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Three-dimensional gravity is known as a powerful arena to explore non-
perturbative aspects of quantum gravity. A particularly useful corner has
been the Chern–Simons formulation of higher spin gravity in AdS3: this
setup allows us to explore and test the lore behind black-hole mechanics
in a theory that lacks a metric description. In this lectures, we will review
recent developments in this subject; in particular, we will emphasize on
various definitions of black holes in AdS3 and how to probe them using the
observables that naturally arise in the Chern–Simons theory.
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1. Introduction

General relativity teaches us a powerful lesson: Gravity is Geometry.
Higher spin theories stand as an excellent candidate to test our geometrical
intuition and explore repercussions of violent modifications of general rela-
tivity. A higher spin theory is characterized by being somewhat crowed by
symmetries: the theory introduces massless higher spin fields whose gauge
symmetries and interactions spoil the standard notions of causality and cur-
vature that we hold sacred otherwise. Very natural concepts in general
relativity, such as black holes, become rather puzzling in higher spin gravity.
The aim of these lectures is to explore potential definitions of black holes in
gravitational theories that lack such a geometrical description.

An important appeal of higher spin gravity is that it allows us to intro-
duce non-linear and non-geometrical features classically. These are features
we expect to arise in quantum gravity, but are generically difficult to quan-
tify. Within higher spin gravity, there is a rather powerful example: in three
∗ Presented at the LVI Cracow School of Theoretical Physics “A Panorama of Holog-
raphy”, Zakopane, Poland, May 24–June 1, 2016.
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dimensions, the massless higher spin sector can be consistently described
using the Chern–Simons theory. Depending on the gauge group we assign
to the theory, we will have a different spectrum of higher spin fields. For
example, these include pure AdS3 gravity [1, 2], gravity coupled to Abelian
gauge fields, and a tower of massless spin-s fields coupled to a gravity, among
many other examples. This can be viewed as truncations of the interact-
ing Prokushkin–Vasiliev higher spin theory [3, 4] which includes in addition
massive scalar fields.

The Chern–Simons sector captures the chiral algebra of the dual two-
dimensional CFTs which have an extended symmetry algebras of W-type
[5–8]. In this context, holography has provided a useful framework to orga-
nize our understanding of higher spin gravity. It is rather clear how to define,
e.g., correlation functions, currents and sources. What this description lacks
is the addition of light primary fields that are generic in CFTs. Nevertheless,
the Chern–Simons sector will suffice to probe how deviations from general
relativity can affect our understanding of gravity and, in particular, the
mechanics behind black holes. For recent developments on holographic ex-
amples of AdS3/CFT2 involving higher spin fields, we refer the reader to
[9, 10] and references within.

As we mentioned before, our main goal here is to be capable of describing
black holes in higher spin gravity. In the absence of a metric, which is crucial
for giving a notion of causality, it is rather non-trivial to think of a definition
of black hole at a non-linear and non-local level. Is it the horizon its defining
property? Is it high mass density? Is it the thermodynamic nature the
defining feature? Or the fact that it is the fastest scrambler? Or something
else, such as the ringdown pattern? All of these are, in my opinion, valid
starting points. The remarkable property of general relativity is that these
facts are generically implied by each other. But as we modify violently the
interactions, it is not clear if we should expect that this different properties
are still so intimately tied: perhaps one could find important deviations from
the usual lore in a two derivative theory of gravity.

In the following, I will present one general strategy our community has
taken to define a black hole in higher spin gravity. This strategy was initially
put forward in the original proposal of [11] and further refined in later work,
as we will elaborate in the following sections. I leave it as a challenge to the
reader to further explore and question this starting point: any deviations
from the lore of GR would be very interesting! And as we will see, some
of these deviations are already present given the modest starting point we
take.

These lectures will cover only three topics in this field: Euclidean black
holes (Section 3), extremal black holes (Section 4), and Wilson lines in higher
spin gravity (Section 5). There are also many other topics in higher spin
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gravity that I will not explore. I will provide references as appropriate, but
unfortunately the field is rather large so many interesting corners will be left
out of this lectures.

2. AdS3 higher spin gravity

The simplest way to craft a higher spin theory exploits the Chern–Simons
formulation of three-dimensional gravity: general relativity with a negative
cosmological constant can be reformulated as a SL(2,R)× SL(2,R) Chern–
Simons theory [1, 2, 12]. A high spin theory can be crafted by simply taking
instead SL(N,R)× SL(N,R), which will produce an interacting higher spin
theory for symmetric tensors of spin s = 2, 3, . . . , N [13]. There are, of
course, other ways to build higher spin theories, but here we restrict the
attention to these models. For a more complete discussion on properties of
these theories, see for example [9, 14, 15].

The action of the SL(N,R)×SL(N,R) Chern–Simons theory is given by

S = SCS[A]− SCS

[
Ā
]
, SCS[A] =

k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

(1)
Here, M is the 3-manifold that supports the sl(N,R) algebra valued con-
nections A and Ā, and the trace ‘Tr’ denotes the invariant quadratic form
of the Lie algebra. The equations of motion following from (1) are

dA+A ∧A = 0 , dĀ+ Ā ∧ Ā = 0 . (2)

The conventions here follow those in [16].
The metric and higher spin fields are obtained from the Chern–Simons

connection as symmetric, traceless tensors that transform in the spin-s rep-
resentation of SL(2,R). For example, the metric and the spin three field can
be expressed as follows:

gµν ∼ Tr (eµeν) , φµνρ ∼ Tr
(
e(µeνeρ)

)
, (3)

where, in line with the pure gravity case, one defines

e =
`

2

(
A− Ā

)
, ω =

1

2

(
A+ Ā

)
(4)

and we introduced the AdS radius `. The metric and higher spin fields can
then be expressed in terms of trace invariants of the vielbein [6, 7], with
the total number of inequivalent invariants being N − 1 for sl(N,R). This
definition for metric-like fields is appropriate for the principal embedding of
sl(2,R) in sl(N,R).
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The relation between the Chern–Simons level and the gravitational cou-
plings is

k =
`

8G3εN
, εN ≡ Trf(L0L0) =

1

12
N
(
N2 − 1

)
, (5)

in accordance with the pure gravity limit. The notation Trf denotes a trace
in the fundamental representation of sl(N,R). The central charge of the
asymptotic symmetry group is [5, 6]

c = 12kεN =
3`

2G
. (6)

The standard way to parametrize solutions to (2) is by gauging away the
radial dependence, i.e.

A = b(r)−1
(
a(x+, x−) + d

)
b(r) , Ā = b(r)

(
ā(x+, x−) + d

)
b(r)−1 .

(7)
Here, r is the holographic radial direction, and x± = t±φ are the boundary
coordinates. In Lorentzian signature, we will consider solutions with R×D2

topology; the compact direction on D2 is described by φ ∼ φ + 2π. In
Euclidean signature, we will analytically continue x± to complex coordinates
(z, z̄), and the topology of the bulk is now a solid torus with z ∼ z + 2π ∼
z + 2πiτ . Here, τ is the modular parameter of the boundary torus. b(r) is
a radial function that is normally taken to be erL01.

