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We review construction of the improved holographic models for QCD-
like confining gauge theories and their applications to the physics of the
quark–gluon plasma. We also review recent progress in this area of re-
search. The lecture notes start from the vacuum structure of these theories,
then develop calculation of thermodynamic and hydrodynamic observables,
energy loss and momentum broadening of heavy probes, and end with more
advanced topics such as the holographic QCD in the presence of external
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1. Introduction: AdS/CFT and heavy-ion collisions

Quantum Chromodynamics is well-established as the theory of strong in-
teractions that governs the substituents of atomic nuclei, namely the quarks
and gluons. Among the salient features of QCD, the most important ones
are the asymptotic freedom, confinement and chiral symmetry breaking. Even
though the theory is well-defined at the level of the Lagrangian, the first
aforementioned property, the negativity of the beta-function of QCD, makes
it extremely hard to do calculations in QCD in the IR with traditional meth-
ods of quantum field theory. Instead, a more fruitful avenue to calculate
observables such as the correlation functions of gauge invariant operators,
the hadron spectra, and thermodynamic functions at finite temperature is
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the lattice QCD. Indeed, placing the theory on a Euclidean lattice with fi-
nite spacing can be viewed as the true definition of the theory. Then the
observables listed above are obtained with great accuracy from the contin-
uum limit of Euclidean correlation functions. I will not be concerned with
the lattice calculations in these notes, apart from presenting a collection of
lattice results for comparison purposes. Hence, I refer the interested reader
to the extensive literature on the subject.

Having said that, the lattice QCD also has a few disadvantages. The
most prominent among these is the fact that calculation of real-time observ-
ables and study of time-dependent phenomena such as the retarded Green’s
functions, transport coefficients and thermalization are plagued with sys-
tematic and statistical uncertainties. This is because, the lattice QCD being
inherently a Euclidean formulation, any quantity that is extracted from a
real-time correlator such as the conductivity, shear and bulk viscosity etc. re-
quires analytic continuation of the Euclidean correlators to real-time which,
in turn, requires the knowledge of full spectral density. For these reasons, an
alternative method for calculations of such quantities in the non-perturbative
regime is very much in demand. This is especially important in view of ap-
plications to dynamics of the quark–gluon plasma produced in the heavy-ion
collision experiments at RHIC, Brookheaven and LHC, CERN.

The AdS/CFT correspondence, or more generally, holography [1, 2] pro-
vides such an alternative formulation. The correspondence maps the QFT in
the limit of large coupling constant, for example the IR regime of QCD-like
gauge theories, to a semi-classical theory of gravity in at least one higher
dimension, and yields an alternative effective and non-perturbative descrip-
tion for such theories. The detailed map to gravity is best understood in
the original example [2] of N = 4 super Yang–Mills theory in 4D, where
the gravitational dual is established as the IIB string theory on AdS5 × S5

background. The next well-understood case in 4D are the theories that can
be obtained from N = 4 sYM by relevant or marginal deformations. In
such theories, generally, there exists the following correspondence between
the parameters on the two sides:

gs ∼ g2
YM , R`2s ∼

(
g2

YMNc

)−1
2 , (1)

where gs is the string coupling constant and R`2s is the Ricci curvature of
the gravitational background in string units, gYM is the coupling constant
of the gauge theory, and Nc the rank of the gauge group (the number of
colors). The computationally tractable limit of the AdS/CFT, therefore,
corresponds to the ’t Hooft limit [3]:

Nc →∞ , gYM → 0 , λt ≡ g2
YMNc � 1 , (2)
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where the combination λt is called the ’t Hooft coupling. This limit kills
three birds with one stone: it gets rid of the complications arising from
string interactions by making gs small; it reduces the string theory that
effectively contains arbitrarily high derivative terms in the effective action
to two-derivative Einstein’s gravity by making the curvature small; it focuses
on the strong (effective) coupling limit of the gauge theory that is the non-
perturbative regime we are interested in. I will only consider this limit in
the rest of these notes and explain the construction of effective holographic
theories for QCD in Sec. 2. But before we come to that, we should ask: what
do we want to learn from holographic QCD?

One of the main objectives of such an effective theory is to understand
the real-time dynamics in the quark–gluon plasma produced at the heavy-ion
collisions at RHIC, Brookhaven and LHC, CERN (see Fig. 1). Heavy-ion col-

B

Fig. 1. Production of the QGP in the heavy-ion collisions.

lisions are gateways to extreme phenomena in nature. The QGP is the most
extreme fluid we find in the universe: it has an extremely small viscosity
(η/s∼0.08–2), that is very close to an ideal fluid with vanishing viscosi-
ties, see Fig. 2; it is produced at extremely high temperatures (about 450–
600 MeV); and the largest magnetic fields known (about 1018–1019 Gauss)
in the universe are generated in the off-central heavy-ion collisions. Another
extremity is the fact that this fluid is very strongly coupled. This, for ex-
ample, can be inferred from the fact that the plasma has a very small shear
viscosity: a perturbative QCD calculation instead gives η/s ∝ λ−2/ ln(1/λ)
for small λ in the large-N limit. However, a comparison of RHIC data to
hydrodynamics simulations leads to a value η/s ∼ 0.08–2 which greatly dis-
agrees with the perturbative result that diverges in the weak coupling limit.
In these notes, we start with the assumption that large-N QCD at strong
coupling yields a better approximation to calculate the observables of the
system and we explain how to determine these observables using holographic
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Fig. 2. Comparison of the shear viscosity to entropy ratio of QGP with various
ordinary matter.

methods. One can list the kind of observables we are interested in, in an
order of increasing difficulty as follows:

— Firstly, we want to extract the spectrum of hadrons in the T = 0
vacuum state. As explained in Sec. 2 below, holographic QCD can
capture at most spin-2 operators, hence we will calculate the spectra
of glueballs and mesons1, and match to the available lattice QCD
results Sec. 3.

— Next level in difficulty is to calculate the thermodynamics of the sys-
tem. We shall discover that generically there exists a first order
confinement–deconfinement transition at some finite temperature. In
the holographic dual, the confined state corresponds to the so-called
“thermal gas” and the deconfined state to the black-brane geometries.
We shall then calculate the thermodynamic functions in Sec. 4, such
as the free energy, entropy and energy density as a function of T in the
deconfined state, again comparing with available lattice QCD data.

— The next level is to consider the small 4-momenta expansion in hy-
drodynamics. The zeroth order in this expansion is completely de-
termined by the thermodynamic quantities. At the first order, there

1 Baryon spectra in the improved holographic QCD have not been calculated and it is
an open problem.
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appears two non-trivial transport coefficients, the shear and the bulk
viscosities, which we will again calculate in the holographic model in
Sec. 6 and compare with available data. The Chern–Simons decay rate
is another transport coefficient that appears in the CP-odd sector of
the theory that we calculate as well, in Sec. 8.

— Another set of important observables in the physics of QGP consists of
the hard probes. These are highly energetic quarks produced during
the early phase after the collision and since they do not thermalize
due to their high energy — that is to say, they can travel through the
plasma losing a portion of their energy, yet can make it to the detector
— the quantities that characterize their energy loss, such as the jet
quenching parameter and diffusion coefficients, contain crucial infor-
mation on the QGP. Determination of these quantities in holographic
QCD will be discussed in Sec. 7.

— Finally, we shall discuss calculation of the new observables that arise
in the presence of an external magnetic field B in Sec. 8 that is the
generic situation in off-central heavy-ion collisions.

This list also serves as a plan of this review. We open the review in the
next section with an introduction to holographic QCD theories in general
and end it with a discussion of the topics that are left out where we also
present a look ahead. We provide quantitative evidence for success of a
particular holographic QCD model in these notes, called the improved holo-
graphic QCD [4–6] and will mostly work with this model. To keep this review
short, we do not derive all but some of the results and refer to literature for
derivations. There exists some reviews on the improved holographic QCD:
see [7] for a comparison of thermodynamics of ihQCD with other existing
holographic QCD models and [8] for an extensive review of the subject.

2. Holographic QCD theories

Top–down approach: QCD as well as other confining gauge theories are
different than the N = 4 sYM theory and its deformations and the holo-
graphic duality map in this case is much less understood. The top–down
approach to holographic formulation of QCD-like theories starts from a cer-
tain D-brane set-up in string theory, such as Nc D4 branes wrapped on an S1

in IIA string theory in 10D [9] and taking the so-called decoupling limit [10]
that replaces the D-brane set-up with a gravitational background of geom-
etry and the various form fields. This approach has later been generalized
to include the flavor dynamics in QCD by adding D8 flavor branes [11, 12].
Even though such a top–down approach to holography has the enormous ad-
vantage of providing a precise dictionary between the QFT on the D-branes
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and the dual gravitational quantities, it usually results in a theory that is
different than only QCD or pure Yang–Mills theory, but also contains an
additional sector in its Hilbert space spanned by infinitely many operators
that arise from the KK-modes in the 5 extra dimensions, see [7], for ex-
ample, for a short discussion. Actually the N = 4 sYM is not different in
this perspective, as it also contains operators arising from the extra S5, but
these operators turn out to be in precise correspondence with operators with
higher conformal dimension [10] and, moreover, there exists a well-controlled
limit of low energy, where a subsector of the Hilbert space that contains the
N = 4 super-multiplets of the energy-momentum tensor and flavor currents
can be identified and be put in correspondence with the low-lying gravita-
tional fields. One is not as lucky with the non-conformal, confining gauge
theories, essentially because in such theories there always exists an addi-
tional energy scale analogous to the dynamically generated IR energy scale
ΛQCD in QCD that breaks conformality. The Hilbert space of such theories
contains operators of arbitrarily large spin and scale dimensions, all propor-
tional to ΛQCD, and there exists no parametric separation in this Hilbert
space of the aforementioned low-lying operators from the rest. Because, un-
like in a conformal theory, the energy scale is not a moduli, one cannot tune
to IR to achieve such decoupling of the low-lying operators. This problem
corresponds in the dual language to the fact that both the pure Yang–Mills
sector and the KK-states mentioned above are governed by the energy scale
ΛQCD. One needs to take limit of small radius of the cycles in the trans-
verse space in order to decouple these KK-operators from pure Yang–Mills2,
and this limit results in large curvatures, necessitating inclusion of higher
derivative terms in the dual string action. All in all, it is fair to say that
one needs full higher derivative string theory to study QCD-like theories in
the top–down approach.

Bottom–up approach: Faced with the difficulties of the top–down ap-
proach, different, more direct ways to capture the IR dynamics of QCD in
holography have been sought for since mid 00s. It is hard to point to a sin-
gle reference for this approach, some of the oldest and most notable papers
being [4, 5, 15–23]. The basic idea is to give up the ambitious goal of finding
a precise holographic dual to QCD, but to construct an IR effective theory
to capture the IR dynamics of relevant and/or marginal operators in the
theory.

The early bottom–up models [19, 20], sometimes called the “hard-wall”
models, consisted of an AdS5 space terminating at a hard-wall at some
location in the deep interior, to introduce the scale ΛQCD and effectuate
breaking of conformal symmetry. The main advantage of this model is its

2 See [13] for a suggestions to bypass this problem. The problem always shows up in
different guises however, [14].
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simplicity, calculations being almost identical to AdS. However, it leads to
unrealistic results when applied to QCD such as vanishing trace anomaly,
vanishing bulk viscosity, completely unrealistic behavior of thermodynamic
functions in T , etc. It also leads to various uncertainties in the hadron
spectra due to the various possible boundary conditions one can impose at
the hard cut-off. It also has the unrealistic feature of having a quadratic
spectrum m2

n ∝ n2 for large excitation number n. The “soft-wall” model
was invented in [21] to overcome these difficulties. In these models, the
background consists of the AdS5 metric and a dilaton field whose profile
is chosen by hand to obtain realistic features. The main purpose of [21]
was to describe well the “mesonic” physics that follows from the space-filling
“flavor” branes embedded in this geometry. The model indeed fulfills this
purpose, however, it leads to unrealistic features in the “glue” sector and in
thermodynamics. See the short review [7] where a comparison of the “hard-
wall”, “soft-wall” and improved holographic models is provided. Almost all
of these undesired problems are solved in the “improved holographic QCD”
models. These can be thought of making the soft-wall theory dynamical: in
these models, instead of starting with a background designed by hand, one
finds the desired background by minimizing Einstein’s gravity coupled to a
scalar field. Below, we explain the general construction of such theories.

Improved holographic QCD: There exist various indications in the QCD
literature using arguments based on the sum-rules [24] and the operator
product algebra that a sector of relevant and marginal low-lying operators
can be treated separately from the rest of the Hilbert space of operators.
Now the task is somewhat simpler: to construct an effective theory that
correctly captures the physics that involves these low-lying operators in QCD
using the basic ingredients from holography. The theory we aim at is SU(Nc)
gauge theory in the large-Nc limit. We should then ask the question what
should be the minimal ingredients of the holographic dual of such a theory?

— First of all, we need one additional “holographic” dimension r corre-
sponding to the RG energy scale in the dual gauge theory. Therefore,
the theory we look for is, in general, a solution to a 5D non-critical
string theory. We know very little about non-critical string theories.
However, as we only aim at the IR physics where the coupling con-
stant is large, we expect to be able to approximate this theory by a
two-derivative gravitational action. The higher derivative corrections
are then expected to be important only in the UV.

— There are three relevant/marginal operators in the large-Nc limit: the
stress tensor Tµν , the scalar glueball operator trF 2 and the axionic
glueball operator trF ∧F . The other operators that one can construct
out of the gluon fields Aaµ have higher scale dimension in the IR. More-
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over, as we discuss in Sec. 8, the physics of the last operator, trF ∧F ,
is suppressed by 1/Nc in the ’t Hooft limit, hence can be treated as a
perturbation on the background of the first two operators. Using the
general AdS/CFT dictionary, Tµν should be dual to the 5D metric gµν
and the operator trF 2 should correspond to the dilaton field Φ in the
5D bulk. The operator trF 2 couples to the Lagrangian as 1/g2

YMtrF 2

and, in general, in string theory (also in non-critical sting theory), the
coupling constant g2

YM = gs is determined by the asymptotic value of
the “dilaton” field that is a massless scalar field. The massless bulk
fields correspond to marginal operators in the dual field theory, which
is indeed the case for the operator trF 2 in the UV. Therefore, the min-
imal theory we look for is an Einstein-dilaton theory with a dilaton
potential V (Φ).

