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In this article, we give a pedagogical introduction into integrable mod-
els. First, we review how classical integrable models can be constructed by
demanding the existence of a higher spin conserved charge. The primary
examples are the sinh-Gordon and sine-Gordon theories whose classical
integrability is exactly shown by exploiting the Bäcklund transformation.
Lagrangian quantization together with the LSZ reduction formula provide
insight into the functional properties and analytical structure of the scat-
tering matrices. These are the inputs in the S-matrix bootstrap program,
which determine the scattering matrices from global symmetries, crossing
and unitarity properties. Then it is shown how the scattering matrices can
be used to calculate the large volume spectrum of the theory. We end the
paper by overviewing the literature where the various steps of the analogue
integrable developments in the AdS/CFT correspondence were developed.
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1. Introduction

The world does not seem to be integrable, so why shall we care about
integrable theories at all? They are very special/simple as there is no par-
ticle production in scattering processes, moreover, they are also very rare,
compared to non-integrable theories and exist only in very specific points of
the moduli space of all theories. They are mostly 2 dimensional (2D) and
there is only a few systems among them which have physical relevance so
far.

Despite these facts, we think that integrable models can be very useful
in many respects. First, they can be solved exactly. Exact solutions can
give precious insight into the structure of solutions, enable to test new ideas
and methods, and provide alternative approaches to define quantum field
∗ Presented at the LVI Cracow School of Theoretical Physics “A Panorama of Holog-
raphy”, Zakopane, Poland, May 24–June 1, 2016.
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theories. Recently, there has been intensive research and relevant progress
in analyzing the AdS/CFT correspondence. String theory, viewed as a 2D
quantum field theory, on the AdS5× S5 background is integrable and is dual
to the maximally supersymmetric 4D gauge theory. As a consequence, we
can use integrable methods to solve a 4D interactive quantum field theory
and to quantize string theory on a curved background. We think this is
enough motivation to start to investigate integrable theories.

The article is organized as follows: we start by showing how classical in-
tegrable models can be constructed by demanding the existence of a higher
spin conserved charge. Having analyzed the free boson theory, we derive inte-
grable potentials leading to the sinh-Gordon and sine-Gordon models. Their
classical integrability is exactly shown by exploiting the Bäcklund transfor-
mation. Lagrangian quantization and perturbation theory defines the model
completely. The LSZ reduction formula relates the scattering matrix to cor-
relation functions and provides a way to continue the S-matrix analytically
to the whole complex plane of the (single) Mandelstam variable. This repre-
sentation implies unitarity and crossing symmetry, which are the inputs in
the S-matrix bootstrap program. In this program, scattering matrices are
fixed from global symmetries, crossing and unitarity properties, and from
the maximal analiticity requirement. Then it is shown how the scattering
matrices can be used to calculate the large volume spectrum of the theory.
We end the paper by overviewing the literature where the various steps of
the analogue integrable developments in the AdS/CFT correspondence were
developed.

2. Classical integrability

In this section, we construct integrable field theories by demanding the
existence of a higher spin charge.

2.1. Notion of integrability

We start with 1+1 dimensional field theories, which are defined by ac-
tions of the form of

S =

ˆ
dxdtL(φ, ∂µφ) ; L = 1

2(∂tφ)2 − 1
2(∂xφ)2 − V (φ) (1)

with fields vanishing at spatial infinities.
Variation of the action

δS =

ˆ
d2x

[
∂L
∂φ

δφ+
∂L
∂∂µφ

∂µδφ

]
=

ˆ
d2x

[
∂L
∂φ
− ∂µ

∂L
∂∂µφ

]
δφ+

ˆ
d2x ∂µ

[
∂L
∂∂µφ

δφ

]
(2)
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can vanish in two interesting ways:

— for generic variations vanishing at time- and space-boundaries, we ob-
tain the equation of motion (e.o.m.)

∂L
∂φ
− ∂µ

∂L
∂∂µφ

= −∂2
t φ+ ∂2

xφ− V ′(φ) = 0 ; (3)

— for continuous symmetry variations of the fields φ satisfying the e.o.m.,
we obtain conservation laws (Noether theorem)

∂µJ
µ = ∂tJt − ∂xJx = 0 ; Jµ =

∂L
∂∂µφ

δφ (4)

such that the conserved charge generates the symmetry transformation

Q =

ˆ
Jtdx =

ˆ
πδφdx ; {Q,φ} = δφ . (5)

Conservation follows from

Q̇ =

ˆ
∂tJtdx =

ˆ
∂xJxdx = J(+∞)− J(−∞) = 0 (6)

since fields vanish at spatial infinities.

Every relativistic theory has conserved energy and momentum, but inte-
grable theories have infinitely many functionally-independent additional con-
served charges. Let us construct such relativistic integrable theories.

2.2. Relativistic invariance

Lorentz covariance helps to organize physical quantities. A Lorentz boost
in 1+1 dimensions is simply given by

(t, x)→
(
t+ vx√
1− v2

,
x+ vt√
1− v2

)
, (7)

where the speed of light was normalized to 1. By introducing rapidity,
v = tanhΛ, the Lorentz transformation becomes a hyperbolic rotation(

t
x

)
→
(

coshΛ sinhΛ
sinhΛ coshΛ

)(
t
x

)
(8)

which, in the Euclidean version t→ iτ , corresponds to rotation. Light-cone
coordinates diagonalize this “rotation”

x± = 1
2(t± x)→ e±Λx± . (9)
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Light-cone derivatives

∂± =
∂

∂x±
= ∂t ± ∂x (10)

and light-cone components of the current can be used to write the conser-
vation laws in the form of

∂tJt − ∂xJx = ∂+J− + ∂−J+ = 0 ; J± = 1
2(Jt ± Jx) . (11)

2.3. Integrable Lagrangians

In the following, we search for such potentials V which admit infinitely
many independent conservation laws.

We start with the V = 0 theory such that the equation of motion takes
the form of

∂+∂−φ = 0 . (12)

Clearly, any ∂− differential polynomial of ∂−φ leads to a conserved current
with

J− =
(
∂j1− φ

)k1
. . .
(
∂jn− φ

)kn
; J+ = 0 . (13)

Similarly, by changing ∂− → ∂+, we also get another set of infinitely many
conserved charges leading to the conclusion that the free massless boson is
actually integrable.

