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The divergent series for a function defined through Lapalce integral and
the ground state energy of the quartic anharmonic oscillator to large orders
are studied to test the generalized binomial transform which is the renamed
version of δ expansion proposed recently. We show that, by the use of the
generalized binomial transform, the values of functions in the limit of zero
of an argument are approximately computable from the series expansion
around the infinity of the same argument. In the Laplace integral, we
investigate the subject in detail with the aid of Mellin transform. In the
anharmonic oscillator, we compute the strong coupling limit of the ground
state energy and the expansion coefficients at strong coupling from the
weak coupling perturbation series. The obtained result is compared with
that of the linear delta expansion.
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1. Introduction

The δ expansion proposed in Ref. [1] has been considered so far on the
discretized background. In all applications of the method, the expansion
in terms of the basic parameter has a finite radius of convergence such as
the strong coupling expansion in the field theoretic models on lattice and
high temperature expansion in magnetic systems [2, 3]. The existence of the
non-zero convergence radius plays an important role in the application of
the δ expansion. The aim of this paper is to investigate whether the method
is effective in asymptotic series appearing in perturbation expansion. Here,
we will apply the method to two models, a mathematical function defined
through Laplace integral and the quantum mechanical anharmonic oscillator
in which we focus on the computation of the ground state energy at strong
coupling from the weak coupling perturbation theory to large perturbative
orders.

(2413)
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Before the argument, to avoid possible confusion, we would like to rename
the “δ expansion” used in [1] to the “generalized binomial transform” for the
following reasons: The anharmonic oscillator can be viewed as the Euclidean
1-dimensional φ4 field theory. The Hamiltonian then reads

H =
1

2

(
∂φ

∂q

)2

+
m2

2
φ2 + λφ4 , (1.1)

where we denoted the Euclidean time coordinate by q.
The nonlinear interaction is controlled by the coupling constant λ and the

unperturbed current mass is given by m. The perturbation theory provides
an expansion of any physical quantity in λ. Due to the mass dimension 3
carried by the coupling constant, expansion in λ is actually the expansion in
dimensionless parameter λ/m3. Thus, it is apparent that the perturbative
expansion is almost equivalent with the inverse-mass expansion. There exists
a novel computational technique called “linear delta (δ) expansion”, “opti-
mized perturbation theory” or “variational perturbation theory” [4]. Also
the “order dependent mapping” [5] method, which includes “linear delta (δ)
expansion” in a specific fixing of the mapping, shares a similar feature. In
the anharmonic oscillator, the “δ expansion” proposed in [1] has similarities
to these techniques. The conventional linear delta expansion introduces δ
as the interpolating parameter by the substitutions m2 → m2(1 − δ) and
λ→ λδ. The Hamiltonian to start with is

H(δ) =
1

2

(
∂φ

∂q

)2

+
m2

2
φ2 + δ

(
−m

2

2
φ2 + λφ4

)
. (1.2)

Notice that the system at δ = 0 reduces to the free massive oscillator and
the system at δ = 1 to the massless anharmonic oscillator (pure anharmonic
oscillator). One then regards H(0) = 1

2(∂φ/∂q)2 + (m2/2)φ2 as the un-
perturbed part and expands the perturbation δ[−(m2/2)φ2 + λφ4] as the
power series in δ. The result is understood as the perturbative one of the
interpolated system with the mass m2(1− δ) and the coupling constant δλ.
Then, setting δ = 1, one may obtain nontrivial and effective estimates of
physical observables in the massless limit (or the strong coupling limit).
The literature on the method is quite extensive, see, for example, paper [4]
and references therein. For the application of linear delta expansion on the
lattice, see [6].

The “δ expansion” proposed in Ref. [1] has been derived in the similar
technique. Suppose that f(m2) be given as the truncated series in 1/m2 to
the order N ,

fN
(
m2
)

=
N∑
n=0

an

(
1

m2

)n
. (1.3)
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By the rescaling of the argument m2 = (1−δ)/t, expanding fN ((1−δ)/t) in
δ to the relevant order and setting δ = 1, one obtains the δ expansion of f
as the function of t (see (1.4)). This technique is first used on the lattice
as a tool of dilatation of the continuum scaling region, where the argument
is basically related to the lattice spacing. On the other hand, the linear
delta expansion is stemmed from the interpolation of two different systems.
Though the two tools share similar features and sometimes produce the
same results, they differ in the underlying concept and specific details, in
particular, when applied to physical systems on the lattice. This is the main
reason of renaming the “δ expansion” to “generalized binomial transform” or
simply in short “binomial transform”.

It would be in order to review briefly the generalized binomial transform:
In typical cases, the generalized binomial transform acts on the simple trun-
cated power series (1.3) as

BN
[
fN
(
m2
)]

=

N∑
n=0

an

(
N

n

)
tn . (1.4)

That is, the coefficient an in original series is multiplied by the binomial
factor (

N

n

)
=

N !

n!(N − n)!
, (0 ≤ n ≤ N) . (1.5)

Thus, the binomial transform denoted by BN is dependent on the pertur-
bative order N . For the sake of notational simplicity, we also use “bar” to
imply the transform

BN
[
fN
(
m2
)]

:= f̄N (t) . (1.6)

At first sight, one may feel difficulty in understanding the effectivity of
f̄N (t) in extracting the quantities, the limit limm→0 f(m2) = f(0) or the
critical exponent when divergent in power-like manner as m → 0. Though
f̄N (t) is just a polynomial in t, we found in some physics models that the
asymptotic behavior of f(m2) as m→ 0 is observable in f̄N (t) at non-large
t region and the marking quantities (the limit and critical exponents) can
be estimated. For instance, in the square Ising model at temperature 1/β,
β is expressed as a function of the mass-like parameter M which is roughly
the inverse of the square of the correlation length (M is composed by the
magnetic susceptibility χ and the second moment µ2 as M = 4χ/µ2). The
effective region of BN [β(M)] = β̄N (t) in the N →∞ is numerically assured
to be 0 < t < 0.25 [2] over which the function exhibits an extremely flat
plateau and the inverse critical temperature βc is indicated at the stationary
or almost stationary point of the function β̄N (t). For convergent series, it is
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implied that the limit limN→∞ BN [fN ] is constant over 0 < t < tc for a
certain tc and the function in the N →∞ limit has the shape like the step
function with the finite range (0, tc).

Turning to the anharmonic oscillator, we deal with the perturbative ex-
pansion in powers of the coupling constant λ. Then, remembering that the
ground state energy E(m,λ) has an asymptotic expansion in λ/m3 with
alternate signs, there are two crucial differences compared to the Ising case
and 2D large N vector model discussed in Refs. [1–3]. The first is that
the expansion parameter has fractional powers of 1/m2 such as (1/m2)−1/2,
(1/m2)5/2 and so on. To handle these terms, we use the generalized binomial
factor (

N

s

)
=

Γ (N + 1)

Γ (s+ 1)Γ (N − s+ 1)
, (1.7)

where s is real or complex when the extension is convenient or necessary,
and the transformation rule is given by

BN
[
M−s

]
=

(
N

s

)
ts , M = m2 . (1.8)

As we shall see in the next section, this rule is suitable when the function
f(M) of interest allows Mellin transform representation.

Second, as aforementioned, the original series has zero convergence radius
and it is unclear at all whether the generalized binomial transform effectively
works as before. In this paper, we will demonstrate that a careful use of the
principle of minimum sensitivity (PMS) [7] provides an accurate sequence
of estimates to large enough orders.