— In order to apply the rules of AdS/CFT, we need the solutions to ap-
proach the AdS5 space-time asymptotically near the conformal bound-
ary. However, we do not want AdS isometries all the way to the deep
interior of the space-time. In particular, we want the scaling isometries
be broken. In QCD-like confining gauge theories, the corresponding
scaling symmetry is broken by the running coupling constant. Since
the coupling constant corresponds to the dilaton field, and since the
RG energy scale is related to the holographic coordinate r, energy scale
dependence of the coupling constant translates into r dependence of Φ.
To achieve such a non-trivial dependence, one then needs a non-trivial
potential V (Φ) for the dilaton3. This potential should then be in corre-
spondence with the beta-function of the dual field theory (see below for
details). The consistency of this restriction to the low-lying subsector
of operators, and the fact that the physics of this sector is determined
by the beta-function follows from the trace Ward identity

Tµµ =
β(λ)

4λ2
trF 2 . (3)

— Another physical requirement in the kind of theories we want to study
is the linear confinement of quarks, that the potential energy between
a test quark and an anti-quark is Vqq̄ = cL+ · · · for L� 1, where L
is the distance between the test charges. In the holographic dual, the
test quarks are realized as end points of open strings on the boundary.
Therefore, linear confinement translates into the statement that the
Nambu–Goto action of this probe string behaves linear in L for large

3 A constant potential would lead to a pure AdS5 space with constant dilaton that
would then correspond to a conformal field theory instead.
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distances. As shown below, this requirement restricts the large Φ, IR
behavior of the dilaton potential to be of the form of

V (Φ) ∝ e
4
3
ΦΦP or V (Φ) ∝ eQΦ , Q > 4/3 , Φ� 1 . (4)

— The construction above applies to the gauge theories in the large-N
limit with a finite number of flavors. The flavor sector in this theory
corresponds to the space-filling D4 branes [18, 25]. Contribution of
the flavor branes to the total gravitational action is proportional to the
number of flavors N2

f . In the limit Nc →∞, Nf finite this contribution
is proportional to Nf/Nc → 0 (see equation (6)), and these branes can
be treated perturbatively. For many interesting applications to QCD,
however, we need a more realistic value Nf/Nc = 1 or 2/3. To capture
this behavior in the large-N limit, one needs to consider the Veneziano
limit

Nc, Nf →∞ , Nf/Nc = finite . (5)

In this limit, the flavor branes cannot be treated as a perturbation.
Instead, one should consistently solve the coupled gravitational system
of gµν , Φ and the low-lying fields on the flavor branes. The latter
are given by a complex “open tachyon” field T , gauge fields on the
flavor branes AaL,µ and on the anti-flavor branes AaR,µ. The tachyon T
corresponds to the quark–anti-quark condensate operator q̄q and the
gauge fields correspond to the currents of flavor symmetry SUL(Nf)×
SUR(Nf). There are then extra physical requirements on the flavor
section of the holographic dual from chiral symmetry breaking and
the flavor anomalies. This will be discussed in Sec. 5.

3. Improved holographic QCD — construction of the theory

As motivated above, we take the following Einstein-dilaton action as our
starting point4:

S = M3
PlN

2
c

∫ √
−gd5x

(
R− 4

3(∂Φ)2 + V (Φ)
)

+ GH + Sct , (6)

where MPl is the Planck energy scale of the 5D theory (that will be fixed
below) and we made the Nc dependence of the action explicit. Here, “GH”
term is the Gibbons–Hawking term that is included to make the variational
problem of the metric well-defined on geometries with boundary, and the

4 The unconventional normalization of the dilaton kinetic term is motivated by the
underlying non-critical string theory in 5D [4]. This can be brought back to the
conventional form with a 1/2 by the rescaling φ→

√
3/8φ in the following formulae.
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last term is the standard counter-term action, necessary to obtain a finite
value for the on-shell action on geometries with infinite volume such as
the asymptotically AdS space-times we are interested in. The GH term is
given by

SGH = 2M3

∫
∂M

d4x
√
h K (7)

with
Kµν ≡ −∇µnν = 1

2n
ρ∂ρh

K
µν = habKab , (8)

where hab is the induced metric on the boundary and nµ is the (outward
directed) unit normal to the boundary. We will not need the precise form of
the counterterm action in (6) in the following, but it is well-known [26].

Both the dilaton and the metric functions will be assumed to depend on
the holographic coordinate u which runs from the boundary at u = −∞ and
the origin at u = u0. In the vacuum state, the Ansatz for the metric can be
taken with no loss of generality as

ds2 = du2 + e2A(u)ηµνdxµdxν . (9)

The Einstein equations then reduce to

A′′ = −4
9(Φ′)2 , 3A′′ + 12A

′2 = V (Φ) . (10)

The equation of motion of the dilaton can be derived from these two equa-
tions.

3.1. UV asymptotics

We demand that the metric asymptotes to AdS near the boundary

A(u)→ −u/`+ · · · , u→ −∞ . (11)

We note that the first equation in (10) requires that the derivative A′ is
monotonically decreasing. This fact can be traced back to the null-energy
condition in the 5D space-time and directly related to the c-theorem in
the dual QFT [27]. But there is more to conclude [5]: A′ = −1/` < 0
as u → −∞ from (11) by requirement of asymptotically AdS space-time.
Then, the condition that A′ is monotonically decreasing with increasing u
leads to the fact that A(u) → −∞ at some point u = u0 and this point
corresponds to curvature singularity [5]. Such possible singularities were
classified in [5]. One can make sense of such singularities in the context of
holography [28] and this is explained below in detail.
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The second equation in (10) requires V → 12/`2 on the boundary. This
is the value of the cosmological constant corresponding to AdS5 space-time
and it constitutes the leading term of the dilaton potential in the UV limit.
Now, we want to determine the subleading terms in this limit by making
connection to the operator trF 2 dual to Φ in the corresponding field theory.
There are basically two options:

1. Approximate the scaling dimension of trF 2 (that is exactly marginal
in the UV) by some number close to but smaller than 4, 0 < ∆ < 4.
Then the corresponding field has a mass given by the usual AdS/CFT
formula

m2`2 = ∆(4−∆) (12)

in our conventions. In this case, the UV limit of the potential reads

V =
12

`2
+
m2

2
(Φ− Φ0)2 + · · · (13)

and the UV fixed point corresponds to the value Φ = Φ0. This choice
is advocated in [23, 29] and has the advantage of being a more familiar
in the AdS/CFT context. In principle, we understand very well the
holographic renormalization in such a case [26]. However, it does not
correspond to real QCD where the operator is marginal rather than
relevant in the UV. It also has various other disadvantages as the
corresponding vacuum solutions can be unstable [30].

2. Take ∆ = 4 exactly. In this case, the dilaton field is massless and the
UV asymptotics of the dilaton potential will be qualitatively different
than the case above. This is a more realistic case, and it is this theory
we will be calling the improved holographic QCD. Below, we explain
how to fix the UV asymptotics of the potential using the known beta-
function of pure SU(N) theory.

The perturbative beta-function of SU(N) gauge theory in the large-N
limit, with quenched fundamental flavors, is given by

β(λ) =
dλ

d lnE
= −b0λ2 − b1λ3 + · · · (14)

in the limit λ � 1, i.e. in the UV. Here, the first two beta-function coeffi-
cients

b0 =
22

3(4π)2
, b1 =

51

121
b20 (15)

are scheme-independent and positive definite implying asymptotic freedom
of the theory. The higher order coefficients are scheme-dependent as can be
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shown by a redefinition of λ. Now, we want to connect this UV story to
holography near the boundary. Clearly, the holographic theory is not to be
trusted in the far UV, when λ � 1 hence the higher derivative corrections
to gravity — which we neglect — are important. Indeed, we shall not trust
the theory in the far UV limit, however, we may still use the identification
with running of the perturbative QCD theory to provide initial conditions
for the holographic RG flow. The initial conditions set at small λ determine
the behavior of the theory at intermediate and strong λ, that is, in the IR,
the regime expected to be trustable in holography.

The question now is: how do we make the connection between the field
theory quantities such as the ’t Hooft coupling λ and the RG energy scale E
and the corresponding quantities in the dual gravitational theory? As men-
tioned above, the dilaton, more precisely expΦ couples to the operator trF 2

on a probe D3 brane in the gravitational background [10], hence its non-
normalizable mode should be associated with the ’t Hooft coupling and its
normalizable mode should be associated with the VEV 〈trF 2〉. On the
other hand, the energy scale E should be related to the conformal factor
scale expA in metric (9) [31]. The motivation for this identification comes
from the fact that the energy of a state at location u in the interior of the
geometry, measured by an asymptotic observer involves the factor expA be-
cause of the gravitational red-shift determined by gtt [10]. Therefore, we are
motivated to make the identifications5

λ = expΦ(u) , lnE = A(u) . (16)

Here, the second choice fixes a particular holographic renormalization scheme.
See [4] for a discussion of all scheme dependences in these identifications.
With these identifications, one finds

β(λ) = λ
dΦ

dA
≡ 3λX(Φ) , (17)

where we defined the scalar variable [33]

X(Φ) ≡ dΦ

3dA
=

1

3

Φ′(u)

A′(u)
. (18)

It is related to the “fake superpotential” W (Φ) in the gravitational theory by
X = −3/4 d ln(W )/dΦ [33, 34]. One can easily derive, see Appendix A, the
equation of motion for the scalar variable X defined above, starting from
Einstein’s equations (66)

dX

dΦ
= −4

3

(
1−X2

)(
1 +

3

8

1

X

d log V

dΦ

)
. (19)

5 There is the possibility of including a constant multiplicative factor in the first iden-
tification [32], which we set to 1.
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We will assume that the solution of this equation X is negative definite
throughout the full range of Φ

X(φ) < 0 . (20)

This corresponds to the assumption that there is no IR fixed point in the
theories we want to consider. Then, we learn from definition (18) that Φ′ > 0,
since A′ < 0 as we explained above. Consistently, we will assume that the
coupling constant in the dual field theory grows indefinitely towards the IR.
Hence, the dilaton diverges at the origin

φ(u)→∞ , u→ u0 . (21)

We will see below what happens when these requirements are loosened.
Through equations (14), (17) and (19), one then obtains the desired UV

expansion of the dilaton potential as

V (Φ) =
12

`2
(
1 + v0e

Φ + v1e
2Φ + · · ·

)
,

v0 =
8

9
b0 , v1 =

1

81

(
23b20 + 36b1

)
. (22)

This determines the UV asymptotics of the ihQCD potential. We note the
one-to-one correspondence between the non-perturbative beta-function and
the scalar variable X in (17). This correspondence also carries over to a
correspondence between the beta-function and the dilaton potential through
(19) but there is a catch: one still has to fix an integration constant in solving
(19) that will be important in determining the correct correspondence of V
with the non-perturbative beta-function. We will need IR information to fix
this below.

Given (22), one obtains the near-boundary asymptotics of the back-
ground by solving (10). It is more illustrative to present this expansion
in another coordinate system

ds2 = e2A(r)
(
dr2 + ηµνdxµdxν

)
(23)

related to (9) by u =
∫ r

dreA(r). In this frame, the boundary is at r = 0
and the expansion of the background reads

eA(r) =
`

r

[
1 +

4

9

1

ln[rΛ]
− 4b1

9b20

ln[− ln[rΛ]]

ln2[rΛ]
+ · · ·

]
, (24)

b0e
Φ(r) = − 1

ln[rΛ]
+
b1
b20

ln[− ln[rΛ]]

ln2[rΛ]
+ · · · (25)
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Here, Λ is an integration constant, associated to the running of the coupling
in the dual field theory and will be identified with the IR scale ΛQCD. Let
us also write down the Einstein equations evaluated on Ansatz (24), that
can be obtained from (10) by the aforementioned change of variables

Ä−
(
Ȧ
)2

= −4

9

(
Φ̇
)2

, 3Ä+ 9
(
Ȧ
)2

= e2AV (Φ) . (26)

Here, dot denotes derivative with respect to r.

3.2. IR asymptotics

IR asymptotics of the dilaton potential is determined by the requirement
of quark confinement. In QCD-like confining theories, the potential between
a test quark and a test anti-quark goes linearly like

Vqq̄(L) = σ0L+ · · · , L� 1/Λ (27)

for large separation L between them. Here, σ0 is the QCD string tension.
Linear quark confinement can be qualitatively understood in terms of a
gluon flux tube connecting the quark and the anti-quark, see Fig. 3. A simple

q q
L

Fig. 3. Linear confinement in QCD-like confining theories.

calculation based on “Gauss’ law” in this case shows that the potential energy
is proportional to the distance L rather than inverse distance when the
(electric) flux emanates towards all directions, as in QED. This quark–anti-
quark potential is dual on the gravity side to the action of a string with end
points at the locations x = 0 and x = L [35, 36]

tVqq̄(L) = SNG − Sct =
1

2π`2s

t∫
0

dτdσ
√
−det gαβ − Sct , (28)

where we denote the space-time coordinates by Xµ and we have chosen the
gauge X0 = τ . `s is the string length scale. One also typically chooses
σ = X1 = x. The world-sheet metric is hαβ = ∂αX

µ∂βX
νGs

µν , where Gs

is the background metric in the string frame, related to metric (23) in the
Einstein frame as

ds2
st = e2As(r)

(
dr2 + ηµνdxµdxν

)
, As(r) = A(r) + 2

3Φ(r) . (29)
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There are two important points one has to take into account. Firstly, we
included a counter-term action in (28) because the on-shell string action
diverges on asymptotically AdS space-times. There is a standard way to
determine this counter-term action [37] and the detailed calculation for our
background is presented in [5]. Secondly, in the presence of a non-trivial
dilaton profile, one has to remember that there is an additional term

Ss =

∫
dσδτ

√
−gR(2)Φ(Xµ) , (30)

where R(2) is the world-sheet Ricci scalar. Typically this term is topological,
counting handles on the closed string, but it is not, in the presence of non-
trivial dilaton. This term is calculated in Appendix C of [5] and shown that
it does modify the qualitative results discussed below.

The generic mechanism to obtain the linear confinement law, Eq. (27),
from the string action in Eq. (28) is as follows: when the geometry ends
at a specific point r = r0 deep in the horizon (this can correspond to a
singularity [37]), then the tip of the string hanging from the boundary to
the interior will get stuck at this locus because this is how it will minimize its
tension. As one takes the end points further apart in the limit L→∞, then
there will be a contribution from this tip proportional to L. This is how the
hard-wall background of [19, 20] manages to confine quarks: the tip of the
string gets stuck at the location of the hard-wall, since the geometry ends
there. This mechanism is generalized in [5] where it is shown that the tip of
the string still gets stuck and the action becomes proportional to L in the
large-L limit, also when the string-frame scale factor e2As has a minimum
at some location r = rmin. This is pictorially described in Fig. 4. A simple
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Fig. 4. Linear confinement through a minimum of the string-frame scale factor in
holographic QCD theories.
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calculation [5] shows that the QCD string tension σ0 in (27) is related to
the tension of the string in 5D as

σ0 =
e2As(rmin)

2π`2s
. (31)

This mechanism is the most general one that leads to linear quark confine-
ment and finite QCD string tension since the original mechanism described
above can be obtained from the limit rmin → r0.

Now, the question is how does this requirement translate into a condition
on the dilaton potential? From the UV asymptotics in Sec. 3.1, it is clear
that the string-frame scale factor As = A + 2Φ/3 in (29) goes to infinity
on the boundary. It is also clear from this section that As starts decreasing
from the boundary towards the interior. In order to acquire a minimum at
rmin, it should start increasing again. Assuming for simplicity that there is
a single minimum of the function As, then this requires As diverge as one
approaches the IR end point of the geometry r → r0 (or u → u0), where
r0 > rmin. In the geometries we consider here for things to happen, we have
to require (as clear from (29))

dA

dΦ
> −2

3
→ X > −1

2
(32)

as r → r0. A more careful analysis [5] shows that

lim
Φ→∞

(
X + 1

2

)
Φ = K , 0 ≥ K ≥ −∞ . (33)

This means that for linear confinement to take place, the scalar variable X
should approach −1/2 from below with the rate K/Φ. The exceptional case
K = −∞ corresponds to −1/2 < X(∞) < −1. Solving (19) in the limit
Φ → ∞, we find that this can only happen if X flows to one of the fixed
points of the differential equation (19) as Φ→∞:

I. X → −3

8

V ′(Φ)

V (Φ)

∣∣∣∣
Φ=∞

, (34)

II. X → −1 , (35)
III. X → +1 . (36)

The first case happens only when the potential is dominated by an expo-
nential term V → exp 4Φ/3 in the large-Φ region. Both the second and the
third case are generic: starting from an initial value6 X0 < 0 at Φ = Φ0 and

6 This is what we want since X is negative in the UV as shown above.
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solving equation (19) numerically in the region Φ > Φ0, one finds that it
either flows to −1 or +1 unless the potential is asymptotically exponential
as mentioned above, and one tunes fine the initial conditions such that case
I holds. The third case requires that X passes from 0 what, according to
(17), implies that the corresponding theory flows to a fixed point. This is
not what we want from QCD-like confining theories, hence we disregard this
case. The second case also turns out to be problematic. There is a cur-
vature singularity at Φ = ∞ and this singularity is not of acceptable type
according to [28]. As we show in detail in Sec. 4, this singularity is of good
type if and only if it corresponds to the special solution in case I. Hence, this
requirement uniquely fixed the integration constant of equation (19).