The connections a(x+, x−) and ā(x+, x−) contain the information that
characterizes the state in the dual CFT. In the absence of sources, there is
systematic procedure to label them: a suitable set of boundary conditions on
the connections results in W-algebras as asymptotic symmetries [5–8, 19].
These are commonly known as Drinfeld–Sokolov boundary conditions. To
be concrete, for sl(N)× sl(N) the connections take the form of

az = L1 −
N∑
s=2

J(s)(z)W
(s)
−s+1 , āz̄ = −

(
L−1 −

N∑
s=2

J̄(s)(z̄)W
(s)
s−1

)
, (8)

while az̄ = āz = 0. Here, {L0, L±1} are the generators of the sl(2,R) subalge-
bra in sl(N), andW (s)

j are the spin-s generators with j = −(s− 1),. . . (s−1);

note that W (2)
j = Lj . And J(s)(z) are dimension-s currents whose algebra

is WN , and the same for the barred sector.
1 How to choose b(r) is very important when considering Lorentzian properties of the
solutions and it is usually overlooked. See [17, 18] for a recent discussion on this
topic.
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Our general arguments and results will not be very sensitive to the choice
of gauge group, but for the sake of simplicity, our explicit computations will
involve connections valued in either the Lie algebra sl(2) (standard spin-2
gravity on AdS3) or sl(3) (a graviton coupled to a single spin-3 field).

3. Euclidean black holes

We will start the discussion with the most successful (and elegant) defini-
tion: Euclidean black holes in AdS3. We will review our current understand-
ing of the solutions and its properties in the Chern–Simons formulation of
higher spin gravity. This section is a collection of results in [11, 15, 20–23].

Any definition of black holes should include at least two inputs:

1. A quantitative definition of physical observables; in particular, a defi-
nition of conserved charges (such as mass and angular momentum) and
its counterparts potentials (such as temperature and angular velocity).

2. A notion of regularity and smoothness. The aim here would be to find
a notion of horizon. But even more broadly, we need to clearly argue
if a solution, at least in Euclidean signature, lacks singularities.

Let us elaborate first on how to obtain conserved charges. The properties
and values of these observables are intimately tied to the boundary condi-
tions we use. For instance, in AdS spacetimes, we are mostly accustomed
to Dirichlet boundary conditions and to implement a notion of asymptot-
ically AdS spaces (AAdS). But let me emphasize: there is more than one
choice! This occurs even in AdS3 gravity, where some non-trivial examples
are shown in [24, 25] and more recently, a broad analysis was presented
in [26] which are important deviations from the standard Brown–Henneaux
boundary conditions [27].

In higher spin gravity, we of course have similar choices, but in addi-
tion, there are further complexities as we turn on sources. More concretely,
consider the Chern–Simons connections in (7) and (9), and that we impose
AAdS boundary conditions. From the CFT perspective, it is natural to
capture the currents in az and the sources in az̄, and vice versa for ā [11].
From the gravitational perspective, the canonical prescription is to encode
in (aφ, āφ) the currents [28–31]. These two choices, az versus aφ, amount
for different partition functions as shown in [23]: the az prescription, de-
noted holomorphic black hole, corresponds to a Lagrangian deformation of
the theory; the aφ prescription, denoted canonical black hole, corresponds
to a Hamiltonian deformation. It is important to make a distinction be-
tween these two, since the Legendre transformation that connects these two
prescriptions is non-trivial.
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In the remainder of these lectures, we will mostly use the canonical de-
scription. Moreover, we are interested in stationary black hole solutions,
hence (a, ā) are constant flat connections that contain both charges and
sources. This, in particular, implies that the φ-component will be always
written as

aφ = L1 −
N∑
s=2

Q(s)W
(s)
−s+1 , āφ = L−1 −

N∑
s=2

Q̄(s)W
(s)
s−1 , (9)

where (Q(s), Q̄(s)) are constants (not functions) and they represent the con-
served charges associated to the zero modes of each higher spin current
(J(s), J̄(s)). The at component will contain the information about the poten-
tials, which we will usually denote as µs 2. Hence, a solution that contains
both charges and potentials will be interpreted in the CFT as being part of
a canonical ensemble, where

Zcan [τ, αs, ᾱs] = TrH exp 2πi

[
N∑
s=2

(
αsJ

(s)
0 − ᾱsJ̄

(s)
0

)]
. (10)

Here, J (s)
0 and J̄

(s)
0 denote the zero modes of the corresponding currents;

Q(s) and Q̄(s) would be the eigenvalues of these operators. For s > 3, we
have

µs =
iαs

Im(τ)
, µ̄s = − iᾱs

Im(τ)
, (11)

which are the chemical potential associated to each operator; recall that τ
is the complex structure of the torus. For s = 2, we have

J
(2)
0 = L0 −

c

24
, J̄

(2)
0 = L̄0 −

c

24
, (12)

and the CFT Hamiltonian and angular momentum are H = L0 + L̄0 − c
12

and J = L0 − L̄0, respectively. For the potentials, the relation with the
complex structure of the torus is

α2 = τ =
iβ

2π
(1 +Ω) , ᾱ2 = τ̄ =

iβ

2π
(−1 +Ω) , (13)

with β the inverse temperature and Ω the angular velocity.
The feature that distinguishes black holes from other solutions is a

smoothness condition, and this brings us to the second bullet point men-
tioned above. In a metric formulation of gravity, the Euclidean section of

2 For a quantitative and general definition of µs in terms of (at, aφ) see, for example,
[23]. Here, we will just define them via examples.
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a black hole has the property that the compact Euclidean time direction
smoothly shrinks to zero size at the horizon of the black hole, resulting in a
smooth cigar-like geometry as in figure 1. In the Chern–Simons formulation
of gravity, this property is normally thought to generalize to the idea that
a black hole is a flat gauge connection defined on a solid torus, where the
holonomy along the thermal cycle of the torus belongs to the centre of the
group, i.e.

P exp

∮
CE

a

 ∼= e2π(τaz+τ̄az̄) ∼= e2πiL0 , (14)

and similarly in the barred sector; here L0 denotes the Cartan element of
sl(2) 3, and CE is the thermal cycle z ∼ z+ 2πiτ which is contractible in the
bulk.

r


tE


Fig. 1. (Colour on-line) Topology of the Euclidean higher spin black hole for a
static solution, where the compact direction is Euclidean time t = itE. The black
(red) curve depicts the cycle along which the smoothness condition (14) is imposed,
and it is independent of the radial position. In Euclidean signature, the geometry
ends at a finite value of r: in a metric-like formulation of gravity, this end point
would be the horizon.