This paper is organized as follows: In the second section, we apply the
binomial transform to a mathematical function which allows divergent ex-
pansion such that (1/M) − 2!(1/M)2 + 3!(1/M)3 − . . . and investigate in
detail the computation of the limit M → 0 from the divergent series ex-
panded at M = ∞, the opposite end point of the argument contained in
the range (0,∞). The technique of Mellin transform representation is in-
troduced to make the analysis transparent. From this example, one can
gain concrete feeling of how binomial transform works. In the third sec-
tion, we investigate the application of the binomial transform to the an-
harmonic oscillator. We first review weak coupling perturbation expansion
and consider its transform. The linear delta expansion is also mentioned
and the difference is explained. Explicit estimation will be worked out to
the order of N = 300. The sequence of the estimates indicates the strong
evidence of the convergence to the most precise value to date, even though
the region “effective” in the estimation shrinks as the order grows. Also pre-
sented is the computation of the strong coupling coefficients and the result is
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compared with that from the conventional linear delta expansion. The bi-
nomial transform related to the dilatation of the region around λ = ∞ is
finally investigated. The last section is devoted to the concluding remarks.

2. A Laplace integral

2.1. Mellin transform

In the use of transformation rule (1.8) to the closed form of function,
Mellin transform plays an important role. Given a function f as the argu-
ment M , the representation through Mellin transform reads

f(M) =

c+i∞∫
c−i∞

ds

2πi
M−sϕ(s) , (2.1)

where

ϕ(s) =

∞∫
0

dMM s−1f(M) . (2.2)

In (2.1), the integration contour in the complex s-plane is taken as the
vertical one passing through c ∈ R and it is assumed that the integral (2.1)
exists in a certain vertical strip including the point (c, 0).

The expansion of f(M) at small M is given by the deformation of the
contour to the left half-plane, by which residues at supposed poles leave the
required series. As well, the expansion in 1/M is obtained by the deformation
of the contour to the right half-plane.

When the Mellin transform representation is available, the generalized
binomial transform is easy to implement. We find the result from (1.8) that

f̄(t) =

c+i∞∫
c−i∞

ds

2πi
BN [M−s]ϕ(s)

=

c+i∞∫
c−i∞

ds

2πi

Γ (N + 1)

Γ (s+ 1)Γ (N − s+ 1)
tsϕ(s) . (2.3)

The kernel changes from ϕ(s) to Γ (N+1)
Γ (s+1)Γ (N−s+1)ϕ(s). Deformation of the

contour to the left half-plane gives the expansion of f̄(t) in 1/t. Thus, the
large M behavior of f(M) corresponds to the small t behavior of f̄(t). If
ϕ(s) has single pole at s = −L for positive integer L, expansion at small
M has the term ML. In contrast, for f̄(t), the corresponding t−L term is
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absent since then, the singularity is canceled by 1/Γ (s + 1). If ϕ(s) has
double poles at s = −L, then there appearsML logM in f(M), but for f̄(t)
just a power-like term tL remains and the associated residue becomes

(−1)L+1Γ (N + 1)Γ (L)

Γ (N + L+ 1)
ϕ−2 , (2.4)

where the expansion ϕ(s) = ϕ−2/(s + L)2 + . . . is supposed. It is crucial
to note that the residue tends to vanish as N−Lϕ−2 as N → ∞. Surviving
term is the residue at s = 0 only, provided the pole is surrounded in the
contour deformation.

2.2. Generalized binomial transform applied to divergent expansion

Let us consider the mathematical function for M > 0 defined through
the Laplace integral given by

f(M) = M

∞∫
0

ω e−Mω

1 + ω
dω . (2.5)

From the well-known result of Mellin transform,

e−Mω =

c+i∞∫
c−i∞

ds

2πi
(Mω)−sΓ (s) , <[s] > 0 , (2.6)

we obtain the following representation

f(M) =

c+i∞∫
c−i∞

ds

2πi
M1−sΓ (s)Γ (s− 1)Γ (2− s) , (2.7)

where s must obey 1 < <[s] < 2. The integrand has double poles at s =
1, 0,−1,−2, . . . and single poles at s = 2, 3, . . . By the deformation of the
integration contour to the left or the right, one obtains the series expansion
in M or 1/M , respectively. Due to the double multiplicity of poles, the
single power of the logarithm appears in expansion in M . The result reads
from the residue computation that

f(M) = 1 +M (logM + γE) +O
(
M2 logM

)
, (2.8)

where γE denotes Euler–Mascheroni constant. The appearance of logarithm
indicates the fact that the originM = 0 is a branch point. This is understood
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by circulating the integration contour on the complex ω-plane. One then
finds that the origin is a branch point and a circulation around the origin
creates 2πiMeM , proving f(M) be a multi-valued function.

We notice that limM→+0 f(M) = 1 is given by the residue at s = 1 and
the pole s = 1 is the first pole one encounters in the contour deformation to
the left. On the other hand, 1/M expansion reads

f(M) =
1!

M
− 2!

M2
+

3!

M3
− . . . (2.9)

This series is divergent and deriving the asymptotic behavior of f(M) at
small enough M requires a special technique such as the Bore transform.
We would like to show that the binomial transform converts the 1/M series
into the series from which f(0) can be approximately computable, even when
the series is truncated at a given finite order.

The operation of the binomial transform is straightforward. We find
from (1.8) and (2.7) that

f̄(t) = N !

c+i∞∫
c−i∞

ds

2πi

Γ (s− 1)Γ (2− s)
Γ (N − s+ 2)

ts−1 . (2.10)

The double poles of f(M) at s = 0,−1,−2, . . . have turned into the single
poles and the expansion around t =∞ becomes an infinite series without log.
The poles at s = N + 2, N + 3, . . . have disappeared due to the appearance
of 1/Γ (N − s+ 2). Thus, the series expansion in t becomes a polynomial to
the order N . Then

f̄(t) =

N∑
k=1

(
N

k

)
k!(−t)k +RN (t) , (2.11)

where the function RN (t) represents the contribution from the deformed
upward contour crossing at the positive real axis at some point located to
the right of the largest pole s = N + 1. In realistic physical application,
one does not have complete information and suffices truncated series to the
order N . Thus, we neglect the residual contribution RN and keep only the
polynomial denoted by f̄N (t)

f̄N (t) =

N∑
k=1

(
N

k

)
k!(−t)k = N !

N∑
k=1

(−t)k

(N − k)!
. (2.12)

For large t, gathering all residues of the poles s = 1, 0,−1,−2, . . ., we
obtain

f̄(t) =

∞∑
k=0

(−1)k

(N + 1) . . . (N + k)tk
= N !

∞∑
k=0

(−1)k

(N + k)!tk
. (2.13)
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This is the expansion around t = ∞ and manifests f̄(t) to be an entire
function in the complex 1/t-plane. The function f̄(t) is single valued with
no cut. It is a crucial point here that all the coefficients except the one
for the leading term tend to zero when N → ∞. That is, f̄(t) tends to a
uniform function

lim
N→∞

f̄(t) = 1 , 0 < t <∞ . (2.14)

In the contour deformation, the pole one first encounters is s = 1 and
the residue equals to 1. This is the limit f̄(∞). The agreement of f(0)
and f̄(∞) is not accidental because the residues at s = 1 are kept equal
with each other by the generalized binomial transform (by which Γ (N + 1)/
{Γ (s)Γ (N−s+2)}, which is equal to 1 at s = 1, is created in the integrand).
The function f̄(t) can be written as

f̄(t) = N !

[
(−t)Ne−1/t +

N∑
k=1

(−t)k

(N − k)!

