pj} = δij , (5)

i.e., it describes the system of two nonlineary coupled one-dimensional har-
monic oscillator models. One can check that the corresponding canonical

1 The canonically noncommutative space-times have been defined as the quantum rep-
resentation spaces, so-called Hopf modules (see, e.g., [10, 11]), for the canonically
deformed quantum Galilei Hopf algebras Uθ(G).

2 It should be noted that in accordance with the Hopf-algebraic classification of all
deformations of relativistic and nonrelativistic symmetries (see [13, 14]), apart of
canonical [10–12] space-time noncommutativity, there also exists Lie-algebraic [12–
17] and quadratic [12, 17–19] type of quantum spaces.
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equations of motion take the form:

ṗ1 = −∂H
∂x1

= −x1 − 2x1x2 , ẋi =
∂H

∂pi
= pi , (6)

ṗ2 = −∂H
∂x2

= −x2 − x21 + x22 , (7)

while the proper Newton equations look as follows:{
ẍ1 = −x1 − 2x1x2 ,

ẍ2 = −x2 − x21 + x22 .
(8)

Besides, it is easy to see that the conserved in time total energy of the model
is given by

Etot = 1
2

2∑
i=1

(
ẋ2i + x2i

)
+ x21x2 − 1

3x
3
2 . (9)

In order to analyze the discussed system, we find numerically the Poincaré
maps in two-dimensional phase space (x2, p2) for section x1 = 0 and for five
fixed values of total energy: Etot = 0.03125, Etot = 0.06125, Etot = 0.10125,
Etot = 0.125, Etot = 0.15125 and Etot = 0.16245, respectively; the obtained
results are summarized in figures 1–6. We see that for Etot = 0.03125,
the trajectories remain completely regular. However, for increasing values
of control parameter Etot, they gradually become disordered until to the
almost completely chaotic behavior of the system at Etot = 0.16245 3.

Fig. 1. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for total energy Etot = 0.03125. The trajectory is completely regular — there
is no chaos in the system.

3 The calculations are performed for single trajectory with initial condition x1(0) =

(2Etot)
1
2 and x2(0) = p1(0) = p2(0) = 0.
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Fig. 2. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the fixed value of total energy Etot = 0.06125. The trajectory is still regular
— the system is chaos free.

Fig. 3. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the total energy Etot = 0.10125. The trajectory still remains regular.

Fig. 4. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the total energy Etot = 0.125. The system becomes mixed: chaotic and
ordered simultaneously.
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Fig. 5. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the total energy Etot = 0.15125. The system becomes chaotic.

Fig. 6. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the total energy Etot = 0.16245. The chaos increases.

3. Canonically deformed Galilei space-time

In this section, we very shortly recall the basic facts associated with
the (twisted) canonically deformed Galilei Hopf algebra Uθ(G) and with the
corresponding quantum space-time [12]. Firstly, it should be noted that in
accordance with the Drinfeld twist procedure [20], the algebraic sector of
Hopf structure Uθ(G) remains undeformed

[Kij ,Kkl] = i (δilKjk − δjlKik + δjkKil − δikKjl) , (10)

[Kij , Vk ] = i (δjk Vi − δik Vj) , [Kij ,Πρ] = i (ηjρ Πi − ηiρ Πj) , (11)

[Vi, Vj ] = [Vi, Πj ] = 0 , [Vi, Π0] = −iΠi , [Πρ, Πσ] = 0 , (12)

where Kij , Π0, Πi and Vi can be identified with rotation, time translation,
momentum and boost operators respectively. Besides, the coproducts and
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antipodes of such algebra take the form:

∆θ(Πρ) = ∆0(Πρ) , ∆θ(Vi) = ∆0(Vi) , (13)

∆θ(Kij) = ∆0(Kij)− θkl [(δkiΠj − δkj Πi)⊗Πl

+Πk ⊗ (δliΠj − δljΠi)] , (14)
S (Πρ) = −Πρ , S (Kij) = −Kij , S (Vi) = −Vi , (15)

while the corresponding quantum space-time can be defined as the represen-
tation space, so-called Hopf modules (see, e.g., [10, 11]), for the canonically
deformed Hopf structure Uθ(G); it looks as follows:

[t, x̂i] = 0 , [x̂i, x̂j ] = iθij (16)

and for the deformation parameter θ approaching zero it becomes commu-
tative.

4. Classical Henon–Heiles system on canonically deformed
space-time

Let us now turn to the Henon–Heiles model defined on quantum space-
time (16). In the first step of our construction, we extend the canonically
deformed space to the whole algebra of momentum and position operators
as follows (see, e.g., [21–24])4:

{x̂1, x̂2} = 2θ , {p̂i, p̂j} = 0 , {x̂i, p̂j} = δij . (17)

One can check that relations (17) satisfy the Jacobi identity and for the
deformation parameter θ approaching zero become classical.