Smoothness condition (14) is a robust and successful definition of Eu-
clidean black holes. It reproduces in an elegant manner many properties
that we expect from a thermal state in the dual CFT2. This definition has
also unveiled novel properties of systems in the grand canonical ensemble of

3 Depending on the gauge group, the choice of centre in the r.h.s. of (14) is not unique
[32]. The choice used here has the feature that it is smoothly connected to the BTZ
solution. The interpretations of other choices are discussed in [33, 34].
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WN , such as microscopic features of the entropy [30, 35, 36], ensemble prop-
erties [21, 23] and novel phase diagrams [37], and it inspires new observables
related to entanglement entropy [33, 38, 39].

It is perhaps worth emphasizing that there exist several ways to compute
the entropy of higher spin black holes, all giving the same result. In the
original proposal of [11], the entropy was inferred by demanding integrability
of the thermodynamic laws. For a Hamiltonian derivation of the entropy, see
e.g. [22, 28, 40]. The entropy can also be understood as the on-shell value of
the appropriate action functional in a microcanonical ensemble, where the
charges at infinity are held fixed [21]. The punchline is that the entropy of
a higher spin black hole reads

S = −2πikTr [(az + az̄) (τaz + τ̄ az̄)− (āz + āz̄) (τ āz + τ̄ āz̄)] . (15)

More interestingly, one can exploit the holonomy conditions to cast the en-
tropy directly as a function of the charges only. Using the smoothness con-
ditions (14), one finds that (15) can be written equivalently as [21]

S = 2πkTr
[(
λφ − λ̄φ

)
L0

]
, (16)

where λφ and λ̄φ are diagonal matrices containing the eigenvalues of the
angular component of the connection (9), which carries the values of the
charges (Q(s), Q̄(s)).

3.1. Example

To illustrate the discussion in this section, we will consider black holes
in the SL(3)× SL(3) Chern–Simons theory. In this case, we define4:

a+ = L1 −Q(2)L−1 −
Q(3)

4
W−2 ,

a− = µ3

(
W2 + 2Q(3)L−1 +Q2

(2)W−2 − 2Q(2)W0

)
,

ā− = −
(
L−1 −Q(2)L1 +

Q(3)

4
W2

)
,

ā+ = µ3

(
W−2 − 2Q(3)L1 +Q2

(2)W2 − 2Q(2)W0

)
. (17)

For simplicity, we have turned off rotation, i.e. Q(2) = Q̄(2) and Q(3) =

−Q̄(3); this as well implies that τ is purely imaginary (τ = iβ) and µ̄ = −µ.
The interpretation of these connections as thermal states depends on the

4 Note that the equations of motion, flatness condition, simply imposes that [a+, a−] =
0 = [ā−, ā+] as can be checked explicit for (17).
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boundary conditions used to define the classical phase space. The holomor-
phic black hole is given by the following connections:

ah = a+dz + a−dz̄ , āh = ā+dz + ā−dz̄ . (18)

In this notation, the components (az, āz̄) contain the information of the
charges of the system: (Q(2), Q(3)) are the zero modes of the stress tensor and
dimension-3 current of the W3 asymptotic symmetry group that organizes
the states in this theory. (β, µ) are their respective sources which are fixed by
the smoothness condition (14). The second prescription, i.e. the canonical
black hole, is given by

ac = a+dφ+ (a+ + a−)dt , āc = −ā−dφ+ (ā+ + ā−)dt . (19)

For this prescription, again, (Q(2), Q(3)) are the zero modes of the currents
in W3. The quantitative difference between the holomorphic and canonical
definitions lies in the spatial components of the connection; both ac and ah

have the same time component.
Smoothness condition (14) enforces relations between the parameters

Q(2), Q(3), µ3, and β. Following [11, 20], these constraints can be solved in
terms of dimensionless parameter C ≥ 3:

Q(3) =
4(C − 1)Q(2)

C3/2

√
Q(2) ,

µ3 =
3
√
C

4(2C − 3)

√
1

Q(2)
,

µ3

β
=

3

4π

(C − 3)
√

4C − 3

(3− 2C)2
. (20)

The limit C →∞ makes the higher spin charges vanish, and we recover the
BTZ case. C = 3 and µ3 fixed corresponds to a zero temperature solution
which defines an extremal higher spin black hole [11, 41] which is the subject
of the next section.

Applying (15) to the canonical black hole (19), we get

S = 8k
(
2βQ(2) + 3α3Q(3)

)
, (21)

where the thermal spin-3 source α3 is related to the spin-3 chemical potential
µ3 as in (11). This expression is clearly compatible with a first law of
thermodynamics. It is simple to generalize this expression to restore the
barred variables; this gives

S = −8πik
(
2τQ(2) + 3α3Q(3)

)
+ 8πik

(
2τ̄ Q̄(2) + 3ᾱ3Q̄(3)

)
. (22)
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The entropy as a function of the charges can be achieved via (16), and
for this purpose, it is convenient to trade the charges (Q(2), Q(3)) for the
eigenvalues of aφ. More concretely, we parametrize

Eigen(aφ) = (λ1, λ2,−λ1 − λ2) , (23)

so that

Q(2) = 1
4

(
λ2

1 + λ1λ2 + λ2
2

)
, Q(3) = 1

2λ1λ2 (λ1 + λ2) , (24)

with analogous expressions in the barred sector. In Lorentzian signature,
the eigenvalues (λi, λ̄i) are independent, and real when one chooses the con-
nection to be valued in sl(3;R). In Euclidean signature, we have λ∗i = −λ̄i,
which implies that Q(2)

∗ = Q̄(2) and Q(3)
∗ = −Q̄(3). Equation (16) then

gives us immediately the entropy as a function of the charges

S = 2πk (λ1 − λ3) + other sector

= 2πk (2λ1 + λ2) + other sector , (25)

with λ1 and λ2 obtained by inverting (24) and choosing the branch of the
solution that connects smoothly to the BTZ black hole as one turns off the
Q(3) charge.

4. Extremal black holes

In general relativity, there is a wide variety of black holes which are not
necessarily Euclidean. For example, there are Lorentzian black holes that
do not have a real Euclidean continuation (such as five dimensional black
rings), there are eternal black holes (which are the maximal extension of the
Euclidean geometry in Lorentzian signature), and black holes that arise from
gravitational collapse. And there are as well extremal black holes. Extremal
black holes play undoubtedly a crucial role in string theory: due to their
enhanced symmetries and their capacity to preserve supersymmetry, they
have become a landpost for microstate counting and precursors to many
aspects of holography. As such, it is very natural to wonder what is the
definition of extremality in higher spin gravity. This is the question we will
address in this section. The discussion here is a summary of the results
presented in [41]. See also [42] for a discussion on related properties.

4.1. A practical definition of extremality

In conventional gravitational theories, the notion of extremality is tied
to the confluence of two horizons. This feature generically implies that
the Hawking temperature of the black hole is zero. We could declare that
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extremality in higher spin theories is simply defined as a solution at zero
temperature. However, our aim is to propose a definition that is along the
lines of confluence (degeneration) of the parameters of the solution and that
relies only on the topological formulation of the theory, yielding in particular
the zero-temperature condition as a consequence.