]
. (2.15)

One can see that the second part agrees with f̄N (t). The first term has the
essential singularity at t = 0 and this is seen only in the deformation of
the contour to the left plane. The term does not allow expansion in t and
corresponds to RN (t), and leads us to understand that f̄(t) expressed in
(2.13) and (2.15) provides the exact result of generalized binomial transform
of f(M) (contribution from the infinitely remote half-circle in the left half-
plane disappears).

2.3. Reduction of corrections to the asymptotic scaling

Now, the point is whether f̄N (t) to a given order N is useful or not to
simulate the dominant or leading behavior of f̄(t) at large enough t. This
is where the physics problems frequently arise. By the numerical study
of f̄N (t), we find that the transformed series shows the improved behavior
compared to the original truncated series of f(M). But the improvement
is not sufficient and the estimation of f(0) = f̄(∞) is not so good even
at higher orders. This is because the effect that the corrections in f̄(t) =
1− 1

(N+1) t
−1+. . . fades out with the order N is canceled out by the shrinking

of the effective region of f̄N (t). To suppress the correction, Lth order linear
differential equation,

L∏
i=1

[
1 + p−1i (d/d log t)

]
f̄(t) = f̄(∞) +O

(
t−(L+1)

)
, (2.16)

is effective to subtract the corrections. Here, pi denotes the exponent of f̄(t)
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expanded at large t and pi = i (i = 1, 2, 3, . . .). We notice that the explicit
expansion of f̄(t) at large t is not needed here. Used knowledge is just that
the expansion is in the positive integer powers of 1/t.

The left-hand side of (2.16) has small correction to f̄(∞) = 1 at large
t of the order O(t−(L+1)). Also at small t, the correction is expected to
be reduced, since at large enough N , the coefficient of t−(L+1) vanishes as
(1/N)L+1 (see (2.4)). This suggests that f̄(t) ∼ 1 from large to small t region
when N is large. We, therefore, replace f̄(t) in (2.16) by f̄N (t), which is
effective for small t provided that at some order or above f̄N (t) may be a
good simulation of f̄(t). Let us then denote

ψL =
L∏
i=1

[
1 + p−1i (d/d log t)

]
f̄N (t) . (2.17)

By the input of exact values of pi, we can indeed obtain better behaviors:
See Fig. 1, where ψL for L = 0, 1, 2, 3 are plotted at N = 20. There ap-
peared a plateau which grows flatter as the parameter numbers are increased.
However, as the order N increases, the plateau becomes narrower and the
center moves to the origin, which is the influence of the divergent nature of
1/M expansion. The plateau represents, due to the successful elimination
of corrections, the leading term in the t → ∞, f̄(∞) = 1. It is natural to
estimate f̄(∞) on the unique top on the plateau and this protocol is called
the principle of minimum sensitivity (PMS) [7]. The results of estimation
using PMS are summarized in Table I.

Fig. 1. 20th order plots of ψL(t) =
∏L

i=1[1 + p−1
i (d/d log t)]f̄N (t) (L = 0, 1, 2, 3)

with the correct values p1 = 1, p2 = 2 and p3 = 3.
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TABLE I

The estimation of f(0) = f̄(∞) = 1 through ψL(t) using the PMS. We performed
computation to 300th order, while the shown results are up to 40th. The last row
labeled “∞ (extrapolated)” indicates the extrapolated value from the 290th and
300th results via the Ansatz f̄(∞)(1− f1N−1).

N L = 0 L = 1 L = 2

10 0.69276626 0.87951576 0.94485674
20 0.73101017 0.91367909 0.96853507
30 0.74556188 0.92559505 0.97580002
40 0.75337822 0.93172054 0.97928804

∞ (extrapolated) 0.78151 0.95212 0.98950

N L = 3 L = 4 L = 5

10 0.97185783 0.98441767 0.99080598
20 0.98733751 0.99448001 0.99742866
30 0.99141838 0.99672795 0.99867246
40 0.99321942 0.99763006 0.99912290

∞ (extrapolated) 0.99771 0.99950 0.99989

The sequence of L ≥ 1 exhibits remarkable improvement over the plane
L = 0 sequence. Since many exponents are incorporated as the parameters
of ψL, the accuracy becomes higher at all orders. However, the convergence
issue is subtle up to the 300th order which is the highest order estimation
we have performed. To settle the issue, we have done the fitting assumed
the Ansatz, f̄(∞)(1 − f1N

−1). From the sample at N = 290 and 300,
which are the highest computation orders, we obtained the extrapolated
values listed in Table I. In Fig. 2, we have shown the plots of the estimated
sequence at L = 1, 2, 3 and the obtained fitted lines. It is confirmed that, at
L = 0 ∼ 5, though larger L provides better and accurate approximation, the
limits extrapolated do not agree with the exact value f̄(∞) = 1. The origin
of this discrepancy is again the divergent nature of f(M) in 1/M expansion,
which reflects the narrowness and movement to the origin of the plateau and
the top of the plateau fails to attain to the height of f̄(∞) = 1.

The features described so far can be explained analytically as follows:
First, let us consider the asymptotic behavior of the PMS solution t∗ in
the N → ∞ limit. From numerical analysis, we find that t∗ decreases as
t∗ ∼ cL/N with cL constant. The values of cL are c0 ∼ 3.4855, c1 ∼ 3.4252,
c2 ∼ 3.3698 and so on. Though these values are obtained at each L with
respective highest-order (300th) values of t∗, they are, in fact, dependent
on N . Since the behaviors of the sequences of t∗×N to the order of N = 300
are monotonically increasing with N for all L examined, the values of cL
indicated in the N → ∞ limit would be slightly larger than the above
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Fig. 2. Plots of estimation sequence vs. 1/N for L = 1, 2, 3. The solid gray lines
represent the fitted lines obtained via the Ansatz f̄(∞)(1−f1N−1) from the results
at 290th and 300th.

values. We can actually infer the value of true cL to be identified only in
the N → ∞ limit from (2.15). For example, consider the case L = 0. The
residual part RN is given by

RN = f̄(t)− f̄N (t) = N !(−t)Ne−1/t . (2.18)

Substituting the Ansatz t∗ = c0/N into the above, we obtain RN = N !
(−c0/N)Ne−N/c0 and at large enough N , from Stirling’s formula, RN ∼√

2πN(−c0/e(1+1/c0))N . Thus, if RM (t∗) → 0 as N → ∞, the condition
c0/e

(1+1/c0) < 1 is deduced. The maximally allowed value of c0 = c0,max

is then found as the solution of log c0,max = 1 + 1/c0,max, giving c0,max =
3.591121476668622 . . . For L ≥ 1, the same analysis can be carried through
and the result of upper limit of cL is found to be independent of L. Thus,
we conclude

cL,max = 3.591121476668622 . . . (2.19)

The values of cL for L = 1 ∼ 5 obtained at N = 300 are all under and
close to the above limit. Now as mentioned before, the estimated cL grows
with the order and surely tends to the value very close or exact to cL,max at
L = 0, 1, 2, . . . 5. We hence assume that estimated cL converges to cL,max and
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compute the limit of the sequence of f̄∗. First of all, we note that f̄(t) can
be used in this study instead of f̄N itself since RN → 0 (N →∞) is assured.
Then, substituting t = cL/N into ψL = N !