Let us switch on the potential. This changes the equation of motion to

∂+∂−φ = −V ′(φ) (14)

and prevents J− = ∂−φ from being a conserved current. We cannot even
modify J+ = 0 such that it remains conserved. Neglecting those combina-
tions which are derivatives by themselves (as their integrals should provide
non-zero conserved charges), we analyze the only candidate with two deriva-
tives

J− = T− = 1
2(∂−φ)2 (15)

and search for J+ = Θ+ such that the current J is conserved (11). We find
that

∂+T− = ∂−φ∂+∂−φ = −∂−φV ′(φ) = −∂−V = −∂−Θ+ (16)

such that J+ = Θ+ = V and the conserved charge is

Q−1 =

ˆ
Jtdx =

ˆ [
1
2(∂−φ)2 + V (φ)

]
dx . (17)
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Similar calculations can be done by replacing ∂− with ∂+ leading to the
conserved charged Q1. These two charges are the light-cone components of
the energy and momentum Q±1 = E ± P with

E =

ˆ [
1
2(∂tφ)2 + 1

2(∂xφ)2 + V (φ)
]

dx ; P =

ˆ
∂xφ∂tφ dx (18)

which are conserved for any V .
Let us go on in searching for higher spin conserved charges. The term

containing 3 derivatives cannot be conserved

∂+
1
3(∂−φ)3 = −(∂−φ)2V ′(φ) = −∂−φ∂−V 6= ∂−(something) . (19)

With 4 derivatives, we have two candidates

∂+
1
4(∂−φ)4 = −(∂−φ)3V ′(φ) = −(∂−φ)2∂−V , (20)

∂+

(
∂2
−φ
)2

= −2
(
∂2
−φ
)
∂−V

′(φ) = −V ′′∂−(∂−φ)2 (21)

but individually none is a total ∂− derivative. However, if we demand that

V ′′ = αV (22)

and combine them as

T
(4)
− = α1

4(∂−φ)4 +
(
∂2
−φ
)2

; Θ
(2)
+ = α(∂−φ)2V , (23)

then we have higher spin conserved charges

Q±3 =

ˆ [
T

(4)
± +Θ

(2)
±

]
dx =

ˆ [α
4

(∂−φ)4 +
(
∂2
−φ
)2

+ α(∂−φ)2V
]

dx .

(24)
Potentials which satisfy V ′′ = αV are — among others — the sine-Gordon
and sinh-Gordon potentials

V (φ) = −m
2

β2
cosβφ ; V (φ) =

m2

b2
cosh bφ . (25)

They can be obtained from each other by the analytical continuation

β → ib .
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Exercises

In this part, we list some problems to deepen the understanding of the
subject.

1. Find static solutions of the equation of motions in the sine-Gordon
theory! What about the sinh-Gordon theory?

2. Construct conserved charges of spin 5!
3. Analyze the free massive boson limit b → 0. What happens for the

conserved charges?
4. Instead of assuming a conserved charge at spin 3, search for the first

conserved charge at spin 5. What are the possible potentials now?
5. Prove the existence of infinitely many conserved charges in the sine-

Gordon theory!

Observe that there is a Bäcklund transformation

∂+(φl + φr) =
2m

βσ
sin

β

2
(φl − φr) , (26)

∂−(φl − φr) = −2m

β
σ sin

β

2
(φl + φr) (27)

for any σ which ensures that if φl solves the sine-Gordon equation of
motion, and together with φr they satisfy the first order equations
above, then φr solves the sine-Gordon equation, too. The Bäcklund
transformation can be used to generate a new solution from an old
one, additionally, it proves the existence of infinitely many conserved
charges. Indeed, by combining the equations, we easily get

σ∂+ cos
β

2
(φl + φr) + σ−1∂− cos

β

2
(φl − φr) = 0 . (28)

Expanding φr around φl in powers of σ

φr =

∞∑
n=1

σnφ(n) (29)

and plugging back to Eq. (28), after expanding in σ, we obtain in-
finitely many conservation laws.

Literature

In this part, we list some literature and suggest further readings. The
similar program to find integrable potentials with more scalar fields leads
to the affine Toda field theories. Their conserved charges was originally
constructed by different means in [1].
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3. Quantum integrability in the Lagrangian framework

In this section, we quantize the previously introduced theories. We start
with the Lagrangian quantization, which is based on quantizing the free
massive boson first, and taking into account the interaction perturbatively.
This is adequate for the sinh-Gordon theory, where the perturbation does
not change the particle spectrum. We quantize the sine-Gordon theory later
in the bootstrap scheme.

3.1. Lagrangian quantization

In quantizing the sinh-Gordon theory, we choose a free theory first
(b→ 0),

L0 =
1

2
(∂tϕ)2 − 1

2
(∂xϕ)2 − m2

2
ϕ2 , (30)

quantize this theory and then add the perturbation

L = L0 + LI ; LI =
m2

b2

∞∑
n=2

b2n

(2n)!
ϕ2n . (31)

The free massive boson can be quantized easily. The quantum field

ϕ0(x, t) =

∞̂

−∞

dk

2π2ω(k)

(
a(k)e−iω(k)t+ikx + a+(k)eiω(k)t−ikx

)
(32)

can be expressed in terms of the creation and annihilation operators[
a(k), a+

(
k′
)]

= 2π2ω(k)δ
(
k − k′

)
; ω(k) =

√
k2 +m2 . (33)

The Hilbert space of the model has multiparticle states

a+(k1) . . . a+(kn)|0〉 = |k1, . . . kn〉 ; a(k)|0〉 = 0 (34)

with definite energies

H0|k1, . . . , kn〉 =
∑
i

ω(ki)|k1, . . . , kn〉 (35)

and momenta
P |k1, . . . , kn〉 =

∑
i

ki|k1, . . . , kn〉 , (36)

where the free energy and momentum operators are normal ordered as

H0 =

∞̂

−∞

:

[
1

2
(∂tϕ0)2 +

1

2
(∂xϕ0)2 +

m2

2
ϕ2

0

]
: dx (37)
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and as

P =

∞̂

−∞

: ∂xϕ0∂tϕ0 : . (38)

Generic correlators can be written in terms of the two-point function

〈0|T
(
ϕ0(x, t)ϕ0

(
x′, t′

))
|0〉 =

ˆ
d2k

(2π)2

i

k2 −m2 + iε
e−ik0(t−t′)+ik1(x−x′)

(39)
using Wick theorem.