This is a special case because this requirement restricts the IR asymp-
totics of the dilaton potential to

V (Φ)→ V∞ e
4
3
ΦΦ−

8
3
K , Φ→∞ , (37)

where V∞ is some constant. The IR background geometry now follows from
a particular choice of the constant K [5]. The particular case K = −∞
instead corresponds to the following asymptotic behavior of the potential7.
In this case, the asymptotics of the potential should be chosen as

V (Φ)→ V∞ e
− 8

3
X(∞)Φ , Φ→∞ . (38)

Solving Einstein’s equations in the Φ → ∞ limit, one obtains the IR ge-
ometry as follows. One finds [5] that there are two classes of confining IR
geometries in the coordinate frame (23) depending on whether K is smaller
or larger than −3/8. One finds for the Einstein frame scale factor:

A → −Crα , −3

8
< K ≤ 0 , K ≡ −3

8

α− 1

α
, (39)

A → −C(r0 − r)−α̃ , −∞ < K < −3

8
, K ≡ −3

8

α̃+ 1

α̃
, (40)

A → δ log(r0 − r) , X(∞) =
2

3

√
1 + 1/δ < −1

2
, (41)

where C is an integration constant determined in terms of Λ. In particular,
(23) has a curvature singularity at a finite locus r = r0 < ∞, when K <
−3/8 and at infinity r0 =∞, when 0 > K ≥ −3/8. The asymptotics of the
dilaton reads

Φ(r)→ −3
2A(r) + 3

4 ln |A′(r)|+ · · · , (42)

where A(r) is given above.
7 One can easily see from (19) thatX = −1 is an attractive fixed point andX cannot go
below this value [4]. A more strict condition on this exponent comes from analyzing
the spectra [5].
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3.3. Curvature singularity

As we have seen, there is a singularity in the deep interior at the origin
u = u0 or r = ∞ in the solutions we consider in this paper. The dilaton
diverges and the conformal factor expA vanishes at this point. One can see
that this corresponds to an actual curvature singularity by computing the
Ricci scalar. One finds that R behaves in the Einstein and string frames as

R ∼ e−2AA
′2 , Rs ∼ e−2AsA

′2
s , (43)

where As is defined in (29). In the solutions that we study, i.e. the ones
with the IR asymptotics in (39), one finds

R ∼ e2Crαr2(α−1) , Rs ∼
1

rα+1
. (44)

Since α > 1, we find that there is a curvature singularity in the Einstein
frame, however, there is no singularity in the string frame. As we consider
these backgrounds as embedded in string theory whose low-energy effective
action is naturally given in the string frame, we conclude that the IR limit
of the holographic theory is trustable. Instead, the string frame Ricci scalar
near the boundary diverges, leading to the conclusion that we can only trust
the theory up to a UV cut-off that rUV that is determined by demanding
Rs(rUV) ∼ O(∞). There is another independent curvature invariant in the
theory that is gµν∂µΦ∂νΦ and one can easily show [5] that it scales exactly
as the Ricci scalar above.

One should also worry about the diverging dilaton in embedding to string
theory. As it is well-known, the asymptotic value of exponential of the
dilaton corresponds to the string coupling constant gs which we want to keep
small to ignore string loop corrections. This is taken care of by the large-N
limit: in fact, when we wrote down (6), we factored out the dependence on
Nc by rescaling exp(Φ) by Nc. This rescaling should be performed in the
action in the string frame, and it is not possible to see it in (6). The scaling
exactly produces the N2

c factor in front of the action once one changes to
the Einstein frame [4]. Therefore, the actual dilaton in string theory hence
the corresponding string coupling scales like gs ∼ N−1

c exp(Φ) that vanishes
everywhere, if one takes the large Nc limit first.

3.4. Constants of motion and parameters

Let us briefly discuss the integration constants in the system of differen-
tial equations that lead to the ihQCD backgrounds. We have a third order
system8 in (66). These constants can be regarded as the value of the fields

8 A way to cast these equations in the form of 3 first order equations is described in
Appendix A.
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Φ, A and X (defined in (18)) at a reference point rf . We have seen above,
and as we discuss further below, the value of X should be fixed by the re-
quirement of an acceptable singularity in the deep interior. The remaining
constants of motion A(rf ) and Φ(rf ) should be given physical meaning. It
is obvious from Ansatz (9) that the former corresponds to a rescaling of the
volume of the boundary space-time, hence we can say it corresponds to the
volume. Since we shall consider infinite volume, we will only be interested in
volume-independent quantities, such as densities, e.g. entropy density, en-
ergy density etc. Therefore, A(rf ) will decouple in the physical results. On
the other hand, the integration constant Φ(rf ) is physical and it corresponds
to the confinement scale ΛQCD in the dual field theory. This is the same
constant that appears in the UV expansion in (24). Equivalently, one can
fix Λ by matching the first excited glueball mass, as we discuss below. In
addition, we have included an overall constant MPl in action (6). This will
be fixed once we discuss solutions at finite temperature. The on-shell action
corresponds to the free energy of the dual field theory that is a pure glue
gauge theory, whose free energy in the large-T scales as F = const × T 4.
Hence, MPl will be fixed by this constant. Finally, there is the string length
scale `s that appears in (31) which also suggests a way to fix this value
by matching to the tension of glue flux between the quarks that can be
computed in the lattice.

3.5. A choice for the potential

The IR (large expΦ) and UV (small expΦ) asymptotics of the dilaton
potential are completely fixed by the physical requirements we discussed
above. As we also discussed, there is a one-to-one correspondence between
the non-perturbative beta-function of the field theory and the dilaton po-
tential9 up to field redefinitions and a choice of renormalization scheme.
Therefore, in principle, one could be able to fix the entire dilaton potential
if one knew the full non-perturbative beta-function of the theory. Here, we
take a more practical approach and pick one particular choice that possesses
all the features described above

V (Φ) =
12

`2

{
1 + V0e

Φ + V1e
4
3
Φ
[
log
(

1 + V2e
4
3
Φ + V3e

2Φ
)]1/2

}
. (45)

The 4 parameters of the potential will be fixed by comparison to the glueball
spectrum below and thermodynamics in the next section.

9 More accurately, the correspondence is with the function X or the fake superpoten-
tial W . The correspondence with the dilaton potential becomes unique after fixing
the integration constant in equation (19) by the acceptable singularity condition dis-
cussed above.
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3.6. The glueball spectra

The particle spectrum in AdS/CFT is given by the finite energy excita-
tions around the gravitational background that are normalizable both near
the boundary and at the origin. Here, we first discuss general features of
the particle glueball spectra in ihQCD, see [38] for a review of the glueball
spectrum calculations in AdS/CFT.

The action for the fluctuations can be obtained by expanding (6) to
quadratic order in fluctuations. Alternatively, one can fluctuate the back-
ground equations of motion to linear order. It is important to work with
diffeo-invariant combinations of fluctuations. For example, the transverse
traceless metric fluctuation

δµν with gµνδgµν = 0 , kµδgµν = 0 (46)

is invariant under a diffeomorphism of the r-direction but the fluctuation of
the Φ field mixes with the fluctuation of the trace of the metric as we will see
below. Assuming that ξ(r, x) is a diffeo-invariant fluctuation, the quadratic
term in the expansion of (6) in ξ can generically be written as

S[ξ] ∼
∫

drd4x e2B(r)
[
(∂rξ)

2 + (∂iξ)
2 +M2(r)ξ2

]
, (47)

where B(r) and M2(r) are functions depending on the background and on
the type of fluctuation in question. We look for 4D mass eigenstates

ξ(r, x) = ξ(r)ξ(4)(x) , 2ξ(4)(x) = m2ξ(4)(x) (48)

of the fluctuation equation

ξ̈ + 2Ḃξ̇ + 24ξ −M2(r)ξ = 0 . (49)

This equation can be put in Schrödinger form

− d2

dr2
ψ + Vs(r)ψ = m2ψ , (50)

with

Vs(r) =
d2B

dr2
+

(
dB

dr

)2

+M2(r) , (51)

by redefining
ξ(r) = e−B(r)ψ(r) . (52)
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We now demand that the energy of the fluctuation ξ is finite. For example,
the kinetic term from (47) gives(∫

dre2B(r)|ξ(r)|2
)∫

d4x
(
∂µξ

(4)(x)
)2

=

(∫
dr|ψ(r)|2

)∫
d4x

(
∂µξ

(4)(x)
)2

.

(53)
Demanding that this is finite, then leads to the standard square-integrability
condition ∫

dr|ψ(r)|2 <∞ (54)

in the Schrödinger problem.
We first note that (50), (51) can be put in the quadratic form. Next,

notice that equation (50) can be written as(
P †P +M2(r)

)
ψ = m2ψ , P =

(
−∂r + Ḃ(r)

)
. (55)

This means that the spectrum will be non-negative provided that M2 ≥ 0.
We note that M2 = 0 for fluctuations of the metric and bulk gauge fields.

We now ask the question whether the 4D spectrum is gapped or not. If
there is a massless mode, m2 = 0, to (50) then clearly it can only exist when
M2 = 0. In this case, the solution to (50) reads

ψ
(1)
0 (r) = eB(r) , ψ

(2)
0 = eB(r)

r∫
0

dr′e−2B(r′) . (56)

We want to know if these solutions satisfy (54). Near the asymptotically AdS
boundary we universally have B ∼ 3/2A and A ∼ − log(r)+ · · · . Therefore,
the first solution above cannot be normalizable near the boundary. We
should then look for the second one. This is normalizable near the boundary
but it is not near the origin [5] for an arbitrary choice of the dilaton potential,
as long as there is a singularity there. Therefore, we cannot find normalizable
solutions with m2 = 0. The only way the mass gap may vanish is that there
is a continuous spectrum starting from m2 = 0+. This, however, requires
that the potential Vs in (51) vanishes as r →∞. From (39), we learn that,
as r →∞,

A(r) ∼ −
( r
R

)α
, (57)

therefore

V (r) = Ḃ2(r) + B̈(r) ∼ R−2
( r
R

)2(α−1)
. (58)
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We, therefore, find that the mass gap condition is α ≥ 1 that is, very re-
markably10, precisely the same condition we found independently demanding
quark confinement. If we require α > 1 strictly, we moreover obtain a purely
discrete spectrum, since then V (r)→ +∞ for large r. If α = 1, the spectrum
becomes continuous for m2 ≥ V (r →∞).

Moreover, a WKB analysis of potential (51) [5] gives an asymptotic spec-
trum for large excitation number n� 1 as

m ∼ Λ n
α−1
α . (59)

In particular, we have “linear confinement” (m2 ∼ n) if α = 2 which is what
we choose from now on.

One can determine the glueball spectrum by solving (49) numerically.
For this, one shoots from the boundary starting from the solution in the
asymptotically AdS background, and demanding the solution does not di-
verge and become normalizable near the origin by tuning the parameter m2.
One finds a discrete set of m2 that is identified with the glueball spectrum.
The results for the few low-lying modes are compared with the lattice results
of [39] in Table I. The spin-2 glueball 0++ : trF 2 spectrum is obtained from
the transverse-traceless fluctuation (46) which satisfies (49) with B = 3A/2
and the spin-0 glueball 2++ : trFµρF

ρ
ν spectrum is obtained from the diffeo-

invariant combination [5]

ξ = ξ0 −
1

3X
δΦ , (60)

where ξ0 is the trace part of the metric fluctuation, δΦ is the fluctuation of
the dilaton and X is the function defined in (18). This combination satisfies
(49) with B = 3A/2 + log |X|.

TABLE I

JPC Lattice [MeV] Our model [MeV] Mismatch

0++ 1475 (4%) 1475 0
2++ 2150 (5%) 2055 4%
0++∗ 2755 (4%) 2753 0
2++∗ 2880 (5%) 2991 4%
0++∗∗ 3370 (4%) 3561 5%
0++∗∗∗ 3990 (5%) 4253 6%

10 Note that the two calculations are completely independent. Quark confinement comes
from analyzing the NG action of the string and mass gap comes from linear fluctua-
tions around the classical background.
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Here, the masses in italic are fine-tuned according to the lattice results
by fixing the integration constant A(rf ) in Sec. 3.4 and a combination of the
parameters V1 and V3 in (45). The rest are predictions.

4. Thermodynamics and the confinement/deconfinement
transition

At finite temperature, the state of the theory is obtained by minimizing
the Gibbs free energy F = E − TS. By the AdS/CFT correspondence [9],
this free energy equals the gravitational action

F/T = S[on-shell] , (61)

evaluated on the background solution with the Euclidean time compactified

τ = it , τ ∼ τ + 1/T . (62)

There exist two solutions with the same AdS asymptotics near the boundary.
The first one is just the “thermal gas” solution (23) heated up to tempera-
ture T

ds2 = e2A0(r)
(
dr2 + dτ2 + δijdx

idxj
)
, Φ = Φ0(r) , (63)

with the identification τ ∼ τ + 1/T . The confinement analysis we presented
above for the vacuum solution (23) obviously goes through for (63). There-
fore, we learn that this solution just corresponds to a finite temperature gas
of the fluctuations in the confined theory, in other words, (63) corresponds
to a glueball gas at temperature T .

4.1. Black-brane solution

There also exists the possibility of a black-brane solution with a non-
trivial blackening factor f

ds2 = e2A(r)

(
dr2

f(r)
+ f(r)dτ2 + δijdx

idxj
)
, (64)

where the function f(r) vanishes at some point in the interior that corre-
sponds to the horizon

f(rh) = 0 . (65)

What state does the black-brane solution correspond to? It is clear from
the discussion on confinement in Sec. 3.2 that this solution corresponds to
a state with color charges deconfined. This is because as you pull the end
points of the test string apart from each other, the tip of the string will move
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towards the interior of the geometry and beyond some point L = Lmax, the
tip of the string will reach the horizon and dissolve. Therefore, there will be
no linear confinement of the test quark charges. This will happen provided
that rh < rmin. As we show below, the location of the horizon rh is related to
the temperature and the small rh regime is attained for larger temperatures.
Thus, we conclude that the black-brane solution for small enough rh (large
enough T ) corresponds to the deconfined (plasma) phase. In the large-N
limit we consider here, this is a plasma of gluons11.

The Einstein equations evaluated on this Ansatz are:

Ä−
(
Ȧ
)2

=−4

9

(
Φ̇
)2

, 3Ä+ 9
(
Ȧ
)2

+3Ȧ
ḟ

f
=
e2A

f
V (Φ) , f̈+3Ȧḟ=0 .

(66)
We note that these equations reduce to (66) when one sets f = 1, as in (63).

Let us now count the number of constants of motion in this problem
that will parametrize our black-brane solutions. This can be done most
efficiently by reformulating Einstein’s equations in terms of scalar variables,
just as in (18). Here, we have to define two such scalar variables:

X(Φ) =
1

3

Φ̇(r)

Ȧ(r)
, Y =

1

4

ḟ(r)

f(r)Ȧ(r)
. (67)

As shown in Appendix A, the Einstein equations then get reduced to only
two first order system of equations that are coupled12:

dX

dΦ
= −4

3

(
1−X2 + Y

)(
1 +

3

8

1

X

d log V

dΦ

)
, (68)

dY

dΦ
= −4

3

(
1−X2 + Y

) Y
X
. (69)

As it is clear from the definition in (67), Y should diverge at the horizon,
because f vanishes whereas Ȧ (because otherwise one has a curvature sin-
gularity at the horizon) and ḟ (because this is proportional T ) should be
finite. Φ should also be finite at the horizon which means that Y should
diverge like (rh− r)−1 ∼ (Φh−Φ)−1, where Φh is the value of dilaton at the
horizon. In addition, dX/dΦ should also be finite at the horizon, otherwise
there will be a curvature singularity there. Now, using that Y diverges as

11 In Sec. 5, we discuss the Veneziano limit where the number of flavors are also taken
to infinity. In this theory, the black-brane phase will correspond to a quark–gluon
plasma.