∑∞
n=0(−1)n/{(N + n)!tn} and

expanding the result in 1/N , we obtain

ψL(t∗) = 1− 1

(1 + cL)L
+O(1/N) . (2.20)

Substitution of cL,max into cL produces

lim
N→∞

ψL(t∗) = 1− 1

(1 + 3.591121476668622 . . .)L
. (2.21)

One finds that the above result agrees with the corresponding result indi-
cated by “∞ (extrapolated)” in the last row in Table I.

The use of the exact values of the exponent is possible only when we
know what values they are. In the realistic physical situation in the field
of theoretic and statistical models, the exponents are not exactly known,
of course. In this case, one approach is to resort to extended principle of
minimum sensitivity, where the exponents are fixed so as to make the higher
order derivatives of ψL be zero at the estimation point t∗ [2–4]. In the
present example, however, the approach fails. It is because the higher order
derivatives themselves do not reach enough scaling behaviors.

2.4. Estimation via Padé approximant

As the second approach, we attempt another extrapolation scheme by
the Padé method [8]. Padé approximants approximate a given function by
the ratio of two polynomials in accordance with the truncated Taylor series.

Here, we utilize Padé approximants constructed from the series f̄N (t).
It should be reminded here that for the estimation of f(0) = f̄(∞), the
best Padé approximant among entries in Padé table is the diagonal one at
even N , since we can take the limit t→∞ and the result directly provides
the estimation of f̄(∞) = 1. To define the protocol clearly, let us denote the
Padé approximant of N = ρ+ τ decomposition as f̄N [ρ/τ ]. Here, the degree
of the numerator polynomial is equal or less than ρ and the degree of the
denominator polynomial is equal or less than τ . The estimate via diagonal
approximant with even N is defined by

f̄(∞) = lim
t→∞

f̄N [ρ/ρ] , ρ = N/2 . (2.22)

For example, at N = 10,

f̄N [5/5] =
10t+ 160t2 + 1470t3 + 6960t4 + 15240t5

1 + 25t+ 300t2 + 2100t3 + 8400t4 + 15120t5
(2.23)
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and
lim
t→∞

f̄N [5/5] =
127

126
= 1.0079365079 . . . (2.24)

The same method is also used for fN (M), the original truncated series.
We estimated in the cases (ρ, τ) = (5, 5), (10, 10), (15, 15), (20, 20), (25, 25)
for both fN (M) and f̄N (t). The result is shown in Table II. It is clearly
seen that for fN (M), the sequence is monotonically increasing and shows
tendency of approaching to 1. Actually, we find from numerical work that
the estimate at N th order is given by N/(N + 2) = 1 − 2/N + . . . The
convergence speed is thus slow. As for f̄N (t), the convergence tendency is
strongly exhibited and, in particular, the accuracy is excellent. We note
that the sequence here shows small oscillation with the minimum period. At
N = 2 + 4K (K = 0, 1, 2, . . .), the sequence approaches to 1 from above and
at N = 4 + 4K from below. In each subsequences, the error is exponentially
small with the N dependence roughly found to be loge |f∗N − 1| ∼ 3.4 −
0.693×N for both subsequences (f∗N denotes the estimate at the order N).

TABLE II

Estimation of f(0) = f̄(∞) = 1 using diagonal Padé approximants of fN (M) and
f̄N (t).

N fN (M) f̄N (t)

10 0.8333333 1.0079365
20 0.9090909 0.9999891749
30 0.9375000 1.00000001289
40 0.9523809 0.99999999998549
50 0.9615385 1.0000000000000158

The reliability of results through diagonal approximants becomes solid
when the near-diagonal ones, f̄N [ρ/τ ] with |ρ − τ | = 1 or 2, show broad
plateaus. We have observed from orders N ∼ 30 or larger, f̄N [N2 + 1/N2 − 1]

and f̄N [N2 −1/N2 +1] for even N exhibit large plateaus. See the diagonal and
near-diagonal Padé approximates in the plot (Fig. 3). The reference values
from the near-diagonal approximants are obtained by the stationary values
(local maximum in these cases) of f̄N [N2 + 1/N2 − 1] and f̄N [N2 − 1/N2 + 1].
At N = 34, they are 0.9973217 . . . (at t = 15.79656 . . .) and 0.9973225 . . .
(at t = 15.80567 . . .), respectively. These values are similar in accuracy to
the estimates via ψ4 case presented in the previous subsection.

At first sight, one might think that diagonal Padé approximants of
ψL =

∏L
i=1[1+p−1i (d/d log t)]f̄N (t) would be more suitable for L = 1, 2, 3, . . .

Produced results are indeed accurate but not better than ψ0. The reason
may be found by the enumeration of zeros and poles of the diagonal Padé
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Fig. 3. Padé approximants f̄34[17/17], f̄34[18/16] and f̄34[16/18].

approximants. The distribution of zeros and poles at N = 30 are depicted
in Fig. 4. We see that for ψ0[15/15] = f̄N [15/15], the 8 poles in the left
half-plane are approximately canceled by the zeros nearby them. On the
other hand, for ψ1[15/15] = {[1 + p−11 (d/d log t)]f̄N}[15/15], the approxi-
mate cancellation occurs for 6 pairs. Since the existence of bare poles would
affect the behavior of diagonal Padé approximants on the positive real axis,
it is better when the number of bare poles are small and located in re-
mote place (the locations of poles of ψ1[15/15] are slightly inside of those of
ψ0[15/15]). We can thus roughly understand why ψ0[15/15] provides bet-

Fig. 4. Zeros and poles of Padé approximants (a) ψ0[15/15] = f̄30[15/15] and
(b) ψ1[15/15].
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ter estimation. Padé approximants of the same construction for fN (M),∏L
i=1[1−p

−1
i (d/d logM)]fN (M), prove improvement for larger L. Actually,

we have obtained analytic results of N th order estimate inferred from nu-
merical study that N(N+6)/{(N+2)(N+4)} and N(N2+12N+44)/{(N+2)
(N + 4)(N + 6)} for L = 1 and 2, respectively. The correction to 1 is
respectively O(1/N2) and O(1/N3).

We now conclude that diagonal Padé approximants of f̄N yield accurate
convergent sequence of estimate.

3. Anharmonic oscillator

3.1. Perturbative expansion of the ground state energy

The perturbative ground state energy E(m,λ) is given in the form of

E(m,λ) = m
∞∑
n=0

an

(
λ

m3

)n
. (3.1)

The coefficient an can be computed from the recursion technique due to
Bender and Wu [9]. For instance, the first several coefficients read

a0 =
1

2
, a1 =

3

4
, a2 = −21

8
, a3 =

333

16
. (3.2)

We have generated the first 300 coefficients exactly and use the result in the
following studies.