Next, by analogy to the commutative case, we define the corresponding
Hamiltonian function by5

H(p̂, x̂) = 1
2

2∑
i=1

(
p̂2i + x̂2i

)
+ x̂21x̂2 − 1

3 x̂
3
2 , (18)

with the noncommutative operators (x̂i, p̂i) represented by the classical ones
(xi, pi) as [24–26]

x̂1 = x1 − θp2 , (19)
x̂2 = x2 + θp1 , (20)
p̂1 = p1 , p̂2 = p2 . (21)

4 The correspondence relations are { ·, · } = 1
i
[ ·, · ].

5 Such a construction of deformed Hamiltonian function (by replacing the commutative
variables (xi, pi) by noncommutative ones (x̂i, p̂i)) is well-known in the literature —
see, e.g., [21–23].
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Consequently, we have

H(p, x) =
1

2M(θ)

(
p21 + p22

)
+

1

2
M(θ)Ω2(θ)

(
x21 + x22

)
− S(θ)L

+ (x1 − θp2)2 (x2 + θp1)−
1

3
(x2 + θp1)

3 , (22)

where

L = x1p2 − x2p1 , (23)
1/M(θ) = 1 + θ2 , (24)

Ω(θ) =
√

(1 + θ2) (25)

and
S(θ) = θ . (26)

Further, using formula (22), one gets the following canonical Hamiltonian
equations of motion

ẋ1 =
1

M(θ)
p1 + S(θ)x2 +

[
(x1 − θp2)2 − (x2 + θp1)

2
]
θ , (27)

ẋ2 =
1

M(θ)
p2 − S(θ)x1 − 2 (x2 + θp1) (x1 − θp2) θ , (28)

ṗ1 = −M(θ)Ω2(θ)x1 + S(θ)p2 − 2 (x2 + θp1) (x1 − θp2) , (29)

ṗ2 = −M(θ)Ω2(θ)x2 + S(θ)p1 − (x1 − θp2)2 + (x2 + θp2)
2 , (30)

which for deformation parameter running to zero become classical.
Similarly to the undeformed case, we find numerically the Poincaré maps

in two-dimensional phase space (x2, p2) for section x1 = 0. However, this
time, apart from parameter Etot, we take under consideration the parameter
of deformation θ. Consequently, we derive the Poincaré sections of phase
space parameterized by pair (Etot, θ) for θ = 0.5, 1, 2 and six values of total
energy Etot. In such a way, we detect chaos in the model only for θ = 0.5
and for Etot = 0.160178, Etot = 0.1607445 and Etot = 0.16245, respectively
(see for chaotic scenario figures 7–12). In the case of θ = 1 as well as θ = 2,
the system remains ordered6.

6 As in the undeformed case, the calculations are performed for single trajectory with
initial condition x1(0) = (2Etot)

1
2 and x2(0) = p1(0) = p2(0) = 0.
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Fig. 7. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the total energy Etot = 0.15125. The trajectory is completely regular —
there is no chaos in the system.

Fig. 8. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the fixed value of total energy Etot = 0.1568. The trajectory is still regular
— the system is chaos free.

Fig. 9. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 = 0

and for the total energy Etot = 0.1596125. The trajectory still remains regular.
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Fig. 10. The Poincaré map in two-dimensional phase space (x2, p2) for section
x1 = 0 and for the total energy Etot = 0.160178. The system suddenly becomes
chaotic.

Fig. 11. The Poincaré map in two-dimensional phase space (x2, p2) for section
x1 = 0 and for the total energy Etot = 0.1607445. The chaos increases.

Fig. 12. The Poincaré map in two-dimensional phase space (x2, p2) for section x1 =0

and for the total energy Etot = 0.16245. The system becomes totally chaotic.
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5. Final remarks

In this article, we provide the canonically deformed Henon–Heiles system,
i.e., we define the proper Hamiltonian function as well as we derive the
corresponding equations of motion. We also demonstrate (with the use of
the Poincaré section method) that for deformation parameter θ = 0.5 and
for particular values of control parameter Etot, the analyzed model becomes
chaotic.

As a next step of presented here investigations, one can consider the
canonical deformation of so-called generalized Henon–Heiles systems given
by the following Hamiltonian function:

H(p, x) = 1
2

(
p21 + p22

)
+ δx21 + (δ +Ω)x22 + αx21x2 + αβx32 (31)

with arbitrary coefficients α, β, δ and Ω, respectively. It should be noted
that the properties of commutative models described by function (31) are
quite interesting. For example, it is well-known (see, e.g., [27–30] and ref-
erences therein) that such systems remain integrable only in the Sawada–
Kotera case: with β = 1/3 and Ω = 0, in the KdV case: with β = 2 and
arbitrary Ω as well as in the Kaup–Kupershmidt case: with β = 16/3 and
Ω = 15δ. Besides, there has been provided in articles [31] and [32]7 the
different types of integrable perturbations of mentioned above (integrable)
models such as, for example, q−2 perturbations, the Ramani series of polyno-
mial deformations and the rational perturbations. Consequently, the impact
of the canonical deformation (3) on the above dynamical structures (in fact)
seems to be very interesting. For this reason, the works in this direction
already started and are in progress.

The author would like to thank J. Lukierski and K. Graczyk for valu-
able discussions. This paper has been financially supported by the Polish
Ministry of Science and Higher Education grant NN202318534.
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