In this spirit, in [41] we proposed that a 3d extremal higher spin black
hole is a solution of the Chern–Simons theory corresponding to flat boundary
connections a and ā satisfying the following conditions:

1. They obey AAdS boundary conditions5;

2. Their components are constant, and therefore correspond to stationary
solutions;

3. They carry charges and chemical potentials, which are manifestly real
in the Lorentzian section;

4. The angular component of at least one of a and ā, say aφ, is non-
diagonalizable.

Naturally, the key point of the definition is the non-diagonalizability
of the aφ component. The rationale behind this requirement is as follows.
Suppose both the aφ and āφ components were diagonalizable. Since the
boundary connections are assumed to be constant, by the equations of mo-
tion the (Euclidean) time components of the connection commute with the
angular components, and can be diagonalized simultaneously with them. It
is then possible to solve (14) and find a non-zero and well-defined temper-
ature and chemical potentials as a function of the charges. On the other
hand, if at least one of aφ and āφ is non-diagonalizable, then acontract will
be non-diagonalizable as well. If we insist upon (14), then both features
are compatible if we take a zero temperature limit, because the smoothness
condition becomes degenerate as well. This is consistent with the usual no-
tion that the solid torus topology of the finite-temperature black hole should
change at extremality.

The role of boundary conditions is crucial for our definition. For a
general connection, the degeneration of eigenvalues does not imply non-
diagonalizability. However, the special form of the flat connections dictated
by the AAdS boundary conditions will guarantee that if two eigenvalues
of aφ are degenerate, then the connection is non-diagonalizable. From this
perspective, we could interpret that equating eigenvalues of aφ is in a sense
analogous to the confluence of horizons for extremal black holes in general
relativity.

5 In the literature, these boundary conditions are commonly known as Drinfeld–Sokolov
boundary conditions.
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4.2. Example: extremal sl(3) black holes

In [41], several supersymmetric and non-supersymmetric cases were stud-
ied. For brevity, here we will only look at the extremal cousin of the Eu-
clidean black hole we considered in Subsection 3.1.

Let us write again (17) but focus on the unbarred sector for concreteness;
recall that it is sufficient to impose our definition of extremality on one sector
to obtain the desired features. Using canonical boundary conditions, the
connections are given by

aφ = L1 −Q(2)L−1 −
Q(3)

4
W−2 , (26)

iatE + aφ = 2a− = 2µ3

(
W2 + 2Q(3)L−1 +Q2

(2)W−2 − 2Q(2)W0

)
. (27)

It is also instructive to re-write the solutions to (14) for the general rotating
case, i.e. the generalization of (20). This gives

τ = i
2λ2

1 + 2λ1λ2 − λ2
2

(λ1 − λ2) (2λ1 + λ2) (λ1 + 2λ2)
, (28)

α3 = −6i
λ2

(λ1 − λ2) (2λ1 + λ2) (λ1 + 2λ2)
, (29)

and

µ3 = 6 (1 +Ω)

(
λ2

2λ2
1 + 2λ1λ2 − λ2

2

)
, (30)

µ̄3 = −6 (1−Ω)

(
λ̄2

2λ̄2
1 + 2λ̄1λ̄2 − λ̄2

2

)
. (31)

In the above expressions, we traded Q(2) and Q(3) by its eigenvalues λ1 and
λ2 as defined in (23). With these explicit relations, we can now implement
our definition of extremality. Requiring that aφ should be non-diagonalizable
gives as a necessary condition

λ1 = λ2 ≡ λ ⇒ Q(2) = 3
4λ

2 , Q(3) = λ3 . (32)

As a consequence, while the finite-temperature angular holonomy is diago-
nalizable, in the extremal limit, we obtain

Holφ(a) ∼

 e−4πλ 0 0
0 e2πλ 1
0 0 e2πλ

 . (33)
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Turning now our attention to the potentials from (29)–(31), we see in
particular that in this limit

extremal potentials : β →∞ , µ→ 4
γ

λ
, Ω → 1 , µ̄→ 0 , (34)

so the temperature is zero as expected. The spin-3 chemical potential µ
remains finite and becomes a simple homogeneous function of the charges,
whereas the corresponding thermal source α scales with the inverse temper-
ature and blows up. On the other hand, the barred sector spin-3 potential µ̄
goes to zero because the thermal source ᾱ remains unconstrained and in
particular finite, as no condition is imposed on the barred charges.

Several comments are now in order.

1. Jordan decomposition versus zero temperature: A valid concern is to
wonder if our definition of extremality implies zero temperature and
vice versa. From (29), it is clear that there are 3 combinations of
λ1 and λ2 that achieve β → ∞. The additional other branches also
give non-trivial Jordan forms, since they just correspond to different
pairings of eigenvalues that are degenerate. For this reason, all these
cases are captured by (32): any pairing λi = λj with i 6= j implies
the extremality bound Q3

(2) = 27/64Q2
(3)

6. At least for N = 2, 3, a
non-trivial Jordan decomposition implies zero temperature and vice
versa. From the heuristic argument in Section 4.1, we expect this to
always be the case.

2. Other Jordan classes: For λ ≡ λ1 = λ2 6= 0, aφ has only 2 linearly
independently eigenvectors. If take first λ2 = 0 and then λ1 = 0,
the holonomy of aφ belongs to a different Jordan class where there is
only one eigenvector; this case corresponds to extremal BTZ within
the sl(3)⊕ sl(3) Chern–Simons theory.

3. Finite entropy : We have a continuous family of extremal W3 black
holes parametrized by λ, and from (25) the contribution of the ex-
tremal (unbarred) sector to the total entropy is

Sext = 2πkCS λ =
πk

3

√
48Q(2) = 2πk

(
Q(3)

)1/3
. (35)

The answer is clearly finite. This should be contrasted with extremal
BTZ, where the contribution of the extremal sector vanishes. It would
be interesting to derive such bound and residual entropy in a CFT
with W3 symmetry.

6 Different pairings of eigenvalues conflict with the ordering of eigenvalues used in (25),
but this is easily fixed by reordering the eigenvalues appropriately.



2492 A. Castro

4. Extremality vs. unitarity : The extremality condition we have discussed
can be thought of as a bound

Q3
(2) ≥

27

64
Q2

(3) (36)

on the charges of a spin-3 black hole. On the other hand, in a theory
withW3 symmetry, the unitary bound in the semiclassical limit is [43]7

64

5c

(
h3 − c

32
h2
)
≥ 9q2

3 , (37)

where the map between the CFT variables (h, q3) and the gravitational
charges is

h− c

24
= 4kQ(2) , q3 = kQ(3) . (38)

It is clear that (36) and (37) do not agree. However, the W3 unitarity
bound (37) encloses the bulk extremality bound (36), indicating that
all sl(3) black holes are dual to states allowed by unitarity in the dual
CFT.