It was shown in Ref. [9] that the coefficient grows with the order n as

an ∼ −
√

6

π3/2
(−3)nΓ (n+ 1/2) , (3.3)

indicating zero convergence radius with the alternate coefficients. In this
paper, we deal with the truncated series to N th order perturbative expansion
written as

EN (m,λ) = m

N∑
n=0

an

(
λ

m3

)n
. (3.4)

The perturbative truncation order means the number of included terms and
it is matched to the parameter N involved in the generalized binomial factor
(1.7).
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3.2. Binomial transform and linear delta expansion

In accordance with the dilatation by the rescaling of the square of the
mass m2 = (1 − δ)/t, we describe the perturbative series in terms of x
defined by

x =
λ2/3

m2
. (3.5)

The perturbative expansion is not a simple series expansion with positive
integer powers but a singular expansion with fractional powers such as
x(3n−1)/2 (n = 0, 1, 2, . . .). With respect to such a singular series, the bi-
nomial transform is defined with (1.7) as

EN (x, λ) = λ1/3
N∑
n=0

anx
(3n−1)/2 → λ1/3

N∑
n=0

ānt
(3n−1)/2 , (3.6)

where the coefficient ān is given by

ān = an

(
N

3n−1
2

)
= an

Γ (N + 1)

Γ
(
3n−1

2 + 1
)
Γ
(
N − 3n−1

2 + 1
) . (3.7)

That is, we obtain

ĒN (t) = λ1/3
N∑
n=0

ānt
(3n−1)/2 . (3.8)

The generalized binomial transform possesses a few characteristic fea-
tures which differ from the linear delta expansion as below: The first is that
the factor 1/Γ (N − 3n−1

2 + 1) becomes zero for some values of N (≥ 3)
and n. It vanishes for (N,n) = (3, 3), (5, 5), (6, 5), (7, 7), (8, 7), (9, 7), (9, 9)
and so on. This induces that a subset of terms in the original expansion is
eliminated. Second, the factor takes negative values for various sets of (N,n)
such as (N,n) = (4, 4), (6, 6), (7, 6), (8, 8), (9, 8) and so on. The negative bi-
nomial factor changes the sign of the coefficients and rigorous alternativeness
is slightly broken. The original series is modified in this manner.

In contrast, the linear delta expansion does not change the sign. Some
explanation would be needed here: Let us denote the result of linear delta-
expansion be

ELDE,N (m) = λ1/3
N∑
n=1

anCN,n

(
λ2/3/m2

)(3n−1)/2
. (3.9)

Here, we remind that the factor CN,n representing the modification comes
from the termm(λ/m3)n through the linear delta-expansion. One can obtain
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CN,n from the plain perturbative series (3.1) by the shifts λ → λδ and
m2 → m2(1 − δ). Then, m(λ/m3)n → m(λ/m3)nδn(1 − δ)−(3n−1)/2. The
expansion of δn(1− δ)−(3n−1)/2 in δ to the order N and setting δ = 1 gives
CN,n. For example, at n = 0, we shall expand it such that (1 − δ)1/2 =

1 − 1
2δ −

∑N
k=1

(2k−1)!
22k−1k!(k−1)!δ

k. Then, putting δ = 1, the summation of the
resulting series gives CN,0 = (2N)!/{22N (N !)2}. For general N , CN,n is
obtained explicitly as [10]

CN,n =

(
N + n−1

2
3n−1

2

)
=

Γ
(
N + n+1

2

)
Γ
(
3n+1

2

)
Γ (N − n+ 1)

. (3.10)

As may be clear from the above procedure, the result ensures that CN,n > 0
at any finite order N for all n = 0, 1, 2, . . . , N . We note that the factor
CN,n is a rational number. On the other hand,

(
N

(3n−1)/2
)
multiplied to the

original expansion coefficient in the binomial transform includes π for odd n.
For further quantitative comparison, we have plotted the ratio RN,n =(
N

(3n−1)/2
)
/CN,n for n = 0, 1, 2 and 3 against N in Fig. 5. The ratio converges

to unity in the N →∞ limit as RN,n = 1−(n−1)(3n−1)/N+O(N−2), but
the difference is not negligible at finite orders except for n = 1 (RN,1 = 1 to
all orders).

Fig. 5. Ratio plot of the leading and next-to-the leading order coefficients RN,n =(
N

(3n−1)/2

)
/CN,n for n = 0, 1, 2, 3.
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The convergence in the linear delta expansion is proved in Ref. [11]. As
for the generalized binomial transform method, the proof is not obtained.
However, large order numerical study provides convincing affirmative result
on the convergence issue under PMS protocol by the comparison with the
results of sequence in the linear delta expansion.

3.3. Computation of the ground state energy

We now use ĒN (t) to estimate the massless limit (or the strong coupling
limit) of the ground state energy,

lim
m→0

E(m,λ) = Eλ1/3 , (3.11)

where E is given by Vinette and Cizek [12] to the extreme accuracy [13],

E = 0.66798625915577710827096201691986019943

04049369840604559766608 . (3.12)

Before explicit computation, let us see how binomial transformed energy
behaves against t. Figure 6 shows the plot of ĒN (t) at N = 10, 20 and 30.
It is explicitly shown that ĒN (t) clearly signals the correct value already
at rather small order, around N = 10. The value to be identified as the
estimate of E in the plotted curves are implied by the plateaus. The width of
a plateau shrinks as the order grows and this feature reflects the asymptotic
nature of the original perturbative series.

Fig. 6. Plot of ĒN (t) with λ = 1 at N = 10, 20 and 30.

We notice then the problem pointed out by Neveu in [14] that the plateau
exhibits a weak oscillation with tiny amplitudes. The oscillation may be
embarrassing indeed, since it leads to the nonuniqueness of the stationary
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solution under PMS protocol. In Ref. [4], Kneur, Neveu and Pinto proposed
an interesting prescription to terminate this oscillation by introducing addi-
tional parameters in the linear delta expansion. Their idea is to generalize
the simple prescriptionm2 → m2(1−δ) to the one involving more parameters
such asm2 → m2(1−δ)(1+(a−1)δ+

∑
n=1 bnδ

n+1) [15]. For example, at the
second order, modification is to use the shiftm2 → m2(1−δ)(1+(a−1)δ) and
expand δ as in the conventional manner. It is possible to adjust a such that
only single real-valued solution, the solution satisfying (∂/∂m2)ELDE,N =
(∂/∂m2)2ELDE,N = 0 exists. At the third order, they found it suffice to use
m2 → m2(1− δ)(1 + (a− 1)δ + b1δ

2) and seek the unique solution obeying
(∂/∂m2)ELDE,N = (∂/∂m2)2ELDE,N = (∂/∂m2)3ELDE,N = 0 under the ad-
justment of a and b1. The result was successful at low orders but turned out
to getting worse at higher orders [4].

We like to remark on this problem that, without introducing additional
parameters, even many oscillations occur and many candidates appear, the
best optimal estimation point can be detected by carefully observing the
derivatives of ĒN ; See Fig. 7, where the first order derivative Ē

(1)
N =(∂/∂ log t)

ĒN is plotted at N = 23 and 50. Seeing the plot, we find that there exists
a narrow region within the plateau that the first order derivative is oscillat-
ing with smallest amplitude. With the increase of the order, the oscillatory
wave becomes dense and a new oscillation wave seems to be born from the
region, as signaled by the smallest amplitude of the first derivative. From
this observation, we pose an assumption that the “center” of the set of zeros
of Ē(1)

N (t) is optimal as the estimation point. In the case shown in Fig. 7 (a),

Fig. 7. First order derivatives Ē(1)
N (t) at N = 23 and 50. Within the plotted range,

Ē
(1)
23 has 6 solutions and Ē

(1)
50 has 11 solutions. Optimal stationary or almost

stationary points are indicated by the open (blue) circle (23th) and filled (red)
circle (50th) for the estimation of E . At N = 23, the point is at Ē(1)

N = 0 and
|Ē(2)

N | � 1. At N = 50, the point is at |Ē(1)
N | � 1 and Ē(2)

N = 0. The latter point
corresponds to the reflection point with very small gradient.
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it is natural that the point indicated by the open (blue) circle is optimal
among other stationary points. In the case shown in Fig. 7 (b) on the other
hand, the point indicated by the filled (red) circle exhibits the tendency in
next few orders that it goes down and across the horizontal axis, creating a
new stationary point. We, therefore, consider the black (red)-marked point
should be regarded as the optimal estimation point, even though the first
derivative is not zero at the point (note that the value of the first derivative
is extremely small there in magnitude).