12 As shown in Appendix A, once X and Y are determined, the background functions
Φ, A and f can be obtained by a single integration.
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(Φh − Φ)−1 at Φh, from (68) we find that the value of X is completely fixed
in terms of the dilaton potential as

Xh ≡ X(Φh) = −3

8

d log V

dΦ

∣∣∣∣
Φh

(70)

which then, using (69), also determines the behavior of Y near the horizon as

Y → Yh

Φh − Φ
, Yh = −3

4
Xh . (71)

This means that regularity at the horizon fixes one of the integration con-
stants in the system (68), (69), leaving a single integration constant that
is Φh. This constant is related to the temperature of the system as we show
below. Solving the rest of the first order differential equations for Φ, A and f
in Appendix A, we have 3 more integration constants. For asymptotically
AdS space, we need to require f → 1 at the boundary, which fixes the in-
tegration constant of the f equation. The one for the Φ equation can be
identified with ΛQCD in the dual theory, just as in the discussion in Sec. 3.4.
The one for the A equation is again related to the volume of the dual theory,
which is scaled away in dimensionless quantities. Hence, we obtain only two
non-trivial integration constants, ΛQCD and T . The former for the black-
brane solution should be identified with the analogous integration constant
in the vacuum solution since these are different states in the same theory.
Hence, the entire thermodynamics will be determined in terms of the dimen-
sionless parameter T/ΛQCD. In particular, the free energy of the system will
be a non-trivial function of and only of T/ΛQCD.

We are now at a stage to fix the good singularity condition mentioned
below equation (34). We claimed there that this condition uniquely fixes the
IR asymptotics of the confined solution to be (34). As demonstrated in [28], a
strong version of the good singularity condition requires that the TG solution
is obtained from a BB solution in the limit the horizon marginally traps the
singularity. But we learned from (70) that the value of X at the horizon is
completely fixed in terms of the dilaton potential. Hence, sending rh → ∞
(Φh →∞), we learn that (34) should be satisfied by the TG solution to have
a good singularity.

4.2. Temperature, entropy, gluon condensate and conformal anomaly

The temperature associated with the black-brane solution is obtained by
the standard argument of Hawking requiring absence of a conical singular-
ity at the horizon in the Euclidean solution. This fixes the period of the
Euclidean time cycle as

T = − 1

4π
ḟ(rh) . (72)
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Large temperatures correspond to rh → 0 where the blackening factor ap-
proaches to that of AdS–Schwarzchild

fAdS = 1− r4

r4
h

, (73)

from which we determine the relation between T and rh at large values of
T as

T =
1

πrh
, T →∞ . (74)

The entropy is given by the area of the horizon divided by 4 times the
Newton constant

S =
area

4GN
= 4πM3

PlN
2
c e

3A(rh)V3 , (75)

where V3 is the spatial volume spanned by coordinates x, y, z and we used
the fact that GN is determined from (6) as 16πGN = 1/(M3

PlN
2
c ). At large T ,

the BB solution approaches to AdS with expA→ `/r resulting in

S/T 3 → 4π4(MPl`)
3N2

c V3 , T →∞ , (76)

where we used (74).
Now, let us discuss the gluon condensate and the conformal anomaly.

For this, we first need to present the UV expansion of the metric functions
in the black-brane solution:

eA(r) = eA0(r)

(
1 +G

r4

`3
+ · · ·

)
, r → 0 , (77)

Φ(r) = Φ0(r) + eA0(r) +
45G

8

r4

`3
logΛr + · · · , r → 0 , (78)

f(r) = 1− C

4

r4

`3
+ · · · , r → 0 . (79)

Here, G and C are integration constants of the black-brane that depend
on rh. Interpretation of G is clear. Since this is coming from the difference of
the normalizable terms in Φ and Φ is dual to the operator trF 2, it is identified
with the difference of the VEVs of this operator between the plasma state
and the confined state. A careful calculation (see Sec. 4 of [33]) yields〈

trF 2
〉

BB
−
〈
trF 2

〉
TG

= −240

b0
M3

PlN
2
c G , (80)

where b0 enters through (24). Similarly, one can interpret G as the excess
of conformal anomaly between the plasma and confined phases [33]〈

Tµµ
〉

BB
−
〈
Tµµ
〉

TG
= 60M3

PlN
2
c G . (81)
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Let us mention in passing that expressions (80) and (81) perfectly obey the
expected Ward identity

Tµµ =
β(λ)

4λ2
trF 2 (82)

in the difference, near UV [33]. Thus, we learn thatG is the gluon condensate
in the plasma phase normalized by its vacuum value.

So what is C? To work this out, note first that the last equation in (66)
can be analytically solved to obtain

f(r) = 1−
∫ r

0 e
−3A(r)dr∫ rh

0 e−3A(r)dr
, (83)

where we fixed the integration constants in the solution requiring f → 1 at
the boundary and that it vanishes at the horizon. Expanding this expression
near the boundary, where expA→ 1/r and comparing to (79), we find

C =
1∫ rh

0 e−3A(r)dr
.

On the other hand, using the formulae for the temperature and entropy
in (72) and (75), we obtain

1∫ rh
0 e−3A(r)dr

= TS/
(
M3

PlN
2
c V3

)
.

Thus, we obtain the interpretation of constant C in (79) as the enthalpy
density

C = Ts/M3
Pl , (84)

where we define little s as the density per gluon s = S/N2
c V3.

4.3. Deconfinement transition

Now, the obvious question is which of the solutions above, (63) or (64),
minimize the free-energy. We answer this question by calculating the differ-
ence of on-shell actions

∆S = S[sol2]− S[sol1] . (85)

When ∆S < 0 the plasma state wins, when ∆S > 0, the confined state
wins. Calculation of this difference is non-trivial. Here, I will only highlight
the important points in the calculation sparing the reader the details which
can be found in Appendix C of [33]. First of all, one has to note that there
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are two contributions to the difference, the one coming from the Einstein–
Hilbert action and the other from the Gibbons–Hawking term in (6). Thus,
we write each term in the difference as S = SEH +SGH. Both contribute the
difference non-trivially. Second, both of these contributions can be expressed
in terms of the boundary asymptotics of the background functions. This is
obvious for the GH term (7), but also true for the EH term. The latter is
because, upon use of the background equations of motion, one can express
the integrand in the EH term as a total derivative

SEH = 2M2
PlV3β

rh∫
ε

d

dr

(
Ȧ(r)f(r)e3A(r)

)
, (86)

where β = 1/T from the Euclidean time integral and V3 the volume of
boundary space from the spatial integration and ε is a UV cut-off that we
will take to zero in the end. The contribution from the horizon vanishes
there as f = 0 and the other background functions are finite. Thus,

SEH = −2M2
PlV3βȦ(ε)f(ε)e3A(ε) . (87)

On the other hand, the GH term can be calculated by substituting in (7)
the metric Ansatz

SGH = M2
PlV3βe

3A(ε)f(ε)

(
8Ȧ(ε) +

ḟ(ε)

f(ε)

)
. (88)

The third thing to note is that both (88) and (87) are divergent in the limit
ε → 0. This is expected, it only corresponds to the usual UV divergence
in the QFT coming from the bubble diagrams contributing to the free en-
ergy. This divergence is perfectly canceled in difference (85) because both
states should contain the same UV divergence. Therefore, the subtraction
in (85) can be thought of as a regularization scheme. To ensure that the
UV divergences cancel, one needs to demand that the background functions
become the same near the boundary. Comparison of metrics (63) and (64)
then yields the conditions:

β0e
A0(ε0) = βeA(ε)

√
f(ε) , V 0

3 e
3A0(ε0) = V3e

3A(ε) , Φ0(ε0) = Φ(ε)
(89)

that come from matching the time-cycles, the space-cycles and the dilatons
at the cut-offs and we allowed for different values for length of these cycles
and position of the cut-offs in the black-brane and the thermal gas solutions.
The latter is necessary in order to leave freedom to keep the integration
constants λ in (24) and the analogous UV expansion of the black-brane
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function the same [33]. One can now calculate difference (85) using (87) and
(88) both for the BB and the TG solutions, requiring (89), substituting the
near boundary expansions (77), (78) and (79), and taking the limit ε → 0
to obtain the finite result

∆F =
1

β
∆S = M3

PlN
2
c V3

(
15G(T )− 1

4
Ts

)
. (90)

Furthermore, one can calculate the energy difference in the two states using
the ADM mass formula (see [33] for details) as

∆E = M3
PlN

2
c V3

(
15G(T ) +

3

4
Ts

)
. (91)

Combining (90) and (91), we learn that the system nicely satisfies the Smarr
relation F = E−TS as it should. We finally note that the functions G and s
in the expression for the free energy depend on the integration constant rh

(or Φh) as they are obtained from the near boundary expansions of the
background functions. To obtain the expression in T , one still has to relate
rh (or Φh) to T . This can be done by calculating (72) by substitution of
the numerical solutions. One obtains Fig. 5, where we show T as a function
of expΦh for convenience. Two comments are in order. First of all, we
see that the black-brane solutions only exist above a minimum temperature
T = Tmin that depends on the particular model. Below this temperature,
there exists only the thermal gas solution and it dominates the ensemble.
Second, we see that for any T > Tmin, there are two black-brane branches
— one with a large value of φh (or rh) and one with a small value of φh.

Tc

Λc=0.12 0.4 0.8 1.2
Λh

1

1.2

1.4

T

Tmin

Fig. 5. Temperature as a function of expΦh in the ihQCD model.
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The BB with a smaller value of rh has a bigger event horizon since, as we
showed in the previous section, A(rh) is a monotonically decreasing function
and the event horizon is proportional to exp 3A(rh). Therefore, we call the
solution with the smaller rh the large black-brane and the solution with the
larger rh the small black-brane. As we show below, the latter solution is
always subdominant in the ensemble, whereas the former one, the large BB
corresponds to the true plasma phase in the theory.

Now, we can come back to the question we asked above: which phase
minimizes F at a given T . In equation (90), the gluon condensate G is a
positive definite quantity. On the other hand, the entropy term is negative
definite. It is, therefore, conceivable that there exists a critical temperature
Tc, where ∆F vanishes. At very high temperatures, the entropy term nor-
malized by T 4 should go to a positive constant given by (76). On the other
hand, the difference in the gluon condensate G(T )/T 4 should vanish as it
should approach the same value in the plasma and the confined phases in
the UV. This means that at large T , the plasma phase wins. The question
then is whether or not ∆F becomes positive at small T . The answer is in
the affirmative and can be obtained by calculating (90) numerically as in
[32].

One finds the picture shown in Fig. 6 for the free energy. The axis in
this figure F = 0 corresponds to the free energy of the thermal gas solution.
This is because, as discussed above, the thermal gas solution is obtained by
sending rh →∞ (on the small BB branch) in Fig. 5. In this limit, the horizon
area shrinks to zero yielding vanishing entropy. Similarly, the ADM mass of
the BB also vanishes yielding vanishing E. Then, from the Smarr formula,
we have F (TG) = 0. We also see the presence of the aforementioned two
BB branches in this figure. They exist above T = Tmin and the one with

1 1.1 1.2

T

Tc

0

-0.01

0.01

-0.02

-0.03

F

Nc
2

Tc
4

V3

Fig. 6. Difference of free energies between the plasma and the confined phase ∆F

as a function of T .
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positive F is the small BB. As we see, this branch is always sub-dominant in
the ensemble. The branch below is the large BB branch and we also see that
it crosses the x-axis at a particular temperature T = Tc that is higher than
Tmin. Therefore, we obtain the holographic description of the deconfinement
transition in our holographic model. We also see that this is a first order
phase transition as expected in large-N QCD.

You should be asking how we fixed the parameters of the model, par-
ticularly the parameters in (45) to obtain this figure. As mentioned around
equation (22), V0 and V2V1 are fixed by matching the first two scheme-
independent beta-function coefficients in the pure SU(N) theory. As also
mentioned at the end of Sec. 3.6, we fix a combination of V1 and V3 to
match the first excited glueball mass in [39]. We can now fix the other com-
bination of V1 and V3 by matching the entropy density with the lattice result
of [40] at a fixed temperature T = 2Tc. The best fit turns out to be V1 = 14,
V3 = 170. The only non-trivial integration constant (apart from T ) in the
background solutions is Λ that is fixed by matching the first glueball mass
as explained in Sec. 3.6. The only quantity yet to be fixed is the Planck
mass MPl. We can fix this from equation (76) by matching the entropy of
pure SU(N) theory in the large-N large-T limit as [33]

(MPl`)
3 =

1

45π2
. (92)

Having fixed all the parameters in the model, the rest is a prediction to be
tested against lattice data. In particular, one obtains

Tc = 247 MeV (93)

for the transition temperature, that compares very well with the lattice
data [41]. For the latent heat Lh = ∆E(Tc) = Tc∆S(Tc) at the transition,
we find

Lh = 0.31N2
c T

4
c (94)

that also matches very well the lattice data at large-Nc [41].
It is very instructive to compare the thermodynamic functions obtained

from ihQCD with the existing lattice studies. In particular, [42] studied the
thermodynamic functions of pure SU(N) theory at various values of Nc and
compared this data with our findings. This comparison is shown in Fig. 7.
We observe two important features in the plots. First, when appropriately
normalized, the thermodynamic quantities collapse on a single curve modulo
small errors. This means that these normalized thermodynamic functions
exhibit very weak dependence on the number of colors Nc. Thus, our re-
sults that are necessarily valid at Nc → ∞ are not supposed to be bad at
all! Second, we observe that the thermodynamic functions coming from the
ihQCD model matches perfectly this curve!
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Fig. 7. (Color online) Comparison of lattice data of [42] for various values of Nc

with ihQCD (solid light gray/orange curves). All thermodynamic functions are
densities and further normalized by a factor of N2

c and an appropriate power of T
to make dimensionless quantities. Pressure P = −F for extensive systems.

5. Flavor sector

So far, we discussed the construction of the holographic theory only in
the glue sector. This description is valid in the limit N → ∞ when the
number of flavors Nf is kept finite. This is because in the large-Nc limit,
one can consistently ignore the fermion loop corrections in the Feynman
diagrams. In real QCD, however, one typically considers Nf = 3 for light
flavors, corresponding to up, down and strange quarks. Hence, one expects
a better approximation to real QCD with light flavors in the large-N limit,
by taking also the number of flavors to infinity, keeping the ratio finite:

Nf , Nc →∞ , x =
Nf

Nc
= fixed , λ =

g2
YMNc

8π2
= fixed . (95)

This is called the Veneziano limit. We keep the ratio x as a free parameter in
what follows, the actual value for real QCD with light flavors corresponding
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to x = 1 (for up, down and strange) or x = 2/3 (for up and down quarks).
The theory with flavors is naturally richer: in the massless quark limit (that
we consider here), there is the global flavor symmetry U(Nf)L×U(Nf)R that
rotates the left- and right-handed quarks separately. The vector U(1)V =
U(1)L+R part of this symmetry corresponds to the baryon number under
which u, s and d̄ quarks carry charge +2/3 and ū, s̄, and d quarks carry
charge −1/3. The other diagonal U(1)A = U(1)L-R is anomalous and non-
conserved. Furthermore, the remaining flavor symmetry SU(Nf)L×SU(Nf)R

is spontaneously broken to SU(Nf)L+R, because of the non-trivial expectation
value of the quark condensate 〈q̄q〉 in the vacuum state.