5. Conformal invariance: In two-derivative theories of gravity in D =
4, 5, all extremal black holes contain an AdS2 factor in its near horizon
geometry [44, 45]. The enhancement of time translations to conformal
transformations is non-trivial and unexpected a priori ; moreover, it
is a key to build microscopic models of extremal black holes. Here,
we have not investigated this feature explicitly, but we do expect that
the connection at the extremal point is invariant a larger set of gauge
transformations relative to the non-extremal connection. Some evi-
dence was reported in [18].

6. Entropy bounds: The extremal limit of the spin-3 higher spin black
hole was first discussed in [11]. Their bound was found as the maximal
value of Q(3) for a given Q(2) such that the entropy is real, and it agrees
with (32). Using the reality of entropy as a bound which enhanced
symmetries of the solution was also used in [42]. It is not clear if this
approach is always compatible with ours, and it will be interesting to
explore potential discrepancies.

7 The quantum (finite-c) unitarity bound reported in [43] is

64

22 + 5c
h2

(
h− 1

16
− c

32

)
− 9q2

3 ≥ 0 .
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7. Supersymmetry and extremality : As we mentioned above, extremality
can be understood as the saturation of certain inequalities involving
conserved charges, and it is natural to contrast these inequalities with
BPS bounds that appear in supersymmetric setups. It is well-known
that in two-derivative theories of supergravity, these two types of con-
ditions are intimately related: supersymmetry always implies zero tem-
perature and, therefore, extremality in the context of BPS black holes.
In supersymmetric theories of higher spin gravity this seems not to be
true! In [41], we showed that there exist non-extremal solutions in the
class of diagonalizable connections that posses 4 independent Killing
spinors. This is, within the sl(3|2) theory, we managed to construct a
smooth higher spin black hole that is both at finite temperature and
BPS. Understanding why higher spin theories allow for this peculiar
behaviour is an open question that needs urgent attention.

5. Wilson lines

As we have mentioned throughout, higher spin gravity does not admit a
conventional geometric understanding. However, they do admit interesting
higher-spin-invariant probes. In this section, we will consider the Wilson
line operator constructed in [38, 39]. As we review below, this object should
be thought of as the higher-spin-invariant generalization of the worldline of
a massive particle moving in the bulk, carrying well-defined charges under
the higher-spin symmetries. In the simplest case, when it is charged only
under the spin-2 field — and thus has a mass but no other charges — its
action in the bulk may thus be thought of as the higher-spin analogue of a
bulk proper distance.

A Wilson loop is defined as

WR(C) = TrR

P exp

∫
C

A

P exp

∫
C

Ā

 . (39)

Here, A and Ā are the connections representing a higher spin background
in the SL(N,R) Chern–Simons theory. The representation R is the infinite-
dimensional highest-weight representation of sl(N,R), and C is a loop in
the bulk. We will also be interested in line operator, where the definition is
given by

WR (Xi, Xf) = 〈Ui|P exp

∫
Cif

A

P exp

∫
Cif

Ā

 |Uf〉 , (40)
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where Cif is a curve with bulk endpoints (Xi, Xf). U(y) is a probe field
which lives on the wordline Cif : its quantum numbers are governed by R
and it satisfies suitable boundary conditions at the endpoints.

The recent developments in [34, 38, 39, 46] show that a Wilson line
operator is a bulk observable that computes correlation functions of light
operators in the dual CFT. More concretely, as we take the endpoints to the
boundary, the Wilson line gives [34]

WR (Xi, Xj) =
r→∞

〈Ψ |O(xi)O(xj)|Ψ〉 . (41)

Here, (xi, xj) are boundary positions. O(xi) is an operator with scaling
dimension ∆O that is fixed as the central charge c goes to infinity8.

These Wilson lines provide us with a sensitive probe of bulk higher spin
geometries. Recently, it has been used to define and characterize eternal
black holes in higher spin gravity [18], which is a subject I unfortunately do
not have the time to cover here. In this section, I will give a brief summary
of the results in [16, 39], and give a glimpse on possible future directions
which I encourage the reader to explore.

5.1. Wilson line and massive particles

As anticipated, we would like the Wilson line (39) to give information
about the length of a geodesic connecting the endpoints of Cif . A geodesic
can be understood as the trajectory followed by a massive point particle.
Our Wilson line should mimic the dynamics of this massive particle, and
hence as a minimal requirement it should be able to carry the data of this
particle.

A point particle in the classical limit is characterized by at least one
continuous parameter: the mass m. This data is stored in the representa-
tion R that defines the Wilson line. An infinite-dimensional representation
of sl(N,R) ⊕ sl(N,R) will do the trick: it allows for continuous parame-
ters which we can identify with a mass9. In particular, we will work with
the so-called highest-weight representation. Consider the sl(N,R) algebra
in (A.2), and we define the highest-weight state of the representation as
|hw〉 ≡ |h,w3, ..., wN 〉 with the following properties:

L0|hw〉 = h|hw〉 , L1|hw〉 = 0 ,

W
(s)
0 |hw〉 = ws|hw〉 , W

(s)
j |hw〉 = 0 , j = 1, . . . , s− 1 . (42)

8 Or equivalently, in gravity we would say that it is a particle with a small mass in
Planck units. In a rather crude way, we can identify O with the probe field U . In
this language, the Casimir’s of the representation R control the quantum numbers of
the dual operator.

9 Moreover, these infinite dimensional representations can be unitary. It can be proven
that all finite-dimensional representations of sl(N,R) are non-unitary.
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The constants h and ws with s = 3, . . . , N are the parameters defining the
representation. |hw〉 is annihilated by the lowering operators; a descendant
state is created by acting with the raising operators: W (s)

−j and L−1. With
this, the Wilson line in the infinite-dimensional highest-weight representa-
tion of sl(N,R)× sl(N,R) is labelled with two towers of quantum numbers:
(h,ws) and (h̄, w̄s). In particular, the mass m̂ and orbital spin ŝ are given by

`m̂ = h+ h̄ , ŝ = h̄− h . (43)

The choice of representation is intimately tied with the interpretation
of the Wilson line in terms of the dual theory. For instance, if h = h̄ and
ws = w̄s = 0, we can make contact with entanglement entropy [39]. One
could also design probes that carry higher spin charge or orbital spin; the
interpretation of this object in the dual CFT interpretation will be different,
but still rather interesting. See [33, 34] for the case when w3 = w̄3 6= 0 in
SL(3,R) higher spin theory, and see [47, 48] for a discussion when ŝ 6= 0.

5.2. Path integral representation of the Wilson line

The more complex step is to actually evaluate the trace in (39). Following
[39]10, we will interpret R as the Hilbert space of an auxiliary quantum
mechanical system that lives on the Wilson line, and replace the trace overR
by a path integral. This auxiliary system is described by some field U , and
we will pick the dynamics of U so that upon quantization, the Hilbert space
of the system will be precisely the desired representationR. More concretely,

WR (Xi, Xf) =

∫
DUe−S(U,A,Ā)

Cif , (44)

where the action S(U,A, Ā)Cif
has SL(N,R)×SL(N,R) as a local symmetry.