The interacting theory is defined by its correlators, which can be calcu-
lated perturbatively

〈0|T (ϕ(x1, t1) . . . ϕ(xn, tn)) |0〉

=
〈0|T

(
ϕ0(x1, t1) . . . ϕ0(xn, tn) exp

{
−i
´

d2xLI(ϕ0(x))
})
|0〉

〈0|T
(
exp

{
−i
´

d2xLI(ϕ0(x))
})
|0〉

(40)

by expanding the exponential terms. The Feynman rules summarize the way
one can systematically perform the computations. In momentum space, they
read as:

— draw all topologically distinct diagrams;

— associate a propagator i
k2−m2+iε

for each inner line;

— introduce im2b2n−2 for each vertex of 2n legs and demand momentum
conservation;

— integrate for inner momenta not fixed by momentum conservations´
d2k

(2π)2
;

— divide by the symmetry factor of the graph.

The simplest problem is the calculation of the two-point function. Immedi-
ately, however, at one loop, we face with a divergent integral, which can be
regularized and compensated by a counterterm: δm2

2 ϕ2. Calculating other
correlators at one loop, we arrive at the same divergence. Interestingly, the
induced counterterm Lagrangian for higher point functions has exactly the
same form as the original one. Thus, the divergences can be absorbed into
the renormalization of the mass term

V (ϕ)− VCT(ϕ) =
m2 − δm2

b2
(cosh bϕ− 1) (41)
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which at one loop reads as

δm2 = −m2b2
Λ̂

0

dp√
p2 +m2

. (42)

The fact that the form of the Lagrangian is not changed at the quantum level,
merely the coefficients are renormalized, implies that the quantum equation
of motions has the same structure as the classical one and indicates that the
sinh-Gordon theory is integrable at the quantum level, too.

The pole of the propagator tells us the mass of the particle, while the
scattering matrix is related to the higher point correlation functions via the
reduction formula. In deriving the reduction formula, one uses the fact that
particles are localized excitations, which for asymptotically large times are
well-separated and non-interacting. Thus, we can switch off the interaction
adiabatically for large times and suppose that the quantum field is propor-
tional to a free field

lim
t→∓∞

ϕ(x, t) ≈ lim
t→∓∞

Z
1
2ϕ

in/out
0 (x, t) , (43)

where Z takes care of the canonical normalization of the fields and the limit
is understood in the weak sense, i.e. for the matrix elements of the operators.
Asymptotic annihilation/creation operators can be defined in terms of the
asymptotic fields as

aas(k) = i

ˆ
dx eiω(k)t−ikx←→∂t ϕas

0 (x, t) ,

aas(k)+ = −i
ˆ

dx e−iω(k)t+ikx←→∂t ϕas
0 (x, t) (44)

and they create the free asymptotic states

|k1, . . . , kn〉as = aas(k1)+ . . . aas(k1)+|0〉 . (45)

Asymptotic completeness means that both the initial and final states form
a complete set. Thus, they can be expressed in terms of each other by the
so-called scattering matrix

Sfi = 〈final|initial〉 . (46)

As an operator, the scattering matrix is the time-evolution operator in the
interaction picture which implies that it is unitary and commutes with the
symmetries.
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The simplest non-trivial S-matrix element is

out〈k3, k4|k1, k2〉in =S(k1, k2|k3, k4)(2π)22ω(k1)2ω(k2)δ(k1−k3)δ(k2−k4) .

In a Lorentz invariant theory, the S-matrix depends only on the relativis-
tically invariant Mandelstam variables s = (k1 + k2)2, t = (k1 − k3)2 and
u = (k1 − k4)2, where s + t + u = 4m2. In 2D, the kinematics is further
restricted since t = 4m2 − s.

The scattering matrix can be expressed in terms of the correlation func-
tions via the reduction formulas, which can be obtained as follows: one
first expresses the asymptotic creation and annihilation operators in terms
of the free asymptotic fields (44). The asymptotic fields can be expressed
at t = −∞ with the interacting field, which, using the identity f(−∞) =
f(∞)−

´∞
−∞ ∂tf(t), can be further decomposed into the disconnected, f(∞),

and the remaining connected contributions. In the connected piece, we use
the dispersion relation ω2 = k2 + m2 to replace the time derivatives with
space derivatives, which we integrate by parts. Dropping the surface terms
and repeating the same procedure for each asymptotic creation/annihilation
operators, we obtain the following reduction formula:

out〈k3, k4|k1, k2〉in = disc. + Z−2D̄4D̄3D2D1〈0|T (ϕ(1)ϕ(2)ϕ(3)ϕ(4))|0〉 ,
(47)

where ϕ(i) stands for ϕ(xi, ti) and

Di = −
ˆ

d2xie
−iω(ki)ti+ikixi�i ; −�i = −∂2

ti + ∂2
xi −m

2 . (48)

Disconnected terms appear whenever one of the outgoing momenta equals
to any of the incoming ones. The physical meaning of the operator Di is to
amputate a leg of the correlator and to put it on-shell. Clearly, in momentum
space, �i picks up the residue of the pole of the propagator, while the
inverse Fourier transformation puts the particle on the mass shell: ω2 +k2 =
m2. For initial states, we obtain the operator D̄i = −

´
d2xie

iω(ki)ti−ikixi�i.
Comparing the two operators Di and D̄i, the only difference is in the sign of
the two-momentum (ω, k). From this, we can read the crossing symmetry
of the scattering matrix

S(k1, k2|k3, k4) = S
(
k1, k̄3|k̄2, k4

)
. (49)

Let us go into the center-of-mass frame k1≡(ω(k), k) and k2 =(ω(k),−k).
Then we have s = 4m2 + 4k2 and t = −4k2. Crossing symmetry implies
that