As discussed in Introduction, the improved holographic QCD theory is
capable of reproducing all of these salient features. The flavor sector in
the holographic theory is introduced through the flavor branes [25, 43, 44]
embedded in the geometry. These are space-filling Nf 4D D-branes and Nf

D̄-branes in the 5D bulk. In the Veneziano limit, the energy-momentum
tensor of these flavor branes become comparable to the Planck mass M3

PlN
2
c

in (6), hence one has to take into account their backreaction on the back-
ground. This means that one has to solve the Einstein equations that arise
from the full action

S = Sg + Sf , (96)

where the glue part Sg, is given in (6) and the effective DBI action on the
flavor branes reads [25, 45]

Sf =−1
2M

3
PlNcTr

∫
d5x

(
Vf

(
λ, T †T

)√
−detAL+Vf

(
λ, TT †

)√
−detAR

)
,

(97)
where Tr denotes the “super-trace” on the non-Abelian branes [25, 43, 44] ,
the fields A are given by

ALµν = gµν+w(λ, T )FL
µν+

κ(λ, T )

2

[
(DµT )†(DνT )+(DνT )†(DµT )

]
,

ARµν = gµν+w(λ, T )FR
µν+

κ(λ, T )

2

[
(DµT )(DνT )†+(DνT )(DµT )†

]
, (98)

and the covariant derivative is given by

DµT = ∂µT + iTAL
µ − iAR

µT . (99)

Here, AL and AR denote the gauge fields living on the flavor D-branes cor-
responding to the global flavor symmetry U(Nf)L × U(Nf)R with FL and
FR the corresponding field strengths. T is a complex scalar, called the open
string tachyon, that transforms as a bifundamental under this flavor sym-
metry and corresponds to the quark mass operator q̄q. Following [25, 43, 44]
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(inspired by Sen’s action for the open string tachyon [46]), we choose the
tachyon potential as

Vf

(
λ, TT †

)
= Vf 0(λ)e−a(λ)TT † . (100)

This form of the tachyon action was motivated in [25, 43, 44] by reproduc-
ing the expected spontaneous symmetry breaking and the axial anomaly of
QCD. Then Vf 0, w and κ are new potentials (in addition to V in (6)) that
in the bottom–up approximation should be fixed by phenomenological re-
quirements as in the previous sections. The theory is further developed in
the subsequent works in [45, 47, 48, 50–54]. One typically also makes a sim-
plifying assumption and takes κ(λ, T ) and w(λ, T ) independent of T . The
potentials Vf 0(λ), a(λ), κ(λ) and w(λ) are constrained by requirements from
the low-energy QCD phenomenology, such as chiral symmetry breaking and
meson spectra [48]. A judicious choice for these potentials are presented in
Appendix B. For vanishing quarks masses for all Nf flavors, one can further
make the simplification by choosing a diagonal tachyon field

T = τ(r)INf
(101)

that corresponds to Nf light quarks with the same mass in boundary field
theory. As mentioned above, τ(r) is holographically dual to the quark mass
operator and its non-trivial profile is responsible for the chiral symmetry
breaking on the boundary theory. The boundary asymptotics of this func-
tion, for the choice of potentials given in Appendix B, is

τ(r) ' mqr(− logΛr)−ρ + 〈q̄q〉r3(− logΛr)ρ , (102)

the power ρ is to be matched to the anomalous dimension of q̄q and the
QCD β-function (see [45, 48] for details). In this work, we only consider
massless quarks mq = 0 so the non-normalizable mode of the tachyon so-
lution vanishes, thus providing a boundary condition for the τ equation of
motion.

Calculation of flavor current correlators in the holographic theory follows
from fluctuating the bulk gauge fields AaL and AaR in (97), where the small
a index corresponds to non-Abelian flavor. We will not be interested in
these correlators in this review. However, we will be interested in studying
the effects of a non-vanishing quark chemical potential µ on the QGP. This
chemical potential can be introduced as the boundary value of the vector
combination of the left and right gauge fields U(1)V that is the a = 0 part
of the bulk gauge fields

AV
ν =

A0
L,ν +A0

R,ν

2
→ (µ, 0, 0, 0, 0) , r → 0 , (103)
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where µ corresponds to the ν = 0 component. Therefore, we can finally
simplify the flavor action by setting all AL and AR to zero except (103)

Sf = −xM3N2
c

∫
d5xVf(λ, τ)

√
−det

(
gµν + w(λ)FV

µν + κ(λ) ∂µτ ∂ντ
)
.

(104)
We shall not discuss here in detail the physics that follows from this action.
The meson spectrum (obtained by studying fluctuations of the bulk gauge
fields), the quark condensate (obtained by studying the profile of τ) etc. are
all studied in detail in the references listed above. Here, we only want to
summarize the qualitative effect of a non-vanishing µ on the phase diagram.

The qualitative picture that arises from (104) and (6) in (96) is summa-
rized in Fig. 8 taken from [50]. We observe the possibility of three phases in
this diagram. First of all, the confined phase denoted by “hadron gas” in the
figure continues to exist for µ 6= 0 in the small temperature regime. This
phase holographically corresponds to the thermal gas solution in the previous
section, generalized for µ 6= 0. On top of this phase, we observe two separate
phases for larger values of the temperature. The phase denoted by χSB cor-
responds to a deconfined quark–gluon plasma with a non-vanishing value of
the quark condensate. Therefore, this phase is a quark–gluon plasma where
the chiral symmetry is broken SU(Nf)L × SU(Nf)R → SU(Nf)L+R. Holo-
graphically, this phase corresponds to the black-brane phase of the previous
section accompanied by a non-trivial vector bulk field (103) and a non-trivial
profile for the tachyon field τ(r). The hadron gas phase is separated from the
χSB phase by a first order phase separation curve Tc(µ) (solid/red) in Fig. 8.
Finally, when one cranks up T further, the quark-condensate melts trough a
second-order phase transition (dashed curve/blue) at Tχ(µ) and one obtains
a deconfined state where the chiral symmetry is restored. This phase holo-

Hadron

   gas
  ΧSB  plasma

Chirally symmetric plasma

0.0 0.1 0.2 0.3 0.4 0.5
Μ

0.05

0.10

0.15

0.20
T

Fig. 8. (Color online) The phase diagram of the ihQCD theory in the Veneziano
limit with finite quark chemical potential. Figure taken from [50].
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graphically corresponds to a generalization of the black-brane background
of the previous section for finite (103) and τ = 0. In Sec. 8, we shall see how
this phase diagram is altered for vanishing chemical potential µ = 0 but a
finite external magnetic field B turned on instead.

6. Hydrodynamics and transport coefficients

The next level in increasing difficulty in our treatment of the quark–
gluon plasma is hydrodynamics. Thermodynamics of the previous section
should be embedded in this theory that has a bigger range of applicability,
in particular, it also encompasses the physics of transport and dissipation.
Hydrodynamics is a theory organized in a derivative expansion, that is an
expansion in powers of momentum compared to an intrinsic scale in the
system such as the mean free path in systems with quasi-particle excitations,
k`mfp or compared to temperature k/T in systems, such as our strongly
interacting plasma, where no particle-like excitations exist. Each term in
this derivative expansion is determined by conservation laws, such as the
energy-momentum and charge conservation in the plasma. Therefore, in
some sense, one can think of hydrodynamics as the IR effective theory of
these conserved charges.

In this section, we consider hydrodynamics of the neutral glue plasma,
hence the only non-trivial conservation equation is the energy-momentum
conservation

∇µTµν = 0 . (105)

These are 4 equations and we need to express the solution in terms of 4 un-
knowns. In this case, these 4 unknown functions of space-time (with metric
gµν) can be taken as the 4-velocity field of the fluid uµ and temperature

uµ(x) , gµνu
µuν = −1 ; T (x) . (106)

Then we need a constitutive relation to express Tµν in terms of these un-
knowns. In relativistic hydrodynamics, to zeroth order in momentum, the
only symmetric two-index objects are gµν and uµuν , therefore, one can di-
rectly write

Tµν0 = uµuν(ε+ p) + gµνp , (107)

where we parametrized the coefficients in terms of energy ε and pressure p
of the fluid13. This term at zeroth order in the derivative expansion corre-
sponds to an ideal relativistic fluid. Energy and pressure as a function of
temperature should be defined using microscopic properties of the theory,
and we already did this in the previous section.

13 It is often useful to express quantities in the rest frame uµ = (1, 0, 0, 0), where indeed
T 00 = ε and T ii = p.
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The next term in the derivative expansion corresponds to dissipative
terms14 and at this order, for a neutral plasma, we have only two such terms
corresponding to shear and bulk deformations. The derivation can be found
in standard textbooks and review papers15, and they read

Tµν1 = PµαP νβ
[
η
(
∂αuβ + ∂βuα − 2

3gαβ ∂ · u
)

+ ζ gαβ ∂ · u
]
, (108)

where Pαβ is the projector on the plane transverse to uα

Pαβ = gαβ + uαuβ , (109)

and the coefficients η and ζ are called the “shear viscosity” and the “bulk
viscosity” respectively. They characterize the response of the fluid to shear
(traceless) and volume (trace) deformations of the energy-momentum tensor.
The derivative expansion goes on like this and one encounters more and more
transport coefficients at higher orders.

The transport coefficients, in our case only the shear and bulk viscos-
ity, are supposed to be determined from microscopic properties of the fluid.
According to the linear response theory, the first order change in the expec-
tation value of an operator OB due to a deformation of the Lagrangian of
the system by an operator OA is given by the retarded Green function of
the operators OB and OA

L → L+

∫
OAδφA ⇒

〈
OB
〉

= GBAR δφA , (110)

where the retarded Green function is given by

GBAR

(
ω,~k

)
= −i

∫
d4xe−ik·xθ(t)

〈[
OA (t, ~x ) ,OB

(
0,~0
)]〉

. (111)

The last average is a thermal average. In our case, we are interested in
deformations of the energy-momentum tensor due to metric deformation
that itself couple to the energy-momentum tensor, hence both OA and OB
are Tµν , and the shear and the bulk viscosities are obtained in the limit

η
(
δilδkm + δimδkl − 2

3δ
ikδlm

)
+ ζδikδlm = lim

ω→0

i

ω
Gik,lmR

(
ω,~0

)
, (112)

14 One of the most recent advances in the study of QGP involve anomalous transport.
These terms are argued to produce no dissipation and they are represented by in-
troducing new terms in the hydrodynamic expansion [55]. We will omit anomalous
transport in this discussion.

15 I find the discussion in [56] particularly nice.
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with momentum ~k set to zero. Thus, the shear viscosity can be read off from
the (12, 12) and the bulk viscosity can be read off from the (11+22+33, 11+
22 + 33) components of the Green function of the energy-momentum tensor.

In the strong coupling limit, this two-point function is calculated by the
AdS/CFT prescription. For example, for the shear viscosity, one has to solve
the equation of motion for the fluctuation δgxy(r, ω) for ~k = 0, with infalling
boundary conditions at the horizon rh and non-normalizable boundary con-
dition at the boundary:

δgxy → (rh − r)−i
ω

4πT , r → rh , δgxy → r4, r → 0 . (113)

The fluctuation equation for the (x, y) component for metric (64) is given by

δ̈gxy + δ̇gxy

(
3Ȧ+

ḟ

f

)
+
ω2

f
δgxy = 0 . (114)

The result of this calculation for the shear viscosity is well-known [57, 58].
For any two-derivative gravity theory, the answer is fixed by universality at
the horizon [59], regardless of the details of the field content or the poten-
tials as

η

s
=

1

4π
≈ 0.08 , (115)

where s is the entropy density. The aforementioned universality arises in the
ω → 0 limit of equation (114) as the mass term vanishes in this limit [59].
Result (115) corresponds to an extremely small shear viscosity. This result
is to be compared with the perturbative QCD result

η

s
∝ − 1

λ2 log λ
, (116)

where λ is the ’t Hooft coupling in large-N QCD. This result becomes very
large in the small coupling limit. On the other hand, the AdS/CFT result
(115) agrees much better with the hydrodynamic simulations, where one
tunes η as an input parameter to match the hadron spectrum obtained from
these hydro simulations to actual QGP spectrum, see Fig. 9. The result
shown is for the elliptic flow parameter defined as the second moment of the
hadron spectrum in the azimuthal angle φ on the interaction plane. Thus,
one has strong indications that the QGP produced in these experiments is, in
fact, strongly coupled. The fluctuation equation for the volume deformation,
on the other hand, is given by

δ̈gii + δ̇gii

(
3Ȧ+

ḟ

f
+ 2

Ẋ

X

)
+

(
ω2

f
− ḟ

f

Ẋ

X

)
δgii = 0 . (117)
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Fig. 9. Comparison of hydrodynamic simulations for the elliptic flow parameter v2
of the hadron spectrum to actual data at RHIC for the various input values of the
shear viscosity. Data agrees well with the AdS/CFT result (115).

This equation does not exhibit any universality at the horizon, because of the
presence of non-vanishing mass term in the limit ω → 0 and the result, that
is a non-trivial function of T , indeed depends on the choice of the potential
in (6). For the choice (45) ihQCD theory gives [61] the plot given in Fig. 10.
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Fig. 10. Result of the ihQCD calculation for the bulk viscosity compared with the
lattice data of [62].

In this plot, we compare our result with the lattice QCD calculation
of [62]. The latter calculation involves large systematic and statistical er-
rors. These errors are due to the fact that, to obtain a real-time correlation
function such as (111) from the lattice, one needs to analytically continue
the Euclidean correlators, that necessitate the knowledge of the entire spec-
tral density of QCD associated with the energy-momentum tensor [62], an
information that we do not have. The ihQCD result quantitatively agrees
with another holographic model for QCD [29]. We observe two features in
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Fig. 10. First, the bulk viscosity increases towards the deconfinement tran-
sition at T = Tc. Second, the ratio ζ/s vanishes at very large temperatures,
a result qualitatively consistent with perturbative QCD.

How much does a non-trivial bulk viscosity affect the hadron spectrum in
the heavy-ion collision experiments? In Fig. 11, we show a plot taken from
the study [63] comparing the different elliptic flow parameters v2 obtained
by the hydrodynamic simulations with varying profiles for ζ (parametrized
by the function on top of the first figure) to data at RHIC showing that a
small bulk viscosity such as Fig. 10 indeed affects the spectrum, albeit not
as much as the shear viscosity.
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Fig. 11. Effect of the bulk viscosity on the elliptic flow parameter (the second
moment of the spectrum) obtained from RHIC data. Left: parametrization of the
trial bulk viscosity profile. Right: comparison with data.

7. Hard probes

Another class of important observables in the heavy-ion collisions in-
volve energy and momentum dissipation experienced by the highly energetic
“hard” quark probes when traveling through the plasma, see Fig. 12.

Spectators

Participants

b

before collision after collision

Fig. 12. Schematic description of hard probes (the “spectator” ions depicted as
white balls) only weakly interact with the QGP (”participants” depicted by colored
balls) and provide a measure for energy and momentum dissipation in the plasma.
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These hard probes undergo energy loss and momentum broadening when
they travel trough the plasma. There are at least two mechanisms through
which this can happen. One is through emission of soft gluons, “gluon
bremsstrahlung”. This phenomenon is first studied in the context of
AdS/CFT for the conformal N = 4 super Yang–Mills plasma in [64]. It is
also studied in the context of the improved holographic QCD in [65]. Here,
we will not explain this phenomenon in detail and we will instead focus
on another mechanism that leads to energy-momentum loss: the drag force
and the statistical Langevin force the hard probes experience when they
travel trough the QGP. One can write down a phenomenological equation
of motion for the hard probe under these two forces as:

dpi

dt
= −ηijD

(
~p 2
)
pj + ξi(t) ,

〈
ξi(t)ξj

(
t′
)〉

= κijδ
(
t− t′

)
, (118)

where pi is the spatial momentum of the hard probe, ηijD is a drag coefficient
associated with the general drag exerted upon the probe by the QGP, ξi is
the statistical Langevin force encapsulating the effects of small kicks from
fluctuations of the quarks and gluons in the plasma, modeled by Brownian
motion, and κij are the diffusion constants representing the white noise
associated with the Brownian motion in the plasma.