The auxiliary system is appropriately described by the following action11:

S
(
U,A, Ā

)
Cif

=

∫
Cif

dy
(
Tr
(
PU−1DyU

)
+ λ2(y)

(
Tr
(
P 2
)
− c2

)
+

· · ·+ λN (y)
(
Tr
(
PN
)
− cN

))
. (45)

Here, P is the canonical momentum conjugate to U that lives in the Lie
algebra sl(N,R). The variable y parametrizes the curve Cif , and we pick

10 All conventions and further details of this section follow those in [16].
11 As discussed in [39], the choice of the action S(U,A, Ā)Cif is not unique, it is just a

useful trick. There are many auxiliary systems that will recover the trace over the
representation in (39), giving the same result for the Wilson line only depending on
R and Cif .
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y ∈ [yi, yf ]. The trace Tr(. . . ) is a short-cut notation for the contraction
using the Killing forms:

Tr (Pm) = ha1...amP
a1 ...P am , m = 2, . . . , N , (46)

where P = P aTa and Ta is a generator of sl(N,R). The functions λm(y)
represent Lagrange multipliers which enforce constraints on P . The elements
cm are the Casimir invariants Cm applied to the highest weight state, and
contain the information of the highest-weight quantum numbers h and ws.
Note that in this action, we already implemented that h = h̄ and ws = w̄s,
since there is only one momenta variable P ; this will suffice for the discussion
here, and certain generalization are discussed in [48, 49].

The covariant derivative is defined as

DyU ≡
d

dy
U +AyU − UĀy , Ay ≡ Aµ

dXµ

dy
, Āy ≡ Āµ

dXµ

dy
, (47)

where A and Ā are the connections that determine the background. With
these definitions we have achieved our first goal: the system is invariant
under the local symmetries along the curve. The transformation properties
of the fields are

Aµ → L(Xµ(y))(Aµ + ∂µ)L−1(Xµ(y)) ,

Āµ → R−1(Xµ(y))(Āµ + ∂µ)R(Xµ(y)) , (48)

and

U(s) → L(Xµ(y))U(s)R(Xµ(y)) ,

P (y) → R−1(Xµ(y))P (y)R(Xµ(y)) , (49)

with L and R being element of the group SL(N,R).
The equations of motion are:

DyP ≡
d

dy
P +

[
Āy, P

]
= 0 ,

U−1DyU + 2λ2(y)P + 3λ3(y)P × P + · · ·+NλN (y)P × · · · × P︸ ︷︷ ︸
N−1

= 0 ,

(50)

plus the Casimirs constraints Tr(Pm) = cm. The cross product is a short-cut
notation for

P × · · · × P︸ ︷︷ ︸
m

≡ hi1...im+1P
i1 . . . P imT im+1 . (51)
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For an open curve Cif , we need to choose boundary conditions for U(y) at
the endpoints of the curve. In the pure gravity case, it is natural to ask that
the answer is invariant under Lorentz transformations (since the geodesic
length shares this property). In SL(2,R) × SL(2,R), the group elements R
and L that parametrize the local Lorentz subgroup is

R = L−1 . (52)

A natural condition is to impose that U(yi) and U(yf) are invariant under a
gauge transformation of the form (52); this will assure that SEE is insensi-
tive to Lorentz transformations. From (49), we see that the only boundary
conditions that satisfy this condition are

U(yi) = U(yf) = 1 . (53)

For higher spin gravity, the symmetry group is SL(N,R)×SL(N,R) and we
cannot say that the Lorentz subgroup is described by (52); condition (52) is
much bigger in this case! Still, we will impose (53) in the higher spin case
since it is the natural generalization of the gravitational case.

5.3. The geodesic equation

As we have argued, this system should be equivalent to that of a massive
particle moving in an AdS3 bulk. We now demonstrate one way to see this
equivalence and make contact with metric-like fields: in particular, we will
see that the usual geodesic equation with respect to the metric-like fields
makes a somewhat surprising appearance. The following derivations are
only consistent and justified for the SL(2) Chern–Simons theory; I leave it
as an exercise to the reader to understand and quantify what goes wrong
with these manipulations for SL(N).

Consider, for example, computing an open-ended Wilson line denoted by
Xµ(y): for convenience, we take y ∈ [0, yf ], and the two endpoints are fixed
at X(y = 0) = Xi and X(y = yf) = Xf . Note that as the bulk connections
are flat, the final answer cannot depend on the actual trajectory taken by
the Wilson line (provided it does not wind around a black hole in the bulk),
but rather only on its endpoints. There are also boundary conditions on the
probe U(y), which we will discuss along the way.

For the purpose of deriving the geodesic equation, we will take λm = 0
for s > 2, i.e. we will only have a quadratic Casimir λ2 (which is restricting
the representation R to live in SL(2)). It is convenient to eliminate λ2 and
P from action (45). Using their classical equations of motion, we find the
second order action

S
(
U ;A, Ā

)
Cif

=
√
c2

∫
C

dy

√
Tr (U−1DyU)2 . (54)
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Note that in this form, the action is essentially that of a gauged sigma model.
The equations of motion given by varying (54) with respect to U are

d

dy

((
Au − Ā

)
µ

dXµ

dy

)
+
[
Āµ, A

u
ν

] dXµ

dy

dXν

dy
= 0 . (55)

Here, we have made use of the gauge freedom given by reparametrizations
of the wordline parameter y. In particular, we picked y to be the ‘proper
distance’ of the probe, i.e. the integrand

√
Tr(U−1DyU)2 is independent

of y, which is equivalent to the choice of λ being a constant.
The actual dependence on U(y) in (55) is in the definition of Au

Auy ≡ U−1 d

dy
U + U−1AyU . (56)

In these equations, Aµ is always contracted with the tangent vector along
the path, and so Ay is the only component which matters.

For reasonable choices of A, Ā, these equations of motion are very non-
trivial, and their precise form depends strongly on the choice of path Xµ(y).
However, from the perspective of the equation of motion, U acts like a
gauge transformation on the connection A. So it seems that a perfectly
good Ansatz is to look for a solution where the particle does not move in the
auxiliary space, i.e. U(y) = 1. This is clearly compatible with the boundary
condition (53), but we are making a strong assumption: for arbitrary A
and Ā it is not consistent, and a sufficient condition is to consider sl(2)
connections. In this case, we find

d

dy

((
A− Ā

)
µ

dXµ

dy

)
+
[
Āµ, Aν

] dXµ

dy

dXν

dy
= 0 . (57)

We pause to discuss the interpretation of this equation. It appears to be
a differential equation for the path that the Wilson line takes in the bulk.
Of course, the choice of path is arbitrary: however, this equation tells us
that only if the path satisfies this particular differential equation will the
condition U(y) = 1 be a solution to the bulk equations of motion. For a
different choice of bulk, path U(y) will necessarily vary along the trajectory,
but the final on-shell action will be the same.