S(s+ iε) = S(t− iε) = S
(
4m2

1 − s− iε
)
. (50)
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Switching from the iε prescription to the −iε prescription is equivalent to
time reversal, which changes the scattering matrix to its inverse

S(s+ iε) = S(s− iε)−1 . (51)

We can learn about the non-analytical domains of the S-matrix from the
unitarity relation SS† = I. For this, we write the scattering matrix as
S = I + iT giving

i
(
T − T †

)
= −TT † . (52)

Taking matrix element between initial and final two-particle states and in-
serting a complete system, we can write

〈p3, p4|i
(
T − T †

)
|p1, p2〉 = −

∑
n∈H
〈p3, p4|T |n〉〈n|T †|p1, p2〉 . (53)

The vacuum does not contribute. One-particle terms give pole singularities
atm2 and at 3m2. There are cuts on the real line starting at the multiparticle
thresholds (nm)2. The physical value of the S-matrix is at S(s+ iε), where
s > 4m2. This analytical structure of the S-matrix is displayed in Fig. 1.

i

−i

ε

ε

Bound states

4m
2

s

2
9m

22
m 3m

S(s+   )

S(s     )
i εS(t−    )

Fig. 1. The analitycal structure of the S-matrix.

It is useful to introduce rapidity parametrization which, in the center-
of-mass frame, reads as k = m sinh θ

2 , such that the rapidity difference is θ.
The rapidity is related to the s variable as

s = 4m2

(
1 + sinh2 θ

2

)
= 4m2 cosh2 θ

2
. (54)

This resolves the cut starting at 4m2 and maps the first sheet of the complex
s-plane to the strip 0 < Im(θ) < π. The bound-state poles are located on the
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imaginary axes at θ = iζ and at θ = i(π− ζ). Crossing symmetry translates
to the rapidity parameter as

S(iπ − θ) = S(θ) , (55)

while the S-matrices on the two sides of the cut are related as

S(θ) = S(−θ)−1 . (56)

As we already developed the technique to calculate the correlation func-
tion, using the reduction formula, we can elaborate order-by-order the scat-
tering matrix of the sinh-Gordon theory. The perturbative result in the
sinh-Gordon theory reads as

S(θ) = 1− ib2

4 sinh θ
−
b4
(

π
sinh θ − i

)
32π sinh θ

+
ib6
(

π
sinh θ − i

)2
256π2 sinh θ

+O
(
b8
)
. (57)

In the next section, we obtain an all-order exact expression for this quantity.

Exercises

1. Quantize the free massive boson and derive the Feynman rules!
2. Calculate the mass counterterm at first order in perturbation theory!
3. Calculate the scattering matrix at first order in perturbation theory!

(Pay particular attention to the normalization of these quantities, es-
pecially the arguments of the delta functions.)

4. Construct quantum integrable potentials! Start with a φ4 theory and
calculate at 1-loop the S2→4 particle process. Introduce a φ6 potential
which cancels this contribution at tree level. Repeat the procedure for
S2→n.

Literature

A more detailed exposition of the section can be found in [2] and [3]. For
the analytical structure of the scattering matrix, see also [4, 5].

4. Quantum integrability: the S-matrix bootstrap

The S-matrix bootstrap combines the analytic S-matrix theory with in-
tegrability in an axiomatic framework.
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4.1. Bootstrap quantization

We first assume that the Hilbert space is spanned by free multiparticle
states with relativistic dispersion relation

E(p) = ω(p) =
√
p2 +m2 ; E(p)2 − p2 = m2 . (58)

Using the rapidity parametrization, we can write

E(θ) = ω(θ) = m cosh θ ; p(θ) = m sinh(θ) . (59)

Light-cone components diagonalize the action of boosts and can be written as

(E ± p)(θ) = Q±1(θ) = me±θ . (60)

In an integrable theory, these are the first members of an infinite family of
conserved charges which can be labeled by their spin s: Qs(θ) = qse

sθ. A
multiparticle initial state is denoted as

|θ1, . . . θn〉in ; θ1 > · · · > θn , (61)

while final states as

|θ1, . . . θm〉out ; θm > · · · > θ1 . (62)

Both bases diagonalize the action of the (infinitely many) conserved charges

Qs|θ1, . . . θn〉in =

n∑
i=1

qse
sθi |θ1, . . . θn〉in . (63)

The scattering matrix connects the two bases of the Hilbert space, thus they
relate initial and final states

Sn→m = out

〈
θ′1, . . . θ

′
m

∣∣θ1, . . . θn
〉

in
(64)

and its absolute square describes the probability with which the initial state
evolves into the final state. Let us formulate the requirements for this S-ma-
trix. As the scattering matrix is the time evolution operator in the interac-
tion picture, it must commute with the symmetries, i.e. with their generators
the conserved charges Qs. Thus, if we evaluate them before and after the
scattering, they have to coincide

n∑
i=1

qse
sθi =

m∑
i=1

qse
sθ′i . (65)
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These are functionally-independent polynomial equations (xi = eθi) for infi-
nite different values of the spin s. They can be satisfied for a finite number
of {θi} and {θ′j} only if the two sets completely agree: {θi} = {θ′j}. In par-
ticular, this means that the number of particles in the initial and final states
coincides n = m, i.e. there is no particle creation in quantum integrable
theories.