One observable that is directly related to the diffusion constants in (118)
is the so-called “jet-quenching parameter”. This phenomenon is associated
with two back-to-back quarks created close to the boundary of the plasma:
as schematically represented in Fig. 13, one quark easily gets out through

QGP

quenched

Fig. 13. Schematic description the jet-quenching phenomenon.

the boundary, but its partner loses energy and momentum having to travel
through the entire plasma. This phenomenon is indeed observed in the
heavy-ion collisions. In Fig. 14, we show an actual event observed at the
LHC. As one can see, the lucky quark jet gets out of the plasma finally
depositing its energy-momentum at the calorimeters, but its partner is gone
missing depositing all of its energy-momentum in the plasma.
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Fig. 14. A jet-quenching event observed in the heavy-ion collisions at the LHC.

The jet-quenching parameter associated with this phenomenon can be
defined by the average transverse momentum lost by the quark-probe per
length of flight D as16

q̂ =

〈
p2
⊥
〉

D
= 2

κ⊥
v
, (119)

where the second equation follows from a standard calculation [65] using the
equation of motion (118) with v being the average velocity of the hard probe,
and κ⊥ is the transverse component of κij in Eq. (118).

How do we describe this phenomenon in the holographic dual theory?
As we described in Introduction, an infinitely massive (probe) quark is as-
sociated to the end points of open strings ending on the boundary of the
geometry and extending through the interior of the bulk. Then the hard
probe moving through the plasma with velocity v corresponds to the “trail-
ing string” [66, 67], shown in Fig. 15. Given the background geometry, it is
a standard exercise to solve the equation of motion of the string that follows
from the string action (28) with the boundary condition X1 = vt at r = 0.
One can then make an Ansatz

X1 = vt+ ρ(r) , Xi = 0 (i 6= 1) , (120)

and compute the tail ρ(r) from the string equation of motion. We shall not
reproduce this calculation in detail here but mention the important points.
The original calculation for the AdS background (conformal plasma) can be
found in [66, 67], and the calculation for the ihQCD background (ignoring
flavors) can be found in [61].

First of all, when one calculates the metric on the world-sheet of the
string (120) i.e. hαβ = ∂αX

µ∂βX
νGµν embedded in the black-brane back-

ground (that corresponds to the plasma state) that is denoted by Gµν here,
16 See [64] for an alternative definition associated with another physical mechanism,

“gluon bremsstrahlung” in the QGP.
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horizon

boundary

momentum

loss

r

v x1

heavy

quark

Fig. 15. A trailing string solution in the holographic background that describes
the hard probe traveling through the QGP with velocity v. The string loses its
momentum to the horizon of the black-brane background depicted by the dashed
line.

one generically finds a horizon on the world-sheet, the world-sheet metric
being

ds2 = b2
[
−
(
f(r)− v2

)
dτ2 +

dr2

f(r)− v2e4A(rs)−4As(r)

]
, (121)

where f(r) is the blackening factor in metric (64) and As(r) is the string-
frame conformal factor in (29) for (64). That is to say, we have a “black
world-sheet”. This is not to be confused with the horizon of the background
geometry that is located at r = rh, shown by the dashed line in Fig. 15.
This world-sheet horizon is instead at a location

r = rs where f(rs) = v2 , (122)

where f(r) here is the blackening factor in (64). We depict the generic
geometry of the world-sheet in Fig. 16. Let us note, in passing, that the
temperature associated with the black world-sheet is given in terms of the
background temperature T as

Ts = T
(
1− v2

) 1
4 . (123)

The string falls in the background horizon as in Fig. 15 and loses its momen-
tum. Calculating the world-sheet energy using the standard string theory
formula

Π0 = − 1

2π`2s

√
−hhατ∂βX0 , (124)

one can calculate [61] the drag force in (118) as

F1 = dp1/dt = 1/vdΠ0/dt = −η11
D p

1 = − 1

2π`2s
v e2A(rs)λ(rs)

4
3 , (125)
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rh: BH horizon

rs: WS 

horizon

Fig. 16. Typical world-sheet geometry of the trailing string. Here, rh denotes the
horizon of the background geometry and rs < rh denotes the horizon of the world-
sheet metric.

where rs is defined in (122). One can further obtain relativistic and non-
relativistic limits of this results, arriving at the following analytic expres-
sions:

F =−`
2

`2s

√
45 Ts(T )

4N2
c

v
√

1− v2
(
− b0

4 log [1− v2]
) 4

3

+ · · · , v → 1 , (126)

F =−`
2

`2s

(
45π s(T )

N2
c

) 2
3 λ(rh)

4
3

2π
v + · · · , v → 0 , (127)

where ` is the AdS radius, `s is the string length and b0 is the coefficient
in (22). Let us also mention the original result [66, 67] for the conformal
plasma for comparison

Fconf =
π

2

√
λT 2 v√

1− v2
. (128)

Here, λ is the ’t Hooft coupling of the conformal plasma that is a parameter
of the theory. We compare the result of ihQCD (125) to the conformal
result (128) for a standard choice [68] λ = 5.5 in Fig. 17. From these figures
we clearly observe the effect of asymptotic freedom captured by the ihQCD
plasma, as the force decreases with increasing v and T .
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Fig. 17. Comparison of the ihQCD result for the drag force for the various values
of v and T to the conformal result (128) for λ = 5.5. One clearly sees the effects
of asymptotic freedom captured by the ihQCD result.

Finally, let us give an overview of the holographic calculation of the
diffusion constant κij in (118). This coefficient measures the rate the mo-
mentum carried away by the fluctuations of the plasma. This momentum
loss is modeled by Langevin diffusion in (118). The Langevin force couples
to fluctuations in the quark location δXµ through the source term in the
action of the probe quark

Sq = S0 +

∫
dτδXµ(τ)ξµ(τ) , (129)

where S0 is the free quark action and τ is the proper time on the world-
line of the quark. How is this picture represented in the holographic dual
theory? Fluctuations of the quark location should be the same as the fluc-
tuations of the trailing string in Fig. 15 on the boundary. As the boundary
of the geometry is identified with boundary of the world-sheet of the trailing
string (identifying the proper time τ of the quark with σ0 coordinate on the
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world-sheet), we have a holographic picture on the world-sheet itself! In
other words, the fluctuations δXµ(τ) should be identified with the leading
source term in the boundary expansion of the string fluctuations δXµ(r)
and its response ξ should be associated with the subleading term in δXµ(r).
The diffusion coefficient, that is given by the Wightman two-point function
in (118), should then be obtained from a standard holographic calculation
of the two-point functions. In thermal field theory, this Wightman func-
tion is related to the retarded Green function as [65] (assuming rotational
symmetry) 〈

ξi(ω)ξj(ω)
〉

= − coth
( ω

2T

)
ImGijR(ω) . (130)

We decompose the fluctuations and the corresponding Langevin force as
transverse and longitudinal (ξi = (ξ⊥, ξ‖) with respect to quark momen-
tum ~p (which we take in the X1-direction above) and the diffusion constants
in (118) is obtained by the Kubo formula

κ⊥ = lim
ω→0
〈ξ⊥(ω)ξ⊥(ω)〉 , κ‖ = lim

ω→0

〈
ξ‖(ω)ξ‖(ω)

〉
. (131)

Note that it is the world-sheet temperature Ts in (123) that enters these
expressions. We then calculate the retarded Green function in holography
by solving the string fluctuation equations for δXµ(r) on the world-sheet
geometry, that is itself a black-brane with a horizon at r = rs, imposing non-
normalizable boundary conditions at the boundary and infalling boundary
conditions at the horizon r = rs, substitute in (130) and read off the diffusion
constant from the Kubo formula (131). The result of this calculation [65] is

κ⊥ =
2

π`2s
b2(rs)Ts , κ‖ =

32π

`2s

b2(rs)

f ′(rs)2
T 3

s . (132)

We can express the result for the transverse momentum loss in terms of
physical parameters in the relativistic limit

κ⊥ ≈
(
45π2

) 3
4

√
2π2

`2

`2s

(sT )
3
4

(1− v2)
1
4

(
−b0

4
log
(
1− v2

))− 4
3

. (133)

The corresponding results for the original calculation [69, 70] for the confor-
mal plasma instead read

κ⊥N=4 = π
√
λN=4γ

1/2T 3 , κ‖N=4 = π
√
λN=4γ

5/2T 3 , (134)

where γ is the Lorentz contraction factor

γ =
1√

1− v2
. (135)
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We note that these results satisfy

κ‖N=4

κ⊥N=4γ2
= 1 . (136)

One can understand the factor on the RHS as the boost factor associated
with Lorentz contraction in the velocity direction. Hence, apart from this
kinematic factor, the conformal plasma does not distinguish between the
longitudinal and the transverse momentum loss. It is interesting to note
that in our non-conformal plasma, we instead obtain a stronger result for
this ratio [65]

κ‖

κ⊥γ2
> 1 , (137)

that is then a universal prediction for strongly interacting non-conformal
plasmas from holography.

Finally, we quote numerical results [65] obtained for the jet-quenching
parameter in (119) for a typical hard probe, i.e. a charm quark traveling at
p = 10 GeV at T = 250 MeV

q̂⊥ = 5.2 (direct), 12.0 (energy), 13.1 (entropy) GeV2/fm . (138)

Here, the quotes next to the values correspond to the various schemes used
in comparison of the holographic results to QGP [65, 68]: “direct” scheme
instructs to identify the temperature of the holographic plasma with that of
the QGP, whereas “energy” and “entropy” scheme instructs to identify these
quantities on the two sides.

8. ihQCD at finite B

Interaction of electromagnetic fields with the quark–gluon plasma pro-
vides an entirely different set of phenomena and related observables. In this
section, we focus on the influence of external magnetic fields on the QGP.
This is a situation realized in off-central heavy-ion experiments, see Fig. 2.
When there is non-vanishing impact parameter (off-central collisions), the
charged ion beams, especially the spectator ions (see Fig. 12), produce large
magnetic fields at the center. The magnitude of this magnetic field depends
on the experiment and the impact parameter, and a back of the envelope
calculation using Biot–Savart law results in

B ∼ γZe e
R3
∼ 1018–1019 G (139)

at the time of collision, τ = 0. Here, γ is the Lorentz factor of the collision,
γ ≈ 100 (1000) for RHIC (LHC), R is the radius of ions, R ∼ 7 fm, B is the
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impact parameter that is of the same order as R, Z is the atomic number
and e is the electric charge. The values quoted above are the largest mag-
netic fields we know in the universe. As a comparison, the magnetic fields
in neutron stars and magnetars are predicted to be around 1013 and 1015

respectively. Indeed, the values quoted in (139) are huge, however, a unit
more relevant for the physics of QGP is MeV. Influence of these magnetic
fields on the QGP physics should be measured by the ratio eB/m2

π, where
mπ ≈ 135 MeV is the rest mass of a pion. One finds 5–10 for this ratio or
RHIC–LHC at time of collision, hence strong magnetic effects are expected.

Yet, the relevant time scale for QGP is not the collision time τ = 0 but
the time when the QGP forms. This time is expected to be around τ = 0.3–
1 fm/c depending on the experiment, thus the question is how large is B at
this time? To answer this question, one has to solve Maxwell’s equations
sourced by the spectator ion beams, in the presence of the QGP plasma.
This calculation has been done in [71–78]. The result in the last reference is
plotted in Fig. 18 as a function of proper time τ for different choices for the
electric conductivity of the plasma. We observe that B decays fast, because
the source (mostly the spectator ions) creating this field moves away from
the center of collision, yet it is sufficiently large at the time of formation of
QGP (around τ = 0.5 fm/c).

Fig. 18. (Color online) Magnetic field at the center as a function of proper time
resulting from spectator and participant ions in an off-central heavy-ion collisions
at the LHC with impact parameter b = 7 fm. Darker/blue (lighter/red) curve
is for electric conductivity σ = 0 (σ = 0.023 fm−1) respectively. Result is taken
from [78].

QCD under external magnetic fields hosts a range of interesting phenom-
ena. In this review, we shall discuss:

— Possibility of new phases on the T–B plane.
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— (Inverse) magnetic catalysis.
— Anomalous transport.

Comprehensive reviews for these and other phenomena exist in the literature,
see for example [79–81]. In the next section, we explain how to incorporate
an external magnetic field in the picture of ihQCD, then we consider the
phenomena above one-by-one in Secs. 8.2, 8.3 and 8.4 below.

8.1. Background at a finite magnetic field and temperature

For simplicity, in this section, we assume a plasma of infinite extent and
a constant magnetic field in one direction that we take as the x3-direction.
Magnetic field couples directly only to quarks in the QGP. Hence, for the
same reasons as explained in Sec. 5, its effects would be negligible in the
large-Nc limit unless we also take Nf →∞ keeping the ratio fixed as in (95).
The relevant action is the same as in that section, that is (96) with Sg given
by (6) and (45), and Sf can be simplified down to (104) that we reproduce
here

Sf = −xM3N2
c

∫
d5xVf(λ, τ)

√
−det

(
gµν + w(λ)FV

µν + κ(λ) ∂µτ ∂ντ
)
.

(140)
The potentials w, κ and Vf are given in Appendix B. The only difference
from that section is that the U(1)V bulk gauge field is taken as

AV
µ =

(
0,−x2B

2
,
x1B

2
, 0, 0

)
. (141)

This choice indeed produces a constant magnetic field in the x3-direction
on the boundary at r = 0. Because of this, the SO(3) rotational symmetry
of the plasma is broken down to an SO(2) around x3-direction. Thus, the
correct Ansatz for the black-brane should be

ds2 = e2A(r)
(
−f(r)dt2 + dx2

1 + dx2
2 + e2W (r)dx2

3 + f(r)−1dr2
)
,

φ = Φ(r) , τ = τ(r) , (142)

where we took into account the breaking of rotational symmetry by intro-
ducing a new metric function W (r). There is a horizon at r = rh, where f
vanishes and one has to require the same boundary asymptotics at r → 0 as
in the previous sections. In particular, the new function W → 0 as r → 0.
When we compare the physics that result from this action for B 6= 0 to the
physics at B = 0, we have to make sure that solution (142) for B 6= 0 and
solution (64) for B = 0 has exactly the same integration constants T , ΛQCD,
and quark mass mq that we set to zero in this review.
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Ansatz (141) solves the Maxwell equations automatically. One is left
with solving the coupled non-linear system of Einstein’s equations for the
functions A, f and W , the dilaton equation of motion for φ and the tachyon
equation of motion for τ . This is a formidable task, yet it is manageable by
a numerical code. This has been achieved in this full system in [82–84] and
we will present the results of the last reference in the next section.

8.2. Phase diagram of ihQCD under external magnetic field

In the very recent paper [84], the phase diagram of ihQCD is studied
on the phase space parametrized by temperature T and magnetic field B.
The coupling of B to the background is controlled by the ratio of flavors to
glue x and the function w that enters in (140). We allow for a one-parameter
parametrization of the function w, as shown in Appendix B, parametrized
by a positive real number c. In this section, we set the baryon chemical
potential zero µ = 0.