As it turns out, (57) is actually very familiar if A and Ā are sl(2) con-
nections. Expressing the connections in terms of the vielbein and spin con-
nection using (4), and further using ω a

µ ε
c

ab = ω c
µ b, we find

d

dy

(
e a
µ

dXµ

dy

)
+ ω a

µ be
b
ν

dXµ

dy

dXν

dy
= 0 . (58)
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This is precisely the geodesic equation for the curve xµ(s) on a spacetime
with vielbein ea and spin connection ω a

µ b. It is equivalent to the more
familiar form involving the Christoffel symbols, as can be shown explicitly
by relating them to the spin connection and vielbein.

Furthermore, on-shell action (54) for U = 1 reduces to

SC =
√
c2

∫
Cif

dy

√
Tr

((
A− Ā

)
µ

(
A− Ā

)
ν

dXµ

dy

dXν

dy

)

=
√

2c2

∫
Cif

dy

√
gµν(X)

dXµ

dy

dXν

dy
, (59)

which is manifestly the proper distance along the geodesic. Note that the
prefactor

√
c2 indicates that the value of the Casimir controls the bulk mass

of the probe, as we alluded to previously.
We have shown that the calculation is simple for a particular choice

of bulk path for the Wilson line. However, by the flatness of the bulk
connections, the final result (59) must hold for any path, provided that path
can be continuously deformed to a geodesic. Thus, in the classical limit, we
find that in the SL(2) Chern–Simons theory, the value of the Wilson line
between any two points is

WR (Xi, Xf) ∼ exp
(
−
√

2c2L (Xi, Xf)
)
, (60)

where L(Xi, Xf) is the length of the bulk geodesic connecting these two
points. Here, ∼ denotes the limit c2 large and hence the classical saddle
point approximation is valid.

The somewhat unexpected appearance of the bulk geodesic equation is
interesting and (we feel) satisfying: this construction provides a way to
obtain geometric data (i.e. a proper distance) from purely topological data
(i.e. the flat bulk connections).

5.4. Evaluating a Wilson line

Most of the recent work show how to evaluateWR(C) in the saddle point
approximation, i.e. we approximate the path integral by the classical action.
We will briefly summarise these results, which involve evaluating WR(C)
when C is a closed loop and a single line. Recent interesting developments
related to networks of Wilson lines are studied in [50], and some exact results
that do not use a saddle point approximation are discussed in [51, 52].
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5.4.1. On-shell action

In this subsection, we will evaluate the classical action (45) for any back-
ground connection. The derivations will be applicable for both open and
closed curves, and we will keep ws 6= 0 in this subsection.

To evaluate (45), we start by eliminating the dependence of U using
equation (50)

Son-shell =

∫
C

dy Tr
(
PU−1DyU

)
= −

∫
C

dy
(
2λ2(y) Tr

(
P 2
)

+ 3λ3(y) Tr
(
P 3
)

+ · · ·+NλN (y) Tr
(
PN
))

= −
∫
C

dy (2 c2λ2(y) + 3 c3λ3(y) + · · ·+N cNλN (y)) , (61)

where in the last line we used the Casimirs constraints to eliminate P . Recall
that the curve C is running from y ∈ [yi, yf ]. It will be useful for us to define

∆αm = αm (yf)− αm(yi) =

yf∫
yi

dy λm(y) , (62)

and with this simplified notation, the action becomes

Son-shell = −2 c2∆α2 − 3 c3∆α3 + · · · −N cN∆αN . (63)

We need to determine ∆αm as a function of the connections A and Ā;
we will follow the method used in [39]. We start by building a solution when
A = Ā = 0: this defines for us U0(y) and P0(y) which from (50) read

U0(y) = u0e
−2α2(y)P0−3α3(y)P0×P0+···−N αN (y)P0×···×P0 , P0(y) = P0 ,

(64)
where u0 is a constant matrix, and αm(y) is defined in (62). From here,
building a solution with A 6= 0 and Ā 6= 0 is rather simple. As a consequence
of the flatness condition (2), every connection can be expressed locally as a
gauge transformation

Aµ = L(x)∂µL
−1(x) , Āµ = R−1(x)∂µR(x) , (65)

where the group elements L and R will reproduce different background con-
nections. This means that we can build any solution to (50) for connections
(65) by simply acting with L and R on (64). This gives

U(y) = L(x(y))U0(y)R(x(y)) , P (y) = R−1(x(y))P0(y)R(x(y)) . (66)
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Next, we impose the boundary condition (53); enforcing this condition
on (66) gives

1 = U(yi) = L(yi)
(
u0e
−2α2(yi)P0−3α3(yi)P0×P0+···−N αN (yi)P0×···×P0

)
R(yi) ,

1 = U(yf)=L(yf)
(
u0e
−2α2(yf)P0−3α3(yf)P0×P0+···−NαN (yf)P0×···×P0

)
R(yf) .

(67)

If we combine both previous equations to eliminate u0, we obtain

eP = M , M ≡ R(yi)L(yi)L
−1 (yf)R

−1 (yf) , (68)

where we define

P ≡ −2∆α2P0 − 3∆α3P0 × P0 + · · · −N∆αNP0 × · · · × P0 . (69)

For a given P0, (68) determines ∆αm as a function of the background A
and Ā. Solving (68) is the most difficult task we have ahead of us.

To determine the on-shell action, we note that Tr(PP0) = Son-shell.
Hence, using (68) we find

− logWR(C) = Son-shell = Tr(log(M)P0) . (70)

This gives a very general expression for the on-shell value of the effective
action for both open and closed curves C. The specific choice of P0 will
determine the representation R via the Casimirs cm (contained in the traces
of P0).

5.4.2. Lines: correlation functions

In this portion, we will present a brief summary of the results in [16, 39]
with emphasize on how to evaluate the Wilson line. To recap, the operator
is defined as

WR (Xi, Xf) = 〈Ui|P exp

∫
Cif

A

P exp

∫
Cif

Ā

 |Uf〉 . (71)

In a saddle point approximation, the value of the Wilson line is

− logWR (Xi, Xf) = Tr(log(M)P0) , (72)

where the matrix M in (72) contains the information about the background
connections (A, Ā)

M ≡ R(yi)L(yi)L
−1 (yf)R

−1 (yf) , (73)
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which assumes that the connections are flat, i.e.

A = LdL−1 , Ā = R−1dR . (74)

This expression makes evident that the Wilson line is only sensitive to the
endpoints of Cif .