Conserved charges generate symmetry transformations: H generates uni-
form shift in time, while P generates uniform shift in space. Higher spin
charges, however, generate momentum-dependent shifts in space-time. As
all rapidities are different, by acting with a higher spin charge, we can spa-
tially separate the particle interactions and factorize the multiparticle scat-
tering amplitudes into the product of two-particle scatterings

Sn→n(θ1, . . . , θn) =
∏
i,j

S2→2 (θi, θj) . (66)

The full information of the multiparticle scattering matrix is contained in
the S2→2(θ1, θ2) two-particle elastic scatterings only, thus we focus on its
determination from now on. Lorentz boost acts on the rapidity as θ → θ+Λ
and, as it is a symmetry, we can write

S2→2(θ1, θ2) = S(θ1 − θ2) . (67)

Unitarity translates into
S(θ)S(−θ) = 1 , (68)

while crossing symmetry to

S(θ) = S(iπ − θ) . (69)

Absence of bound state implies that we have no poles in the physical strip.
We now solve these functional relations. In order to have the right period-

icity and good asymptotic property, let us consider the logarithmic derivative
of the scattering matrix

φ(θ) = −i d

dθ
logS(θ) . (70)

It has the properties

φ(θ) = φ(−θ) ; φ(θ) = −φ(iπ − θ) = −φ(iπ + θ) . (71)

Let us write φ(θ) as

φ(θ) =

˛

θ

dθ′

2πi

φ (θ′)

sinh (θ′ − θ)
, (72)
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where the contour surrounds θ infinitesimally. Now, we blow up the contour
and deform it to Im(θ) = 0 and to Im(θ) = π. In doing so, we pick up the
residues of the possible bound-state poles or zeros. Assuming we have no
pole but a single pair of zeros at iα and i(π − α) 1 leads to

φ(θ) = − 1

sinh(iα− θ)
− 1

sinh(i(π − α)− θ)
. (73)

After integrating and exponentiating, we obtain

S(θ) =
sinh θ − i sinα

sinh θ + i sinα
; α > 0 . (74)

By comparing to the perturbative result, we can conjecture that

α =
πb2

8π + b2
. (75)

4.2. Non-diagonal scatterings

We can perform an analytical continuation b→ iβ leading to an S-matrix
in the sine-Gordon theory

S(θ) =
sinh θ + i sinα

sinh θ − i sinα
; α =

πβ2

8π − β2
. (76)

In this case, we find a pole in the physical strip (Im(θ) ∈ [0, π]), and we have
to introduce more particles in the spectrum. It turns out that the spectrum
is not consistent with the bound states of this particle only and we have to
introduce a mass degenerate doublet. These two particles correspond to the
quantizations of the two static solutions of the equations of motion

φstatic(x) = ± 4

β
arctan(emx) . (77)

They are called the soliton and the anti-soliton. In the quantum theory, they
are degenerate in mass and during the scattering process, they mix with each
other. They form a doublet representation of the non-local symmetry of the
model Uq(ŝl2). To derive this symmetry, one can start by quantizing the
free massless compactified boson. This c = 1 conformal field theory is in-
tegrable and has infinitely many conserved charges at the quantum level.
They are quantization of the charges which appeared at the classical level
(13). After switching on the perturbation, which leads to the sine-Gordon

1 Having neither a zero nor a pole implies that φ(θ) = 0, i.e. S = ±1. These solutions
correspond to free boson and free fermion.
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theory, a similar calculation to the classical one shows that there are con-
served higher spin charges. Additionally to these charges, one can also show
the existence of non-local charges. These charges generate an Uq(ŝl2) alge-
bra. In the following, we use the invariance of the scattering matrix for an
Uq(sl2) subalgebra to find the matrix part of the soliton scattering matrix.
This Uq(sl2) subalgebra is generated by Q+, Q− and Q0, which act on the
two-particle soliton–anti-soliton doublet as

Q0 = σ0 ; Q± = eλθσ±q
±σ0 , (78)

where

σ0 =

(
1 0
0 −1

)
; σ+ =

(
0 1
0 0

)
; σ− =

(
0 0
1 0

)
, (79)

and q is a parameter of the representation with q = eiλ. From conformal
perturbation theory, it can be shown that λ = 8π

β2 − 1. The non-local nature
of the symmetry manifests in the action of the charges on two-particle states.
These are defined by the coproduct formula

∆(Q0) = Q0 ⊗ I + I⊗Q0 ; ∆(Q±) = Q± ⊗ I + qQ0 ⊗Q± . (80)

The scattering of the soliton doublet on itself is described by a 4-by-4
matrix, which maps a two-particle state with rapidities θ1 and θ2 into the
state with rapidities θ2 and θ1. This commutes with the symmetries

∆21(Q)S12(θ1 − θ2) = S12(θ1 − θ2)∆12(Q) (81)

and is the function of the rapidity difference only. The charge Q0 is nothing
but the topological charge and its conservation restricts the scattering into
the form

S(θ) =


S++

++(θ) 0 0 0
0 S+−

+−(θ) S−+
+−(θ) 0

0 S+−
−+(θ) S−+

−+(θ) 0
0 0 0 S−−−−(θ)

 . (82)

Further invariance with Q± gives

S(θ) = ρ(θ)


a(θ) 0 0 0

0 b(θ) c(θ) 0
0 c(θ) b(θ) 0
0 0 0 a(θ)

 (83)
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with

a(θ) = 1 ; b(θ) =
sin(iλθ)

sinλ(π + iθ)
; c(θ) =

sin(λπ)

sinλ(π + iθ)
. (84)

The scalar coefficient can be fixed from the unitary

Sklij (θ1 − θ2)Smnlk (θ2 − θ1) = δmi δ
l
j (85)

and the crossing symmetry requirements

Sklij (θ1 − θ2) = S īkjl̄ (iπ − θ1 + θ2) . (86)

They translate to the prefactor as

ρ(θ)ρ(−θ) = 1 ; ρ(iπ − θ) = ρ(θ)
sin(iλθ)

sinλ(π + iθ)
. (87)

These equations can be solved by an infinite product of the form of

ρ(θ) =

∞∏
l=1

[
Γ
(
λ(2l − 2) + iλθ

π

)
Γ
(
1 + λ2l + iλθ

π

)
Γ
(
λ(2l − 1) + iλθ

π

)
Γ
(
1 + λ(2l − 1) + iλθ

π

)/(θ → −θ)

]
,

where some CDD ambiguity still remains, i.e. we can multiply the solution
with any function satisfying f(θ) = f(iπ − θ) = f(−θ)−1. These functions,
however, will introduce additional zeros or poles in the physical strip what
we would like to avoid, as each pole/zero must have a physical origin. Let
us analyze the analytical structure of the solution we found.