It is interesting to consider the complex extension of ĒN (t) denoted as
ĒN (z) (z ∈ C), where z = t3/2. Numerically solving Ē(1)

N (z) = 0 at N = 50,
we have plotted the solutions in the z-plane with open (blue) circles in Fig. 8.
Filled (red) circles indicate the solutions of Ē(2)

N (z)=[(∂/∂ log t)2ĒN ]t→z=0.
Now, the point is that there exists a small area in which the arc-shaped
sequence of complex zeros and the set of real zeros on the positive real axis
intersect. As the order increases, the numbers of stationary points in each
sets increase and the intersection area becomes a dense set of zeros, which we
call the center of zeros. The function is smoothest there and the amplitude
is smallest. The two points indicated in Fig. 7 (a), (b) are located at this
intersection area. The filled (red) circle indicated by the arrow in Fig. 8 is
the filled (red) circle plotted in Fig. 7 (b).

Fig. 8. The plot of zeros of the first and second order derivatives Ē(i)
N (z) (i = 1, 2)

at N = 50 in the plane z = t3/2 ∈ C. The open (blue) circles indicate zeros of
Ē

(1)
N (z) and filled (red) circles zeros of Ē(2)

N (z). We take zero of Ē(2)
N (z) indicated

by the arrow as the best optimal solution. This solution corresponds to the filled
(red) circle shown in Fig. 7 (b).
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These observations help us handling PMS in the complicated prolifera-
tion of stationary or almost stationary points. To summarize, pick out the
point in the center of zeros satisfying either (i) Ē(1)

N (t) = 0 with |Ē(2)
N (t)| � 1

or (ii) Ē(2)
N (t) = 0 with |Ē(1)

N (t)| � 1. This prescription may be regarded as
a variant of the PMS criterion and we continue using the term PMS in what
follows. Under the above criteria, we have estimated E to 300th orders. The
result of the estimation is plotted in Fig. 9 where the vertical axis labels
log10 |E∗ − E|.

Fig. 9. Estimates of E up to 300th orders. The vertical axis indicates log10 |E∗−E|,
where E∗ means the estimate.

We observe the expected growth of the accuracy with the orders. Due to
the oscillation property of ĒN (t), there is a periodic pattern and the length
of the period becomes longer as the order increases. At the same time, the
rate of accuracy growing gradually slows down, though there seems to be no
limit of approaching to E .

The effective region of ĒN (t) shrinks as the order increases. This is
already seen in Figs. 2, 3 and 4. Accordingly, the estimation point moves to
the origin with the order. The value of the estimation point t∗ is plotted in
Fig. 10. The precise fitting of the data is not allowed since the distribution
of data is somewhat complicated with periodic structure. We just remark
that, from estimates for N = 270 ∼ 300 where the data are rather steady,
t∗ tends to zero roughly like ∼ N−0.56.

3.4. Comparison with the linear delta expansion

In this subsection, we compare the result obtained in the generalized
binomial transform with the one obtained in the linear delta expansion. The
computation of the ground state energy in linear delta expansion has been
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Fig. 10. Plots of the value of t = t∗ at which E is estimated.

already done by Janke and Kleinert up to 251th order [16] (the expansion
technique is called the variational perturbation theory). Let us first explain
the work with focusing on the related part.

The PMS criterion works more straightforwardly in the linear delta ex-
pansion. This is understood by plotting the function ELDE,N (m) (see (3.9)).
Omitting the graph plots, we note that the best estimation point given as
the stationary point or the inflection point is always the one at the largest
value of λ/m3, since the oscillation amplitude becomes smallest there. It is
interesting to see the distribution of zeros in the complex extension of the
first order derivative E(1)

LDE,N (z) = [(∂/∂ logm−2)ELDE,N ]|λ/m3→z, where
z = λ/m3. From the plot shown in Fig. 11, we find that the intersection of
the zero point set on the positive real axis and the set extending in arc-form
on the right half-plane occurs at the largest real zero (the point indicated by
the arrow in Fig. 11). Thus, also in the linear delta expansion, the estimation
point lies on the intersection of the two sets.

The estimation result at the largest stationary point is plotted in Fig. 12
and the numerical results in both schemes (linear delta and binomial) are
tabulated in Table III. In Ref. [16], the highest order studied is 251th and
the result is quoted as E = 0.66798625915577710827096, which is confirmed
by us with the explained protocol.

In Fig. 12, we have also plotted the results in generalized binomial trans-
form for the sake of the comparison. At low orders up to, say roughly 20th,
the result from linear delta expansion is slightly more accurate. Then, as
the order increases, the crossover occurs and at large orders, the results from
binomial transform become superior. Since the sequence in binomial scheme
achieves higher accuracy than the sequence (which convergence is proved)
from linear delta expansion, its convergence is now verified.
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Fig. 11. The plots of zeros of the first derivative Ē(1)
LDE,N (z) at N = 50. Here, the

argument z is the complex extension of λ/m3.

TABLE III

Estimation of E = 0.667986259155777108270962016919860199430404936 . . . in
sample orders in linear delta expansion and generalized binomial transform ap-
proaches. The exact figures in each digits are written in Roman style, while figures
in the last two digits including errors are written in slanted style.

N Linear delta expansion Generalized binomial transform

10 0.6679857 0.6679837
15 0.66798630 0.6679858
20 0.667986262 0.667986268
25 0.66798625920 0.6679862579
50 0.66798625915592 0.667986259155758
100 0.66798625915577705 0.6679862591557771053
150 0.66798625915577710839 0.6679862591557771082714
200 0.66798625915577710827034 0.667986259155777108270959
250 0.667986259155777108270957 0.667986259155777108270962022
300 0.66798625915577710827096248 0.667986259155777108270962016928
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Fig. 12. The plots of log10 |E∗ − E| in the linear delta expansion and binomial
transform.

In the case of the anharmonic oscillator, we have used no technique
special to the model. The high accuracy of the estimation comes from the
analytic structure with respect to m2 of the strong coupling series of the
ground state energy [17]

E(m,λ) = Eλ1/3
{

1 + e1

(
m2λ−2/3

)
+ e2

(
m2λ−2/3

)2
+ . . .

}
. (3.13)

Linear delta expansion eliminates lower order terms since {m2(1− δ)}L = 0

for N ≥ L. Also in binomial method, BN [(m2)L] =
(
N
−L
)
tL = 0 since(

N
−L
)

= Γ (N)/{Γ (−L + 1)Γ (N + L + 1)} = 0 for L = 1, 2, 3, . . . That is,
both the linear delta expansion and binomial transform methods receive an
advantage from the fact that (m2)n → 0 (n = 1, 2, 3, . . .) after the expan-
sion or transformation. This is the reason why linear delta expansion and
binomial transform with respect to m2λ−2/3 yield accurate estimates unlike
the case of Laplace integral where corrections of power series in 1/t remain.

3.5. Estimation of the strong coupling coefficients

Analyticity with respect to m2 expressed in (3.13) can be numerically
confirmed by binomial transform, as we can see below: Assume that there
are fractional power-like terms and let the leading one be const×(m2/λ2/3)∆

(∆ > 0). Then,

B[E(m,λ)] = Eλ1/3
{

1 + const× t−∆ + . . .
}
. (3.14)

The leading correction from t−∆ must then be observed in ĒN (t, λ) if it
would exist, as would be seen in the plot of ψ0 in Fig. 1 where t−1 correction
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is active. But the numerical plot shown in Fig. 6 does not imply any power-
like correction. This means that the terms of fractional powers are absent
in the strong coupling expansion. Thus, expansion (3.13) is ensured even in
our numerical study.