We will restrict now the discussion to Wilson lines in sl(3)× sl(3). As we
send the endpoints of the Wilson line to one of the two boundaries, located
at r → ±∞, we only need to consider the asymptotic behaviour of the
eigenvalues of M to evaluate (72). If asymptotically we have

b(r) = b̄(r) →
r→∞

erL0 , (75)

the eigenvalues of M will asymptote to

λM ∼
(
m1 ε

−4 ,
m2

m1
,

ε4

m2

)
, (76)

where ε = e−ρ is the cutoff, and m1 and m2 are related to the coefficients of
the characteristic polynomial as:

Trf(M) = m1 ε
−4 + . . . , 1

2

(
Trf(M)2 − Trf

(
M2
))

= m2 ε
−4 + . . . (77)

Note that m1 = m1(yi, yf) and m2 = m2(yi, yf) depend on the endpoints
and the background charges carried by the connections. The asymptotic
behaviour of the Wilson line close to the boundary is given by

− logWR (Xi, Xf) =
h

2
log

(
m1m2 (yi, yf)

ε8

)
+ w3 log

(
m1 (yi, yf)

m2 (yi, yf)

)
, (78)

where we kept only universal terms as ε → 0. This result can be shown
explicitly to give (41): it computes correlation functions of light operators
in the dual CFT [34].

5.4.3. Loops: thermal entropy

In this subsection, we will show how to find the thermal entropy for a
higher spin black hole using a Wilson loop. In this case, we consider periodic
boundary conditions

r(yi) = r (yf) , t = 0 , ∆φ = φ (yf)− φ(yi) = 2π , (79)

where φ ∼ φ + 2π is the compact direction. In SL(2,R) × SL(2,R), the
Wilson loop in the infinite dimensional representation computes the length
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around the horizon, which is the thermal entropy of the black hole [39].
Here, we will show that we recover the thermal entropy for higher spin black
holes in agreement with (16) following the results in [16].

From Section 5.4, we found a general expression for the on-shell value;
however this expression simplifies greatly for a closed path. We start by
noticing that the auxiliary variables of the Wilson line require

U (yf) = U(yi) , P (yf) = P (yi) . (80)

Imposing these periodic conditions for U in (66), we get

eP = u−1
0

(
L−1 (yf)L(yi)

)
u0

(
R(yi)R

−1 (yf)
)
. (81)

Using

R(xµ) = exp

 φ∫
0

ā

 b−1(r) , L(xµ) = b−1(r) exp

− φ∫
0

a

 , (82)

we rewrite the previous equation as

eP = u−1
0 exp (2π`aφ)u0 exp (−2π`āφ) . (83)

Here, we are assuming that (aφ, āφ) are constant connections. Demanding
periodicity in P (y) in equation (66), we obtain the following condition[

P0, R
−1 (yf)R(yi)

]
= 0 (84)

which says that P0 and āφ simultaneously diagonalize and, therefore, the
same do P and āφ. If we denote V as the matrix of eigenvectors, and λφ and
λP represent the eigenvalues, equation (83) reduces to

exp(λP) = (u0V )−1 exp (2πaφ) (u0V ) exp
(
−2πλ̄φ

)
. (85)

Since the left-hand side is diagonal, consistency of the previous equation
requires to choose u0 such that u0V is the matrix which diagonalizes aφ,
and the right-hand side of (85) is diagonal as well. With this choice

exp(λP) = e2π(λφ−λ̄φ) . (86)

Analogously to Section 5.4, we use Tr(PP0) = Son-shell to find

− logWR(C) = Son-shell = Trf

(
2π
(
λφ − λ̄φ

)
P0

)
. (87)

The trace here is in the fundamental representation.
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To compute thermal (or entanglement) entropy, the massive particle en-
coded in the Wilson line needs to implement the correct type of singularity
in the background solution [53]. In our language, this fixes P0 to be

P0 =

√
c2

Trf (L0L0)
L0 , (88)

where moreover, the strength of the massive particle is√
c2

Trf (L0L0)
→ k . (89)

For a more detailed discussion that justifies this choice, we refer to [39].
Gathering these expressions, the Wilson loop is given by

Sth = 2πk Trf

((
λφ − λ̄φ

)
L0

)
. (90)

With this result, we have reproduced by means of our formalism the thermal
entropy for higher spin black hole (16). If we choose P0 ∼ W

(3)
0 , we would

reproduce the thermal results for spin-3 entropy defined in [33].

These lectures are a summary of a collection of papers: primary resources
are [16, 39, 41], and as well [18, 34]. I am extremely grateful to my collabo-
rators for the many discussions and breakthroughs we shared; my view and
understanding of the subject is very positively influenced by them. I would
also like to thank the organizers of the LVI Cracow School of Theoretical
Physics for giving me an opportunity to share my work, and the participants
for their enthusiasm and interest in the subject.

Appendix

Conventions

In this appendix, we present our conventions for sl(N,R) algebra. A
convenient basis for the sl(N,R) algebra is represented by {L0, L±1}, the
generators in the sl(2,R) subalgebra, and W (s)

j , the higher spin generators
with j = −(s− 1), . . . (s− 1). Their commutation relations are:

[Li, Li′ ] =
(
i− i′

)
Li+i′ , (A.1)[

Li,W
(s)
j

]
= (i(s− 1)− j)W (s)

i+j . (A.2)

In this notation, L0 and W
(s)
0 are elements of the Cartan subalgebra, and

the rest of generators are raising and lowering operators. These commu-
tation relations represent the principal embedding of sl(N,R). An explicit
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representation for the other sl(N,R) generators, which is independent of the
representation, is as follows:

W
(s)
j = (−1)s−j−1 (s+ j − 1)!

(2s− 2)!
[L−1, [L−1, . . . , [L−1︸ ︷︷ ︸

s−j−1 terms

, Ls−1
1

]
. . .
]]
. (A.3)

For sl(3,R), we have 8 generators which we label Ta = {Li,Wm} with
i = −1, 0, 1 and m = −2, . . . , 2. The algebra reads

[Li, Lj ] = (i− j)Li+j ,
[Li,Wm] = (2i−m)Wi+m ,

[Wm,Wn] = −1
3(m− n)

(
2m2 + 2n2 −mn− 8

)
Lm+n . (A.4)

We work with the following matrices in the fundamental representation:

L1 =

 0 0 0
1 0 0
0 1 0

 , L0 =

 1 0 0
0 0 0
0 0 −1

 ,

L−1 =

 0 −2 0
0 0 −2
0 0 0

 ,

W2 = 2

 0 0 0
0 0 0
1 0 0

 , W1 =

 0 0 0
1 0 0
0 −1 0

 ,

W0 =
2

3

 1 0 0
0 −2 0
0 0 1

 ,

W−1 =

 0 −2 0
0 0 2
0 0 0

 , W−2 = 2

 0 0 4
0 0 0
0 0 0

 . (A.5)

The quadratic traces are

Trf(L0L0) = 2 , Trf(L1L−1) = −4 ,

Trf(W0W0) =
8

3
, Trf(W1W−1) = −4 , Trf(W2W−2) = 16 . (A.6)
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