The soliton–anti-soliton scatterings (S+−
+−(θ) = ρ(θ)b(θ) and S−+

+−(θ) =
ρ(θ)c(θ)) have poles at iπ(1 − n

λ ), they are in the physical strip for n =
1, . . . , [λ]. Thus, for λ > 1, the soliton and the anti-soliton can form bound
states. The lightest one should correspond to the fundamental excitation
of the field φ and should be the continuation of the sinh-Gordon particle.
It is possible to extract the scattering matrix of this bound state from the
scattering matrices of the soliton–anti-soliton doublet (see exercises) and
compare its analytical continuation to the sinh-Gordon scattering matrix.
The analysis gives the relation

λ =
8π

β2
− 1 (88)

which proves the previously conjectured relation for the sinh-Gordon model.



2468 Z. Bajnok

Exercises

1. Assume that α < 0 in (74)! Interpret the pole in the S-matrix at
θ = −iα as a boundstate and calculate its mass! Determine α for
which the mass is m, i.e. the bound state is the particle itself !

2. By shifting the trajectories of the particles show that the scattering of
the bound state on the original particle can be written as S(θ− iα

2 )S(θ+
iα
2 )! Determine α for which it equals to S(θ)!

3. Show that the sine-Gordon scattering matrix satisfies the Yang–Baxter
equation

Sprij (θ1 − θ2)Slqpk(θ1 − θ3)Smnrq (θ2 − θ3)

= Sprjk(θ2 − θ3)Sqnir (θ1 − θ3)Slmqp (θ1 − θ2) .

4. Calculate the mass and the scattering matrix of the first soliton–anti-
soliton bound state!

Literature

The S-matrix bootstrap in the sine-Gordon theory was developed in [6].
The quantum group symmetry was derived in [7] together with our calcu-
lation of the matrix part of the scattering matrix. For further details, see
also [5] and [2].

5. Finite volume energy spectrum

In the previous sections, we determined the particle content of 2D inte-
grable quantum field theories together with their scattering matrices using
the S-matrix bootstrap approach. In the present section, we will use these
quantities to calculate the energy spectrum in finite volume.

The spectrum in infinite volume is very simple

E(θ1, . . . , θn) =
∑
i

m cosh θi . (89)

We see that above m, we have a continuum of energy levels. This continuous
spectrum is replaced with discrete energy levels in finite volume. We analyze
first how the energy levels are discretized for a free system, then we turn
to the investigation of the effect of the interaction. The leading finite size
correction originates from the momentum quantization which is described
by the Bethe–Yang equations. This part contains all polynomial finite size
corrections in the inverse of the volume and would give an exact answer
in quantum mechanical systems. In a quantum field theory, additionally,
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there are vacuum polarization effects, which result in exponentially small
corrections. There is a systematic way of taking them into account iteratively
and there is an exact description, called the Thermodynamic Bethe Ansatz,
which sums them all up.

Suppose now that a free quantum field theory is put into a finite volume L
with periodic boundary condition. Periodicity means that fields satisfy φ(x+
L) = φ(x). As the conserved momentum P generates the space translation
eiPLφ(x, t)e−iPL = φ(x + L, t), its spectrum has to be quantized eiPL = 1.
This means for a one-particle state with momentum p that

eipL = eimL sinh θ = 1 ; pn =
2π

L
n . (90)

The spectrum of a free theory is composed of non-interacting particles

E(n1, . . . , nk) =

k∑
i=1

√
m2 +

(
2π

L
ni

)2

. (91)

Clearly, the spectrum is discrete. It becomes denser and denser for L→∞
and gives the continuous spectrum in the infinite volume limit. Let us see
now how we can take into account the interaction among the particles.

5.1. Diagonal theories: the sinh-Gordon model

Let us consider the quantum mechanics of a particle in finite volume in
the presence of a localized potential. The wave function, additionally to
the free propagation phase eipL, picks up the transmission phase T (p) when
passing through the potential, thus the periodicity requirement is modified
to eipLT (p) = 1. We use this observation for the particle-like excitation of
the quantum field.

We will treat the excitation of the quantum field as particles, but this
is correct as far as their size (m−1) is much smaller than the volume L.
In this approximation, we can use the quantum mechanical argumentation
above. This is further supported by the absence of particle production in
integrable theories, where the only interaction is condensed into the phase
that a particle acquires when it scatters on the others. As a consequence,
the particle number is a conserved quantity and can be used to label the
multiparticle finite volume states. In describing the finite size effects, we
proceed in this particle number.

The one-particle quantization condition is not changed compared to the
free theory since there is no other particle to scatter on

eim sinh θL = 1↔ m sinh θn =
2π

L
n . (92)
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The energy is given by
E(n) = m cosh θn . (93)

In the case of two particles with momentum p1, p2, we have to take into
account their scattering interactions. Thus, when we move the first particle
around the circle, we do not only pick up the phase eip1L but also scatter on
the other particle

eimL sinh θ1S(θ1 − θ2) = eimL sinh θ1eiδ(θ1−θ2) = 1 . (94)

Here, we introduced the phase of the scattering matrix

S(θ1 − θ2) = eiδ(θ1−θ2) . (95)

We can compare the momentum/rapidity to the free case by solving the
equation

mL sinh θ1 + δ(θ1 − θ2) = 2πn1 . (96)

The correction compared to free particle quantization is

pn = pfree
n − δ(p1, p2)

L
(97)

which is of the order of O(L−1) and vanishes when L→∞. In an analogous
way, we can write the equation for the second particle

mL sinh θ2 + δ(θ2 − θ1) = 2πn2 . (98)

Since the unitarity property S(θ)S(−θ) = 1 translates into the phase as
δ(θ) + δ(−θ) = 0, we have

mL(p1 + p2) = 2π(n1 + n2) . (99)

That is, the total momentum is quantized in the units of 2π/L. This is
expected as the momentum is conserved and generates space translation
eiPL = 1. The energy of the state is given by

E(n1, n2) = m cosh θ1 +m cosh θ2 . (100)

In the case of N particles, the quantization condition is

eimL sinh θ1S(θ1 − θ2)S(θ1 − θ3) . . . S(θ1 − θn) = 1 (101)

and similar equations hold for each θi. These are called the Bethe–Yang
equations which determine the finite volume energy levels via the formula

E(θ1, . . . , θn) =
∑
i

m cosh θi . (102)

This approximation is valid whenever m−1 � L. In the following, we extend
our findings to non-diagonal scattering theories.
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5.2. Non-diagonal theories: the sine-Gordon model

We analyze the sine-Gordon model in the λ < 1 region where there are
no bound states, only the soliton–anti-soliton doublet |±〉 is in the spectrum.