The phase diagram one obtains at finite T and B is qualitatively similar
to the one at finite T and µ. In particular, typically, there exist three phases:
confined — chiral symmetry broken, deconfined — chiral symmetry broken
and deconfined — chiral symmetry restored. The first two are separated
by a first order deconfinement transition line that we denote by Td(B) in
this section. The last two are separated by a second order transition line
that we denote by Tχ(B). We plot these functions in Fig. 19 for x = 1 and
various different choices for c. As we discuss in the next section, a choice
c = 0.4 turns out to agree best with the recent lattice QCD results in [85–88]
regarding the phenomenon of “inverse magnetic catalysis”. Therefore, we fix
c = 0.4 below. We observe that both Td and Tχ exhibits a non-trivial profile
in B. For smaller values of c such as 0.4, they both start off decreasing for
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Fig. 19. The deconfinement transition line (left) and the chiral symmetry restora-
tion transition line (right) as a function of B for different choices of the parameter c
that parametrizes the response of the background to the magnetic field in ihQCD.
Figures reproduced from [84].
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small values of B, reach a minimum at some intermediate value of B and
increase thereof for larger B. The former behavior is typically associated
with the phenomenon of inverse magnetic catalysis, see Sec. 8.3.

The phase diagram undergoes non-trivial changes when the number of
flavors x is varied. In Fig. 20, we show the diagram for the choice c = 0.4
for the various values of x. We observe that for very small values of x,
such as x = 0.1, the deconfined-chiral symmetry broken phase does not
exist. Instead, there are two different deconfined — chiral symmetry restored
phases shown by black/red and gray/pink in these figures. These two phases
correspond to different black-brane solutions on the gravity side that are
separated by a first order phase transition. The physical meaning of the
black/red phase and whether it is relevant to QGP physics is unclear to the
author at the time of writing this review. When x is increased, this second
phase disappears, instead a deconfined — chiral symmetry broken phase
(dark gray/blue in Fig. 20) — arise at larger values of B. This happens
around x = 1/3 onward. Finally, for even larger values of x such as x = 1,
the same phase also appears for small values of B, in agreement with the
µ→ 0 edge of the phase diagram in Fig. 8.
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Fig. 20. (Color online) Phase diagram of ihQCD under an external magnetic field
for the various values of the ratio x = Nf/Nc. Plots reproduced from paper [84].
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8.3. Inverse magnetic catalysis

The quark condensate in QCD behaves non-trivially under an external
magnetic field. It is long known from perturbative QCD studies [89–91]
that the condensate is strengthened when a magnetic field is turned on.
This phenomenon is called the “magnetic catalysis” and one can qualita-
tively understand the reason behind this phenomenon as follows. Turning
on a magnetic field results in Landau quantization of the fermions. In par-
ticular, the momentum in the directions transverse to B is discretized and
the separation between these discrete states increase with B. The Lan-
dau quantization, therefore, restricts motion in the transverse directions. In
particular, for large values of B, the dominant ground state has vanishing
transverse momentum. This, in turn, projects the physics of flavor in QCD
to 1+1 dimensions for large B. On the other hand, it is well-known that the
IR physics responsible for formation of condensates, in general, is stronger
in 1+1 dimensions, resulting in an increase in the magnitude of the quark
condensate with B. This can, of course, be shown to be the case by explicit
calculations in perturbative QCD.

The question is what happens at the strong coupling, such as the limit
of QCD relevant for QGP physics. Recent lattice studies of QCD with
2+1 flavors [85–88] show a more complicated behavior. It is found that
the condensate again increases for small values of B in the confined phase
up to a certain value of B, but it starts decreasing for larger values. This
critical value of B depends on temperature. Moreover, for temperatures
above a certain value, slightly below the deconfinement crossover tempera-
ture, around 150 MeV, the condensate starts decreasing even for smaller B
down to B = 0. Therefore, one finds that the strong coupling effects in
QCD trigger the opposite effect, called the “inverse magnetic catalysis”. The
precise physical mechanism for this behavior is not completely clear at the
time of writing this review. There are indications, however, from further lat-
tice studies [92, 93] that this complicated profile for the condensate results
from a competition between two separate sources. Considering the path in-
tegral 〈q̄q〉, one can identify these two sources as follows. First, there is a
direct coupling to B of the fermion propagators inside the operator q̄q in
the path integral. This source is called the “valence quarks” in [92] and it
always tends to strengthen the condensate, essentially for the same reason
explained above for magnetic catalysis. There is a second source of coupling
to B, however, that comes from the quark determinant arising from the
gluon path integral. This second source, called the “sea quarks” is weak at
weak coupling compared to the first one above, hence it can be neglected,
and one finds magnetic catalysis. However, it becomes stronger at interme-
diate or large values of the coupling constant, and it was argued in [92, 93]
that it dominates over the first source for relatively large values of B and T ,
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leading to the inverse effect. These are only suggestive arguments, however,
and it would be great to get a handle on the question in holographic QCD.

The question has been addressed in the various papers in holography
[94–101], or with smeared backreacted flavor branes in the Veneziano limit
[102] but most of these works are either for adjoint flavors or consider small
values of fundamental quarks. Very recently, the question is addressed in [84]
for ihQCD in the Veneziano limit (95). It is found that holography confirms,
at least supports the valence versus sea quark discussion in [92, 93].

In Fig. 21, we show the phase transition curves for the deconfinement and
chiral symmetry restoration transitions for a choice of x = 1 and c = 0.4 for
the parametrization of function w in (140). In this and the following plots,
the dimensionful quantities are normalized with the integration constant Λ
that is proportional to the intrinsic energy scale of QCD ΛQCD. We observe
that indeed both of these transition temperatures decrease with increas-
ing B. In the deconfined — chiral symmetry broken phase, Td < T < Tχ,
this means that it becomes easier to melt the condensate when B is in-
creased. We also show contours of constant condensate in the same plot.
This provides a direct confirmation that the condensate decreases with B at
least for small enough B. One observes that the curves of constant conden-
sate extend between the curves Td(B) and Tχ(B) continuously decreasing
with increasing T , and finally vanishing at Tχ leading to the second order
chiral symmetry restoration transition discussed in the previous section. The
reason for vertical contours of constant condensate in the confined phase is
an artifact of holographic QCD: the temperature dependence in the con-
fined phase, that corresponds to the thermal gas solution (63), cannot be
seen in the large-N limit. This is because the temperature dependence in
this solution is trivial (there is no blackening factor in (63)) and in order to
capture this dependence, one has to consider fluctuations of the background
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Fig. 21. Phase diagram and curves of constant 〈q̄q〉 in ihQCD for a choice of x = 1

and c = 0.4. Plot reproduced from paper [84].
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fields around the thermal gas background, leading to a correction of the free
energy at the order of 1/N . Therefore, one has to regard the analysis in the
confined phase as at T = 0.

Finally, in Fig. 22, we plot the condensate, rather the renormalization
invariant and dimensionless combination ∆Σ(T,B) = Σ(T,B) − Σ(T, 0),
where

Σ(T,B) =
〈q̄q〉(T,B)

〈q̄q〉(0, 0)
=

1

〈q̄q〉(0, 0)
(〈q̄q〉(T,B)− 〈q̄q〉(0, 0)) + 1 . (143)

We observe that, in complete qualitative agreement with the lattice results
described above, the condensate increases with B up to a certain value of
the temperature around T/Λ ≈ 0.138, and it starts decreasing for larger T
up to the chiral symmetry restoration transition. Above this transition, the
condensate drops to zero of course, as demonstrated by the thick solid/blue
curve in Fig. 22. The suggestion of [92, 93] for the physical mechanism
behind the inverse magnetic catalysis relating it to the “sea quarks” as de-
scribed above can also be tested in the context of ihQCD. The two sources
of coupling of the condensate to B, the direct coupling called the valence
quarks, and the indirect, glue-induced coupling called the sea quarks can be
identified in holography with two analogous sources. The condensate is de-
termined by solving the tachyon equation of motion. This equation enjoys
depending on B, again, in two different ways. First, there is the explicit
dependence that we identify with the valence quarks. Second, there is the
indirect dependence arising from dependence on B of the background func-
tions that enter the tachyon equation. Various tests of this suggestion is
made in [84] by isolating either of the two dependences by playing with the
values of B and x and strong indications found supporting this suggestion.
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Fig. 22. (Color online) The normalized quark condensate as a function of B in the
deconfined — chiral symmetry broken phase in ihQCD for x = 1 and c = 0.4 shows
clear demonstration of inverse magnetic catalysis. Plot reproduced from paper [84].
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8.4. Anomalous transport

Another class of very interesting phenomena that occur in QCD under
external magnetic fields is the anomalous transport. This, in general, refers
to new, dissipation free means of transport in QCD and other physical sys-
tems such as the Dirac and Weyl semimetals17, induced by the well-known
quantum anomalies of the axial current [109, 110] in the presence of a parity
even vector source such as the external magnetic field or vorticity. Various
comprehensive reviews of the subject exist, see [79–81, 104, 105] from a field
theory point of view, and [106] from a holographic point of view. The sub-
ject is treated in detail in this school by Landsteiner whose lecture notes are
available in [107]. In this section, we shall only touch upon a small corner
of the subject in relevance to the QGP physics: the chiral magnetic effect
[71, 104, 108]. It is well-known that the classical conservation of axial charge
in massless QCD is violated at the quantum level due to AVV triangle di-
agrams that lead to an electromagnetic anomaly and due to AGG triangle
diagrams that lead to a QCD anomaly

JµA =

Nf∑
i=1

ψ̄iγ
µγ5ψi , ∂µJ

µ
A = εµναβ

(
c1 F

µν
V FαβV + c2 tr

(
FµνFαβ

))
.

(144)
Here, JA is the axial current that is classically conserved in the absence
of quark masses. In QGP physics, we are interested in temperatures much
larger than the physical quark masses mq/T � 1, hence this current is in-
deed effectively conserved in QGP. However, there exists an anomaly at the
quantum level, described by the second equation in (144), first discovered in
[109, 110]. In this anomaly, equation FV and F denotes the field strengths
of the external electromagnetic fields, and the dynamical gluon fields re-
spectively. c1 and c2 are the electromagnetic and QCD anomaly coefficients
respectively. The last term in the RHS of the second equation in (144) is
caused by gluon field configurations with a non-trivial topology described
by the topologic invariant, the gluon winding number

Qw =
1

24π2
εµναβ

∫
d4x tr

(
FµνFαβ

)
. (145)

The chiral magnetic effect, CME for short, is generation of an electric current
in the direction of an external magnetic field due to the anomalies in (144).
The mechanism in QCD that leads to CME is schematically described in
Fig. 23. The spins of quarks are aligned with B due to the Zeeman effect.
Since the quark masses can be neglected at high temperatures, in the absence

17 See, for example, [103] for a recent observation of anomalous transport in Dirac
semimetals.
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Fig. 23. The mechanism that leads to the chiral magnetic effect. Time flow from
left to right. In phase t = 1, the vacuum contains no topologically non-trivial gluon
fields. In phase t = 2, a gluon configuration with non-trivial topology is generated
leading to non-conservation of the axial charge. In phase t = 3, this non-trivial
gluon configuration decays, producing an imbalance in the axial change due to
(144). The plot reproduced from paper [104].

of an external ~E · ~B term (the first term in (144)) and in the absence of any
gluon fields with non-trivial topology (the second term in (144)) the axial
charge is effectively conserved both at the classical and quantum levels.
This means that helicities of these particles are also conserved and they will
move parallel or anti-parallel to B depending on their helicity h = ~S · ~p/|~p |.
Because there are equal number of left- and right-handed particles, then
there is no net generation of electric current in phase t = 1. Now, suppose
that a gluon configuration with a non-trivial topology is generated in phase
t = 2 which decays in the phase t = 3. This would then convert some of
the left (right) movers into right (left) movers due to the second term in the
anomaly equation (144) leading to an imbalance of the axial charge. Then,
in phase t = 3, we are back to the same configuration as in t = 1 except
that there is an axial imbalance. There is still effective conservation of the
axial charge in phase t = 3 both at the classical and the quantum level since
the non-trivial gluon configuration decayed, but now there is a net electric
current in the direction of ~B.

This electric current generated in the presence of an external magnetic
field B can be shown to be

~JV = σB ~B = c1µ5
~B , (146)

both in field theory [71] and in hydrodynamics [55]. Here, an effective chem-
ical potential µ5 for the axial charge is introduced to take into account the
non-conservation of this charge in (144). For example, this µ5 will be non-
zero if gluon configurations with non-trivial topology is generated, such as
phase t = 2 of Fig. 23.
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The critical question then is: what mechanism is there in QCD that
would lead to generation and decay of such non-trivial gluon configurations?
Among possible sources, instantons, calorons and the sphalerons [111], it was
shown in [112–114] that at high temperatures of the order of T > ΛQCD, it
is the latter, sphaleron decays that constitute the prime source of generation
and decay of such non-trivial gluon configurations. In Fig. 24, the mechanism
is described schematically. In this figure, we plot the vacuum energy of QCD

0 1 2-2 -1

E

Qw

Sphaleron

Caloron

Instanton

Topologically non-trivial gluon fields

Fig. 24. Non-perturbative processes that lead to change in gluon winding number.
Sphalerons are the unstable gluon field configurations sitting on top of the potential.

as a function of the gluon-winding number Qw (145). A sphaleron is an
unstable field configuration that corresponds to the maxima in this figure,
that can be produced at high temperatures as the energetics allows this.
As they are unstable, they decay by thermal fluctuations generating a net
change in Qw. In QCD, this process is measured by a transport coefficient
the so-called sphaleron decay rate (or Chern–Simons decay rate) [112–114]
as follows. Define the topological charge,

q(xµ) ≡ 1

16π2
tr [F ∧ F ] =

1

64π2
εµνρσtrFµνFρσ, (147)

where xµ = (t, ~x ). In a state invariant under translations in space and time,
the rate of change of NCS per unit volume V per unit time t is called the
sphaleron decay rate, denoted ΓCS,

ΓCS ≡

〈
(∆NCS)2

〉
V t

=

∫
d4x 〈q(xµ)q(0)〉W , (148)

where the subscript ‘W’ denotes the Wightman function.
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In the discussion that leads to (146), the axial chemical potential µ5 was
generated by such processes that lead to a non-trivial change in Qw, hence
µ5 is larger for larger NCS. Therefore, we need to determine the value of
(148) in order to assess the likelihood of observing CME in the heavy-ion
collisions. A QCD calculation at weak coupling leads to the result [115]

ΓCS = 192.8α5
sT

4 , (149)

where αs = g2
s /(4π) is the interaction strength.

How significant is NCS at strong coupling? This question is answered in
the context of holography first in [116]. In this paper, the bulk field dual
to the CP-odd operator (147) is identified with the bulk axion a(r, x) that
is a CP-odd pseudo-scalar in the corresponding 5D N = ∀ supergravity. It
is a massless bulk field. The Wightman function in (148) can be related
to the corresponding retarded Green function as in equation (130), and the
latter can be computed using the holographic prescription by solving this
massless bulk field equation of motion with infalling boundary conditions at
the horizon and non-normalizable boundary conditions at the boundary. In
fact, the latter UV value is nothing else but the θ parameter in the QCD
Lagrangian θεµναβ

∫
d4x tr (GµνGαβ)

a(r, x)→ κθ , r → 0 (150)

because, as mentioned above, the bulk axion a couples to the operator θ ∝
εµναβtr (GµνGαβ) on the boundary. Here, κ is another free parameter of the
model. Using these boundary conditions, one obtains the following answer
[116]:

ΓCS

∣∣∣∣
conf

=
λ2

256π3
T 4 , (151)

where λ is the ’t Hooft coupling in the N = 4 super Yang–Mills in the
large-N limit. This transport coefficient is also expected to depend on B
when B is non-vanishing, that is the case relevant for CME. This holographic
calculation for N = 4 super Yang–Mills at strong coupling in the presence of
a non-trivial magnetic field was calculated in [117] using the dual black-brane
background constructed in [118].

We are, however, interested in the analogous results for the strongly
interacting, non-conformal plasma, described by the ihQCD model. This
calculation was carried out in [119] for vanishing B and in [82] for finite B.
We only summarize the crucial ingredients and the results of these papers
below, referring the reader to these papers for details.