The coefficient αk = Eek of the series (3.13) can be estimated in the
following way: As the first example, we illustrate the estimation of α1.
Setting λ = 1, consider the derivative of E(m2, 1) with respect tom2 denoted
as ∂E(m2, 1)/∂m2 := E

′
(m2, 1). We obtain at small m2

E
′
(m, 1) = α1 + 2α2m

2 + 3α3

(
m2
)2
. . . (3.15)

and at large m2

E
′
N (m, 1) =

N∑
n=0

an

(
−3n− 1

2

)(
1/m2

)(3n+1)/2
. (3.16)

Then, the binomial transform eliminates corrections of integer powers of m2

in (3.13) and may simply leave

B
[
E
′
(m, 1)

]
∼ α1 (3.17)

at a certain region where (3.17) is expected to be recovered by B[E
′
N (m, 1)].

As in the same manner of estimating E , we have carried out estimation of
α1 by substituting

B
[
E
′
N (m, 1)

]
=

N∑
n=0

an

(
−3n− 1

2

)(
N

3n+1
2

)
t(3n+1)/2 (3.18)

into B[E
′
(m, 1)] and using PMS to pick out the optimal solution for α1.

For higher order coefficients, using the derivatives of E(m2, 1) with respec-
tive m2, we can estimate α2, α3 and so on. We tabulate the results in Ta-
ble IV. Having compared our results at N = 250 and 300, we consider that
the figures at N = 250 to 10−24 order are correct for αk (k = 1, 2, 3, 4, 5).

Let us compare our results with those obtained by Janke and Kleinert
at the order N = 251 [16]. Their results are:

αJK
1 = 0.1436687833808649100203 ,

αJK
2 = −0.008627565680802279128 ,

αJK
3 = 0.000818208905756349543 ,

αJK
4 = −0.000082429217130077221 ,

αJK
5 = 0.000008069494235040966 . (3.19)
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TABLE IV

Estimation results of coefficients αk = Eek (k = 1, 2, 3, 4, 5) of the strong coupling
expansion of the ground state energy at 250th and 300th orders. The results are
expressed to the digit of the order of 10−28 the same order of correct E estimated
at N = 300 (cf. Table III).

α1 (N = 250) 0.1436687833808649100203190808
α2 (N = 250) −0.0086275656808022791279635744
α3 (N = 250) 0.0008182089057563495424151582
α4 (N = 250) −0.0000824292171300772199109668
α5 (N = 250) 0.0000080694942350409647544789

α1 (N = 300) 0.1436687833808649100203191272
α2 (N = 300) −0.0086275656808022791279637461
α3 (N = 300) 0.0008182089057563495424155947
α4 (N = 300) −0.0000824292171300772199118949
α5 (N = 300) 0.0000080694942350409647560181

As in the case of E , our results for αk (k = 1, 2, 3, 4, 5) are more accurate
than αJK

k by about 2 ∼ 3 digits. We thus conclude that, as long as the order
is high, the estimate of strong coupling coefficients is better in binomial
transform.

3.6. Binomial transform with respect to λ

The computation of the ground state energy has so far been done by
taking the energy as a function of m2. We investigate here the transform
with respect to the coupling constant by taking the energy as a function
of λ. In this point of view, the corrections have fractional powers in the
strong coupling region as seen from (3.13). Hence, we can test the flexibility
of the generalized binomial transform approach by the application to such
a complicated case. To dilate the region around the strong coupling limit
λ =∞, we rescale λ = g/(1− δ) and expand the energy function in δ to the
relevant order of perturbation series.

For the sake of notational simplicity, we set m2 = 1. Then, the behavior
of E(1, λ) at λ� 1 reads from (3.13)

E(1, λ) = Eλ1/3
(

1 + e1λ
−2/3 + e2λ

−4/3 + . . .
)
, (3.20)

and at λ� 1

EN (1, λ) = a0 + a1λ+ a2λ
2 + . . .+ aNλ

N . (3.21)

We investigate the computation of E in most part without using the values
of the exponents of the corrections to the asymptotic term. We thus start
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with
E(1, λ) = E

(
λ1/3 + e1λ

−θ1 + e2λ
−θ2 + . . .

)
. (3.22)

The basic result needed for the transform is then

B[λs] =

(
N

s

)
gs . (3.23)

Although the transform improves the simulation task of Ē(1, g) via ĒN (1, g),
to achieve a good accuracy, we need to reduce the correction. So we must
somehow estimate first the values of the exponents θi up to, say, a first
few i. It has turned out, though, that higher order θi is difficult to estimate
precisely in stable and systematic manner. Here, we suffice ourselves with
the reduction of the first order correction by the estimation of θ1 = 1/3 and
make use of the result for the estimation of E .

We start with noting that, since the leading order correction has the
exponent 1/3 known on dimensional grounds, the leading term can be elim-
inated in the following combination,

Ē − 3Ē(1) = E
[
e1

(
N

θ1

)
(1 + 3θ1)g

−θ1 + e3

(
N

θ2

)
(1 + 3θ3)g

−θ3 + · · ·
]
,

(3.24)
with Ē(1) = (∂/∂ log g)Ē(1, g) understood. Here, we have used the fact
that BN [λ−θ2 ] = BN [λ−1] = 0. Equally, all the terms with negative inte-
ger powers are eliminated by the binomial transform. To avoid notational
complexity, we reparametrize exponents as θ1(= 1/3), θ2(= 5/3), θ3(= 7/3),
θ4(= 11/3) etc. Then in general, it holds that

L∏
i=0

[
1 +

1

θi

∂

∂ log g

]
Ē = const× g−θL+1 +O

(
g−θL+2

)
, (3.25)

where θ0 = −1/3. Now, taking the following quotient and expanding it in
1/g, we find

QL =

∏L
i=0

[
1 + 1

θi
∂

∂ log g

]
E(1)∏L

i=0

[
1 + 1

θi
∂

∂ log g

]
E

= −θL+1 + . . . , (3.26)

where the dots mean the correction of the order of O(g−θL+2+θL+1). We here
concern the case of L = 0, giving at large g,

Q0 =

[
1− 3 ∂

∂ log g

]
E(1)[

1− 3 ∂
∂ log g

]
E

= −θ1 + . . . (3.27)
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The quotient Q0 is a divergent series in g which we denote as Q0,N , where
ĒN and Ē

(1)
N are used in the places of Ē and Ē(1). The function Q0,N

thus defined looks like the Padé-type rational function but it is actually not.
Hence, by first expanding Q0,N = [1− 3 ∂

∂ log g ]E
(1)
N /[1− 3 ∂

∂ log g ]EN in g, we
construct diagonal Padé approximants to circumvent the zero-convergence-
radius difficulty. We then take the g → ∞ limit of Q0,N [N/2, N/2] as the
estimate of θ1. That is, from (3.27),

lim
g→∞

Q0,N [N/2, N/2] = −θ1 . (3.28)

The result is plotted in Fig. 13 with the label “1p(opt-Pade)”. The sequence
does not exhibit clear shape and the convergence issue is not definitive.
However, the estimation of θ1 is accurate enough and we make use of the
estimate at the order N to the estimate of E at the same order in the
following manner.

Fig. 13. The logarithmic plots of |θ1 − 1/3| up to 200th order.