The one-particle states are not part of the spectrum with periodic bound-
ary condition. If one takes the L → ∞ limit of the periodic theory, then
only the Q = 0 topological charge sector can be reached. If we would like
to describe the charge Q states, we have to demand a boundary condition
in which the field ϕ jumps Q2π

β when we go around the circle ϕ(x+ L, t) =

ϕ(x, t) + 2πQ
β .

The Q = ±1 one-particle states can be then described as free states

eiML sinh θ = 1↔ML sinh θ =
2π

L
n . (103)

Here, we denote the mass of the doublet by M .
In the case of two-particle states with charge Q = 2, we have two soli-

tons on the circle. Since the scattering is diagonal S++
++(θ), we can use the

diagonal equations as before

eiML sinh θ1S++
++(θ1 − θ2) = 1 . (104)

By parity symmetry, we have the same equation for Q = −2. The Q = 0 sec-
tor is more complicated as the scattering mixes up solitons and anti-solitons
and we have to find such a state which is invariant under the scatterings.
Since parity is conserved, the even and the odd combinations of the states
s+(θ1)s−(θ2) ± s−(θ1)s+(θ2) diagonalize the scattering matrix with eigen-
values S±(θ). Here, we denoted the soliton with rapidity θ by s+(θ) and
similarly the anti-soliton by s−. The quantization condition then reads as

eiML sinh θ1S±(θ1 − θ2) = 1 . (105)

If we consider a theory in a finite volume L which contains all topological
charges, then the two-particle BY equation can be formulated as

eiML sinh θ1Sklij (θ1 − θ2)Ψkl = Ψij , (106)

where Ψij is the coefficient matrix of the two-particle state which diagonalizes
the scatterings Ψijsi(θ1)sj(θ2).

In the case of n particles, the matrix we have to diagonalize can be
obtained by bringing the doublet with θ1 around all the other particles

eiML sinh θ1LSj1jnkn−1in
(θ1− θn) . . . Sk2j3k1i3

(θ1− θ3)Sk1j2i1i2
(θ1− θ2)Ψj1...jn = Ψi1...in .

(107)
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Basically, we have to diagonalize the following Bethe–Yang matrix:

T1(θ1; θ2, . . . , θn)j1j2...jni1i2...in
=Sj1jnkn−1in

(θ1− θn) . . . Sk2j3k1i3
(θ1− θ3)Sk1j2i1i2

(θ1− θ2) .

(108)
If we bring the lth particle around the circle, we need to diagonalize the
following matrix:

Tl(θ1, ...; θl; ..., θn)j1j2...jni1i2...in

= S
iljl−1

kl−1il−1
(θl, θl−1)...S

kl+1jl+2

klil+2
(θl, θl+2)S

kljl+1

ilil+1
(θl, θl+1) (109)

depicted graphically as

θ θθθ θ1 i i+1i−1 N

These matrices commute and can be diagonalized on the same basis. To
show this, first we define the monodromy matrix

T (θ|θ1, . . . , θn)j,j1,j2,...jni,i1,i2,...in
= Sj jnkn−1in

(θ, θn) . . . Sk2j2k1i2
(θ, θ2)Sk1j1i i1

(θ, θ1) (110)

by bringing an auxiliary test particle around the circle. One can show that
Tr(T (θ)) reduces to Tl for θ = θl. This is a consequence of the fact that
the scattering matrix reduces to the permutation matrix for vanishing argu-
ments: Sklij (0) = −δliδkj . One can derive the following commutation relation
for monodromy matrices

S12(θ1 − θ2)T1(θ1)T2(θ2) = T2(θ2)T1(θ1)S12(θ1 − θ2) , (111)

where only the auxiliary space of the monodromy matrix is indicated, to-
gether with the space where it acts. Taking the trace of the equation, it
follows that transfer matrices commute for different arguments and the BY
matrices can be diagonalized simultaneously.

In describing the finite size spectrum of the sine-Gordon theory, we need
to diagonalize the transfer matrix

T̃ (θ) = Tr
(
S̃(θ − θN ) . . . S̃(θ − θ1)

)
; S(θ) = ρ(θ)S̃(θ) . (112)

θ θθθ θ1 i i+1i−1 N

θ
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Interestingly, T̃ is the transfer matrix of the inhomogeneousXXZ Heisen-
berg spin chain. We can see that the calculation of the finite size energy
spectrum of a non-diagonal quantum field theory is reduced to the solution
of an inhomogeneous spin chain.

Once the eigenvalue λ(θ|θ1, . . . , θN ) of T̃ (θ) has been determined, the
BY equations can be written as

eiML sinh(θj)
N∏
i=1

ρ(θ − θi)λ(θj |θ1, . . . , θN ) = −1 . (113)

These equations determine the rapidities θi and the energy can be written as

E(θ1, . . . , θN ) = M

N∑
i=1

cosh(θi) . (114)

In the following, we diagonalize the transfer matrix of the XXZ spin chain.

5.3. Solution of the inhomogeneous XXZ spin chain

The Hilbert space of the Heisenberg spin chain of N sites is H = ⊗Ni=1C2.