The bulk-axion field can be introduced in the ihQCD model by adding
to (96) a kinetic term of the form of [5, 33]

Sa = M3
Pl

∫
d5x
√
−gZ(Φ)gµν∂µa(x, r)∂νa(x, r) . (152)
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Note that this term in the action is suppressed as 1/N2
c compared to the

two terms in (96) consistently with the fact that the physics associated
with the dual operator (147) in QCD is 1/N2

c suppressed in the large-N
limit. Practically, this means that we do not have to take into account the
backreaction of (152) on the background that results from (96) and the field
a(r, x) can be treated as a perturbation on top of the ihQCD background
obtained in the previous sections.

We included a non-trivial, dilaton-dependent kinetic potential Z(Φ) in
(152). Its presence, in general, is expected in compactifications of IIB su-
pergravity down to 5D. It is argued to be also present in the effective action
of non-critical string theory in [4] the ihQCD model is based on. Solving the
for axion field equation resulting from (152) on the black-brane background
(64), one obtains the analytic result

ΓCS =
κ2

N2
c

sT

2π
Z(Φh) , (153)

where s is the entropy density and Φh is the value of the dilaton at the
horizon, and the constant κ is defined in (150). The UV asymptotics of the
function Z(Φ) in the Φ→ −∞ limit is fixed by the value of the topological
susceptibility χt = ∂2ε(θ)/∂θ2, where ε(θ) is the θ-dependent vacuum energy
that is identified with the on-shell action Sa (152) in the bulk. As shown
in [5], this requires

Z → Z0 ≈ 33.25/κ2 , Φ→ −∞ , (154)

where Z0 is fixed using the lattice data for this topological susceptibility
[5, 119]. On the other hand, the IR asymptotics of the function Z(Φ) can be
fixed by “glueball universality” that originates from linear confinement [5],
i.e. requiring that the axionic glueball states (excitations of the operator q
in (147)) carry a mass m2

n ∝ n in the limit of large excitation number n� 1.
One finds that this asymptotic behavior follows if one requires [5]

Z → c4e
4Φ , Φ→ +∞ , (155)

where c4 is a constant. The profile of the function Z(Φ) for intermediate
values of Φ is not completely fixed, but one finds good match with lattice
data if one parametrizes this function as

Z(Φ) = Z0

(
1 + c1e

Φ + c4e
4Φ
)
, (156)

depending on two parameters c1 and c4. These constants can then be fixed
by matching the lattice data [120]. One still finds a large allowed range for
these parameters [119]

0 < c1 < 5 , 0.06 < c4 < 50 . (157)
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Thus, we necessarily have large systematic errors for the physics associated
to the CP-odd term (152) in ihQCD. We show the result for the sphaleron
decay rate ΓCS as a function of temperature in Fig. 25. The allowed values
for the decay rate is shown by the shaded/blue region. The large systematic
uncertainty follows from equation (157) in parametrization of the function
Z(Φ) (156). The decay rate shown in the plot is normalized by its value in
the limit Φh → ∞ (large T)18. We observe two salient features in Fig. 25.
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Fig. 25. (Color online) The sphaleron decay rate, properly normalized, as a function
of temperature in ihQCD. The shaded/blue region shows the allowed values for this
decay rate, the uncertainty arising from the uncertainty in fixing constant c1 and
c4 in (157). The plot taken from paper [119].

First, that it is bounded from below as

ΓCS(T ) >
κ2

N2
c

s(T )T

2π
Z0 , T > Tc , (158)

for all values of T larger than the deconfinement transition temperature.
Second, we observe19 that it is a monotonically decreasing function of T .
This means that the rate of sphaleron decays, hence rate of production of
the axial chemical potential µ5 is largest above but close to the deconfine-
ment temperature Tc, that is the regime most relevant to QGP physics. We
emphasize that these are universal features that follow from ihQCD, regard-
less of the detailed choices made for the potentials V and Z that enter the
ihQCD action.

18 The constant κ that appears in this normalization is defined in (150).
19 This can be shown analytically [119].
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It is tempting to compare the actual value for the decay rate we obtain
from ihQCD for the non-conformal plasma to the original conformal result
(151). In the conformal case, for a typical choice, one makes for λt = 6π
[119] and one finds

ΓCS

∣∣∣∣
conf

/T 4 ≈ 0.045 . (159)

On the other hand, if one calculates (153) at Tc using values of parameters
quoted above, one finds

2.8 > ΓCS

∣∣∣∣
ihQCD

(Tc)/T
4
c > 1.64 . (160)

This is much larger than the conformal value! We conclude that the rate of
sphaleron decays, hence the production of CME in the non-conformal plasma
modeled by ihQCD is much larger than the conformal plasma modeled by
the AdS–Schwarzchild black-brane.

Magnetic field dependence of the sphaleron decay rate was studied in [82].
For this calculation, one has to use the background with the flavor term that
follows from (96). The analytic result (153) is still valid but one finds that
now it is a (different) function of T and B when the functions entering in
this expression are expressed in terms of T and B. This is because Φh is
now a function of both B and T , as the value of the dilaton at the horizon
depends on the integration constants T and B chosen when solving the
background field equations. Furthermore, the entropy density s that was a
function of T before now becomes a function of also B, since the area of
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Fig. 26. The sphaleron decay rate, normalized by its value at B = 0 as a function
of B for the various choices of T . The plot taken from paper [82].
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the horizon also depends on these integration constants. We show the result
for the sphaleron decay rate in Fig. 26. We again observe that the value of
the decay rate increases with T for any value chosen for B. On top of that,
we also observe that it also increases with increasing B for any choice of B.
This leads to the holographic prediction that presence of a magnetic field
further strengthens the rate of sphaleron decays, hence fortifies the axial
chemical potential µ5. One, therefore, expects a stronger production rate
for the chiral magnetic effect for larger values of the magnetic field.

9. Conclusion and a look ahead

In these lectures, we aimed at a self-contained introduction to applica-
tions of the gauge/gravity duality in QCD, with emphasis on the quark–
gluon plasma produced in the heavy-ion collision experiments. We have ex-
plained the construction of the improved holographic QCD model, explained
how to fix its parameters by comparison to lattice QCD data, the structure
of the vacuum state and the thermal states, calculation of thermodynamic
observables and comparison to the lattice data, the hydrodynamics and the
transport coefficients such as the bulk and the shear viscosities, holographic
treatment of energy loss of hard probes in QGP, and finally, the QGP under
external magnetic fields. We argued that the model should be trusted up
to a certain UV scale above which weak coupling effects are expected to
invalidate the holographic correspondence. The model seems to successfully
capture all the salient features of QCD in the IR and match very well with
the thermodynamic observables and the hadron spectra calculated on the
lattice.

Our predictions in the IR regime comes in two different flavors: the
qualitative predictions and the quantitative predictions. The most impor-
tant qualitative predictions are: a holographic connection between linear
confinement and a discrete and gapped hadron spectrum, presence of a de-
confinement temperature at finite T for any holographic gauge theory that
exhibits linear confinement at zero T , a universal increase in transport co-
efficients such as the bulk viscosity and the sphaleron decay rate as temper-
ature approaches the deconfinement temperature from above, and universal
bounds on diffusion constants that describe the energy-momentum loss of
probe quarks in the plasma. On top of this, the quantitative predictions
of the specific holographic model with parameters fixed by comparison to
lattice data are also interesting.

We have deliberately left out the various important topics:

— Fixing the improved holographic model in the Veneziano limit with
large number of flavors is very important if we want it to agree with
all available lattice data, not only qualitatively but also quantita-
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tively. One needs to take into account the various aspects of flavor
physics in this quest: the meson spectra, thermodynamic functions
at finite baryon chemical potential, physics under external magnetic
fields, anomalous transport etc. This task is hard but rewarding: once
the model in this regime is completely fixed, then interesting predic-
tions for the various other observables can be made.

— One open field of research is the full phase diagram of the improved
holographic theory in the Veneziano limit on the full phase space
parametrized by (T, µ,B). It may be very interesting to see if there
are new, previously unknown phases in this phase space. It is also
very important to obtain, at least qualitatively, the shape of the phase
separation surfaces between, confined/deconfined, chirally symmet-
ric/chirally broken etc. phases in this space.

— Fixing the CP-odd sector of the holographic model. We have seen in
the last section that the kinetic term Z(Φ) of the bulk axion is weakly
constrained in our theory due to the lack of lattice data. One poten-
tially fruitful idea is to nail this function down by comparing Euclidean
correlation functions that involve the operator trG ∧ G with future
lattice data. This requires establishing a long-term collaboration with
lattice experts.

— Related to the previous point, one may consider testing the holographic
theory by comparing the Euclidean correlators of energy-momentum
tensor, the topological charge operator and the trF 2 operator. In
particular, holographic calculation of the spectral densities associated
with these operators may be very useful in analytically continuing
the lattice data for the Euclidean correlators with the final aim of
calculating the real-time correlators on the lattice.

— We have described how to calculate the glueball and the meson spectra
in the holographic model leaving out baryon spectrum in the improved
holographic theory. The baryon sector of the theory is harder to treat
in the holographic dual model and it constitutes a sub-field that needs
to be developed.

— Another extremely important field that needs more attention is the
process of thermalization in strongly coupled non-conformal gauge the-
ories, such as the QCD. Indeed, one of the most important open prob-
lems in the heavy-ion physics is the precise mechanism(s) behind the
rapid thermalization of the system of quarks and gluons produced in
the heavy-ion collisions into a nearly thermal state of the quark–gluon
plasma. The study of holographic thermalization has started with the
pioneering work of Chesler and Yaffe [121]. This work and most of the
subsequent developments focused on thermalization and out-of equi-
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librium physics in conformal rather than non-conformal plasmas. The
latter only started attracting attention recently with the works [122–
130]. We have not reviewed these developments in this review due to
lack of space.

— Finally, there are many open problems concerning the strongly inter-
acting QGP under external magnetic fields. One of the most important
is the question of renormalization in anomalous transport coefficients.
In particular, radiative or non-perturbative corrections to chiral mag-
netic and chiral vortical conductivities in the presence of dynamical
gluon or photon field to the axial anomaly is an open problem that
can be explored using holographic methods [131, 132]. Another open
problem related to magnetic fields is to use holographic methods to
understand the physical reasons behind the inverse magnetic cataly-
sis. A paper coming closest to this is [84] but there is still much to be
done to understand this phenomenon both on the field theory and the
holography sides. Finally, in a very recent study [83], a breakdown of
hydrodynamical approximation in the presence of a magnetic field is
observed. Whether this is an artifact of the holographic model or a
similar effect can be observed in realistic systems, if so, whether this
breakdown may have significant consequences for the physics of QGP
under magnetic fields are to be understood in future work.

As a final word, I would like to say that the quest for developing a realistic
holographic model for QCD and QGP physics has been and continues to be
a great scientific journey that in the end provided us with a useful analytic
tool in elucidating the problems that haunted the high energy community
for a long time. I should apologize for my unintended omission of the various
references on the subject.

The improved holographic QCD theory we reviewed in these lecture notes
is developed in collaboration with many authors, especially Elias Kiritsis and
Francesco Nitti. In addition to this, I would like to acknowledge collabora-
tion and useful discussions with Mohammad Ali-Akbari, Francesco Bigazzi,
Alex Buchel, Aldo Cotrone, Tuna Demircik, Ioannis Iatrakis, Aron Jansen,
Matti Järvinen, Karl Landsteiner, Georgios Michalogiorgakis, Govert Nijs,
Carlos Núñez, Andy O’Bannon, Marco Panero, Ioannis Papadimitriou,
Giuseppe Policastro, Andreas Schafer, Wilke van der Schee and especially
Liuba Mazzanti. Subsequent developments in the subject, in the context of
V-QCD (the Veneziano limit of improved holographic QCD), resulted from
the various works by Timo Alho, Daniel Areán, Francesco Bigazzi, Roberto
Casero, Aldo Cotrone, Ioannis Iatrakis, Matti Järvinen, Keijo
Kajantie, Elias Kiritsis, Carlos Núñez, Angel Paredes, Cobi Sonnenschein
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and Kimmo Tuominen. This work was supported in part by the Netherlands
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and the Delta-Institute for Theoretical Physics (D-ITP) that is funded by
the Dutch Ministry of Education, Culture and Science (OCW). I am grateful
to the organizers of the LVI Cracow School of Theoretical Physics in spring
2016 in Zakopane, Poland for their hospitality and inspiration.

Appendix A

Scalar variables

First, rewrite the Einstein equations for the black-brane background in
the domain-wall coordinate system

ds2 = e2A(u)

(
du2

f(u)
+ δijdx

idxj
)
− f(u)dt2 (A.1)

that is related to (the Lorentzian version of) (64) by a coordinate trans-
formation du = exp(Ar)dr. The Einstein equations (66) in this coordinate
system read

A′′=−4

9

(
Φ′
)2
, 3A′′+12

(
A′
)2

+3A′
f ′

f
=
e2A

f
V (Φ) , f ′′+4A′f ′=0 .

(A.2)
Now define

D(Φ) ≡ A′ , (A.3)

and use the chain rule for derivatives to solve the first equation in (A.2)
for D

D(Φ) = −1

`
e−

4
3

∫ Φ
0 dΦX(Φ) , (A.4)

where we used definition (67). Then again using the chain rule in the third
equation in (A.2) and taking into account the definitions one obtains the
equation of motion for the Y scalar variable (69). Now, use the chain rule
to rewrite the second equation in (A.2) in terms of X, Y , D and their
derivatives, take the logarithmic derivative of this equation with respect
to Φ, use the solution (A.4) and equation (69) derived above, and simplify
to obtain the equation of motion for the X scalar variable, equation (68).
All in all, we derived:

dX

dΦ
= −4

3

(
1−X2 + Y

)(
1 +

3

8

1

X

d log V

dΦ

)
, (A.5)

dY

dΦ
= −4

3

(
1−X2 + Y

) Y
X
. (A.6)
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These are two first order equations. The total degree of the system of Ein-
stein’s equations is 5. The rest of the equations follow from (A.4) and
definitions (67) as:

A′ = −1

`
e−

4
3

∫ Φ
0 dΦX(Φ) , (A.7)

Φ′ = −3X

`
e−

4
3

∫ Φ
0 dΦX(Φ) , (A.8)

g′ = −4Y

`
e−

4
3

∫ Φ
0 dΦX(Φ) , (A.9)

where we defined g = log f . These equations complete the system. The
corresponding equations for the thermal gas solution (63) can be obtained
from these by setting Y = 0.

Appendix B

The potentials

In this appendix, we list the potentials of the V-QCD model. We define
λ = expΦ. The potentials read:

Vg(λ) =
12

L2
0

[
1 +

88λ

27
+

4619λ2

729

√
1 + ln(1 + λ)

(1 + λ)2/3

]
, (B.1)

Vf0 =
12

L2
UV

[
L2

UV

L2
0

− 1 +
8

27

(
11
L2

UV

L2
0

− 11 + 2x

)
λ

+
1

729

(
4619

L2
UV

L2
0

− 4619 + 1714x− 92x2

)
λ2

]
,

κ(λ) =
[1 + ln(1 + λ)]−1/2[

1 + 3
4

(
115−16x

27 − 1
2

)
λ
]4/3 , a(λ) =

3

2L2
UV

, (B.2)

where LUV is the AdS radius, so that the boundary expansion of the metric
is A ∼ ln (LUV/r) + · · · . The radius depends on x as

L3
UV = L3

0

(
1 +

7x

4

)
. (B.3)

The function w is parametrized by a single parameter c

w(λ) = κ(cλ) =
(1 + log(1 + c λ))−

1
2(

1 + 3
4

(
115−16x

27 − 1
2

)
c λ
)4/3 , (B.4)

where x is the ratio of the number of flavors to color.
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