One technical point to be payed attention is that the asymptotic of Ē in
g →∞ is E

(
N
−1/3

)
g1/3 which is g-dependent. The ground state energy may be

estimated in this case by dividing Ē by
(
N
−1/3

)
g1/3. To improve the accuracy,

however, we again use first order reduced function [1 + (1/θ1)∂/∂ log g)]Ē.
We thus study the combination (Ē + (1/θ1)Ē

(1))/{
(
N
−1/3

)
g1/3} which tends

to E in the large g limit,

lim
g→∞

Ē + 1
θ1
Ē(1)(

N
−1/3

)
g1/3

= E . (3.29)
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Now, in the use of ĒN and Ē
(1)
N , the above limit does not hold even

when we employ Padé approximants of any [ρ/τ ] element in the numerator
ĒN+ 1

θ1
Ē

(1)
N of (3.29). This is reasonable since beyond narrow effective region

of the series expansion Padé approximants take extrapolation affected by the
highest orders gρ and gτ of the numerator and the denominator, giving the
behavior (Ē + 1

θ1
Ē(1))[ρ/τ ] ∼ const × gρ−τ , where the exponent cannot

agree with 1/3, the power of g1/3. The expected asymptotic behavior ∼ g1/3
should occur at a certain region where g is not so large. The reliable region
is indicated by the plateau in the combination (3.29) and the plateau serves
an optimal estimation point of E under PMS. Due to the smallness of the
exponent 1/3 which should be recovered by Padé approximants, the best
choice is the diagonal one. Then, we find that the optimal point occurs at
either the extremum or the reflection points with small enough gradient. We
also keep the estimate when poles on the positive real axis exist.

The result is plotted in Fig. 14 by the black cross labeled “1p(opt-Pade)”.
In Fig. 14, we have also plotted, for the comparison with the idealistic
same optimization procedure, the result at the first and second order reduc-
tions of corrections with exact exponents. The “1p(exact-Pade)” labeled se-
quence shows the result via the quotient [1+3(∂/∂ log g)]Ē/{

(
N
−1/3

)
g1/3} and

the “2p(exact-Pade)” via the quotient [1 + 3/5(∂/∂ log g)][1 + 3(∂/∂ log g)]

Fig. 14. The logarithmic plots of |E∗ − E| up to 200th order in the three meth-
ods: The “1p(opt-Pade)” shows the result from the first order reduction via [1 +

3(∂/∂ log g)]Ē/{
(

N
−1/3

)
g1/3} with the order-dependent optimal θ1. The “1p(exact-

Pade)” sequence shows the result via [1+3(∂/∂ log g)]Ē/{
(

N
−1/3

)
g1/3} with exact θ1

and the “2p(exact-Pade)” via [1 + 3/5(∂/∂ log g)][1 + 3(∂/∂ log g)]Ē/{
(

N
−1/3

)
g1/3}

with exact θ1 and θ2.
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Ē/{
(
N
−1/3

)
g1/3}. We now see that the optimal solution of θ1 provides al-

most the same accuracy with the use of the exact value of θ1. The reduced
function exact to the second order brought more accuracy as it should.

From the plots, all the above three sequences to N = 200 appear to
converge from the plots. One evidence of the convergence of the sequences
comes from the behaviors of estimation point g = g∗. All three sequences
of g∗ show gradual increase with the order. This means that the approximate
region is indeed extrapolated to larger g and, consequently, the convergence
becomes quite conceivable due to the disappearance of the binomial coeffi-
cient of g−θi (i = 1, 2, 3, . . .),

(
N
−θi

)
, in the N →∞ limit.

The reduction of the correction provided by (3.25) gives further accurate
estimates as the order of reduction L is increased. By using exact values of
θi to many more orders, we obtain

L = 10 : 0.66798625915577710858725991 , (3.30)
L = 20 : 0.66798625915577710827111996 , (3.31)
L = 30 : 0.66798625915577710827096268 (3.32)

at N = 250. The results are respectively exact to 10−18, 10−20 and 10−24

orders. The last result achieved the accuracy with the almost same order
with the one in linear delta expansion. The case L = 40 gives less accurate
result at N = 250 than the case of L = 30. However, we confirmed that at
higher order N = 300, the case L = 40 exceeds in the accuracy than the
case L = 30: error = 1.8× 10−26 (L = 30) and error = 9.6× 10−27 (L = 40).
Thus, increasing the incorporated exponents indeed improves the accuracy
while the effect manifests at larger orders.

4. Concluding remarks

We have explored the generalized binomial transform in the application
to a Laplace integral and the quantum anharmonic oscillator in the pertur-
bative framework. Let us summarize the investigation below.

In the Laplace integral function (2.5), binomial transform eliminated the
logarithmic singularity at M = 0 and left the series in 1/t. This is an
advantage of the transformed series. The limit limM→0+ f(M) is approxi-
mately computed from binomial transform of f(M) expanded in 1/M valid
atM � 1. Here, the use of the technique to subtract corrections in assumed
power series was critical to achieve a good accuracy. The extrapolation to
the infinite order by a simple fitting Ansatz predicts a slightly different
value, which is caused by the nonconvergence nature of divergent series. To
go beyond that difficulty, we found that diagonal Padé approximants of the
transformed series provided excellent estimation at finite orders and solid
evidence of convergence to the exact limit.



Generalized Binomial Transform Applied to the Divergent Series 2443

In the case of the anharmonic oscillator, the ground state energy com-
putation is successful in the naive transformed function by detecting the
optimal stationary or almost stationary points among many candidates un-
der PMS. The presence of a few to many stationary points is not a serious
drawback of binomial transform or linear delta expansion, since the optimal
and best estimation comes from the point with the smallest amplitude and
is thereby detectable. The accuracy of estimate is periodically improving
as the order grows and the convergence of the sequence is confirmed by the
comparison with that in the linear delta expansion. Also the coefficients
in the strong coupling expansion could be estimated with the same level
of accuracy. The high level of accuracy has its origin to the fact that the
energy function E(m2, λ) is analytic around m2 = 0 [17]. In this case, the
subtractive-reduction of the corrections with PMS brings no essential im-
provement.

As the third study, from the point of view that the ground state en-
ergy is considered as a function of the coupling constant, we investigated
the binomial transform approach to the computation of E . Explicit reduc-
tion under the circumstance that θi is not known was carried out in the
case of one-parameter (θ1) reduction. Although the estimates became less
precise compared with the previous two cases, obtained estimations were
satisfactory. It has been explicitly confirmed that the subtractive-reduction
to higher order corrections is effective to obtain accurate estimates. The
problem is, of course, the precise values of the exponent θi is necessary. If
there is no confluent singularity, it is expected that accurate results would
be obtained with the aid of approximate elimination of higher order cor-
rections. However, in models where a new singularity represented by the
correction to the scaling exponent exists, the estimation with high accuracy
may become a hard task, in particular, for divergent series.

In these three estimation tasks, we found that, when the transformed
function has power-like corrections in the target region of the argument (the
region whereM�1 in the present work), nonconvergent nature of divergent
series available in the opposite accessible region does not allow the exact con-
vergence of the sequence of estimates from transformed polynomial, though
the improvement by the reduction of the correction produces accurate re-
sults. The problem has been resolved by the Padé approximant method by
which the successful extrapolation beyond original narrow effective region
was achieved. Note that, in the study of the anharmonic oscillator based
on the binomial transform with respect to λ, reduction of the first order
correction was crucial for the estimation by the Padé approximants. In
various physical models, the combined use of the correction–reduction and
Padé approximants may become useful tools for dealing with the divergent
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series of a given function, usually accessible in the perturbative side where
M�1, for the quantitative computation of the function in the target region
where M�1.
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