Each element of the monodromy matrix S̃(θ−θ1) . . . S̃(θ−θN ) is an operator
on H. Let us write the monodromy matrix in the form of

S̃(θ − θ1) . . . S̃(θ − θN ) =

(
A(θ) B(θ)
C(θ) D(θ)

)
, (115)

where the matrix structure is written explicitly for the auxiliary space. We
need to diagonalize the transfer matrix, which is the trace of the monodromy
matrix

T̃ (θ) = A(θ) +B(θ) . (116)

It is easy to find one eigenvector of this matrix (+, . . . ,+) = |+, . . . ,+〉 ≡
|0〉. The corresponding eigenvalue follows from

A(θ)|0〉 =
N∏
i=1

S++
++(θ − θi)|0〉 =: ã(θ)|0〉 , (117)

D(θ)|0〉 =

N∏
i=1

S−+
−+(θ − θi)|0〉 =: d̃(θ)|0〉 . (118)

This eigenstate is called the pseudo-vacuum state. One can check that C(θ)
acts as an annihilation operator

C(θ)|0〉 = 0 , (119)
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while B(θ) acts as a creation operator. A general eigenvector can be writ-
ten as

B(v1) . . . B(vm)|0〉 , (120)

where the parameters vi satisfy non-trivial relations what we determine in
the following. In finding the eigenvectors, the algebraic relations of the
elements of the monodromy matrix are crucial

B(θ1)B(θ2) = B(θ2)B(θ1) , (121)
A(θ1)B(θ2) = f(θ2 − θ1)B(θ2)A(θ1) + g(θ2 − θ1)B(θ1)A(θ2) , (122)
D(θ1)B(θ2) = f(θ1 − θ2)B(θ2)D(θ1) + g(θ1 − θ2)B(θ1)D(θ2) , (123)

where one can show that f = a
b and g = − c

b .
We need to find the constraints on the parameters vi such that the above

state is an eigenstate of the Hamiltonian. If we have one single B(v), then
the calculation goes as follows:

A(θ)B(v)|0〉 = f(v − θ)B(v)A(θ)|0〉+ g(v − θ)B(θ)A(v)|0〉
= f(v − θ)ã(θ)B(v)|0〉+ g(v − θ)ã(v)B(θ)|0〉 , (124)

and similar equations for D

D(θ)B(v)|0〉 = f(θ − v)B(v)D(θ)|0〉+ g(θ − v)B(θ)D(v)|0〉
= f(θ − v)d̃(θ)B(v)|0〉+ g(θ − v)d̃(v)B(θ)|0〉 . (125)

The basic idea is to combine the two equations such that the “unwanted”
B(θ)|0〉 term disappears. The condition is

g(v − θ)ã(v) + g(θ − v)d̃(v) = 0 (126)

or

1 =

N∏
k=1

sinhλ(v − θk)
sinhλ(v − θk − iπ)

. (127)

One can use the same strategy for higher m. The resulting equations can
be encoded as follows. One first defines the functions

Q(θ) =
∏
β

sinhλ(θ − vβ) ; T0(θ) =
∏
j

sinhλ

(
θ − iπ

2
− θj

)
. (128)

The transfer matrix eigenvalue t̃(θ) satisfies the so-called TQ relation

t̃(θ)Q(θ) = Q(θ + iπ)T0

(
θ − iπ

2

)
+Q (θ − iπ)T0

(
θ +

iπ

2

)
. (129)
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As the transfer matrix is regular at vβ , which is a zero of Q(θ), the r.h.s. of
the equation has to vanish, too:

T0

(
vα − iπ

2

)
Q (vα + iπ)

T0

(
vα + iπ

2

)
Q (vα − iπ)

= −1 . (130)

These are the so-called Bethe Ansatz equations. The eigenvalue of the
Bethe–Yang matrix is simply

t̃(θj) = λ(θj |θ1, . . . , θn) =
Q (θj + iπ)

Q(θj)
T0

(
θj −

iπ

2

)
. (131)

We should keep in mind that the BA or BY equations describe the spec-
trum of the quantum field theory only asymptotically, when the size is larger
then the size m−1 of the smallest particle. In smaller volume, vacuum po-
larization effects are no longer negligible.

Exercises

1. Show that the two-particle scattering matrix can be reconstructed from
the volume dependence of the energy of a two-particle state!

2. Derive the commutation relation for the matrix elements of the mon-
odromy matrix!

3. Derive the Bethe Ansatz equations!

Literature

The polynomial finite size effects are considered in [8], while the expo-
nentially small ones in [9] and [10]. The Thermodynamic Bethe Ansatz [11]
sums up these corrections. On the algebraic Bethe Ansatz, see the lecture
notes [12].

6. The bootstrap program for AdS/CFT

The AdS/CFT correspondence conjectures an equivalence between string
theories on anti-de Sitter spaces and conformal field theories on the bound-
aries of these spaces [13]. In particular, the IIB string theory on the AdS5× S5

background is equivalent to the maximally supersymmetric 4D gauge the-
ory [14]. This string theory was shown to be integrable classically [15]. The
light-cone gauge fixing breaks the psu(2, 2|4) symmetry of the problem to
the centrally extended suc(2|2)2 algebra and gives masses to the excitations
with a non-relativistic dispersion relation

ε(p) =

√
1 + 16g2 sin2 p

2
, (132)
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where g is the dimensionless combination of the string tension and the AdS
radius. The 8 bosonic and 8 fermionic massive excitations form the tensor
product of two fundamental representations of suc(2|2) implying the factor-
ization of the scattering matrix [16]

S(p1, p2) = S0(p1, p2) S(p1, p2)⊗ S(p1, p2) . (133)

The factor S is a 16-by-16 matrix which can be fixed from invariance under
the charges Q of the suc(2|2) algebra

∆(Q)S(p1, p2) = S(p1, p2)∆(Q) . (134)

There are analogous relations to unitarity and crossing symmetry relations
[17] which determine S0(p1, p2) [18]. The resulting scattering matrix has
poles related to bound states [19]. These bound states form short 4n-dimen-
sional atypical representations of the symmetry algebra with dispersion re-
lation ε(p) =

√
n2 + 16g2 sin2 p

2 . Their scattering matrix can be fixed either
from fusion [20] or from invariance under the symmetry of the problem [21].
The full spectrum of excitations together with their dispersion relations
and scatterings characterize the theory in infinite volume. These data can
be then used to determine the spectrum in finite volume, the problem we
are eventually interested in. The diagonalization of the transfer matrix is
equivalent to the determination of spectrum of the inhomogenous Hubbard
model and the large volume spectrum is determined by the Bethe–Yang
equations [22]. The leading exponential corrections are related to virtual
particles [10] and they are summed up by the TBA equations [23–25] (for a
review, see [26]). These equations recently got an elegant reformulation in
terms of the quantum spectral curve [27].

The author thanks the organizers for the kind invitation and hospital-
ity in Zakopane, and Tamas Gombor and Marton Lajer for reading the
manuscript and providing useful feedback.
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