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Chiral anomalies give rise to dissipationless transport phenomena such
as the chiral magnetic and vortical effects. In these notes, I review the
theory from a quantum field theoretic, hydrodynamic and holographic per-
spective. A physical interpretation of the otherwise somewhat obscure con-
cepts of consistent and covariant anomalies will be given. Vanishing of the
CME in strict equilibrium will be connected to the boundary conditions in
momentum space imposed by the regularization. The role of the gravita-
tional anomaly will be explained. That it contributes to transport in an
unexpectedly low order in the derivative expansion can be the most eas-
ily understood via holography. Anomalous transport is supposed to play
also a key role in understanding the electronics of advanced materials, the
Dirac and Weyl (semi-)metals. Anomaly related phenomena such as neg-
ative magnetoresistivity, anomalous Hall effect, thermal anomalous Hall
effect and Fermi arcs can be understood via anomalous transport. Finally,
I briefly review a holographic model of Weyl semi-metal which allows to
infer a new phenomenon related to the gravitational anomaly: the presence
of odd viscosity.
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1. Introduction

Symmetries are one of the most fundamental concepts of modern physics.
The same is true for quantum theory. However, sometimes these two are in
conflict with each other. More precisely, a symmetry present on the level of
classical Lagrangian might not be compatible with quantum theory. When
this happens, we speak of a quantum anomaly [1-3].

What shall specifically concern us here are chiral anomalies. These are
intimately related to the fact that in even space-time dimensions, the Lorentz
group has two unitarily inequivalent spinor representations giving rise to
left- and right-handed spinors. For massless fermions, independent phase
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rotations of left- and right-handed spinors are symmetries of the classical
theory. On the quantum level, at best one linear combination of these two
symmetries can be preserved.

In the realm of high-energy physics, the prime example of a physical phe-
nomenon induced by the incompatibility of chiral symmetries with quantum
theory is the decay of the neutral pion into two photons. Besides explain-
ing such otherwise forbidden (or strongly suppressed) processes in particle
physics, anomalies also place very stringent consistency conditions on gauge
theories. Gauging an anomalous symmetry leads to violation of unitarity.
The divergence of the current couples to the longitudinal gauge degrees
which normally corresponds to zero norm states. Anomalies lead to scatter-
ing of physical states into zero norm states and, therefore, destroy unitarity.
Alternatively, one can allow a mass term for the gauge field, then how-
ever renormalizability is lost [4]. Even when the symmetries are not gauged,
anomalies do place very stringent conditions on the strong dynamics of gauge
theories. 't Hooft [5] argued that the spectrum of chiral fermions in a gauge
theory is protected by this type of anomalies appearing in global symme-
tries. These constraints of “anomaly matching” between (weakly coupled)
high-energy theories and (strongly coupled) low-energy effective theories can
be exploited to get a handle on otherwise difficult to understand strong gauge
dynamics. The power of anomalies lies in the fact that they are subject to
a non-renormalization theorem [6] stating that the anomaly is exact as an
operator relation at one loop.

In the recent years, anomalies have also emerged as the leading con-
cept that allows to understand (and discover) unusual transport phenomena
of quantum many-body physics involving chiral fermions. In high-energy
physics, this is relevant to the physics of the quark—gluon plasma as cre-
ated in heavy-ion collisions at RHIC and LHC. Anomalies have been in-
voked to predict charge asymmetries in the final state of a heavy-ion colli-
sion [7-9] and indeed charge asymmetries consistent with the prediction of
anomalous transport theory have been detected in experiments at RHIC and
LHC [10, 11]. In astrophysics, anomalous transport phenomena have been
suggested to explain the sudden acceleration suffered by neutron stars at
birth (neutron star kicks) [12] in cosmology as origin of primordial magnetic
fields [13].

However (and probably somewhat surprisingly) anomalous transport phe-
nomena are about to play also a lead role in condensed matter physics. It
is already well-established that quantum Hall physics (see [14] for a recent
review) can be described in a quantum field theory language via anomaly
inflow [15] from bulk to boundary of a topologically non-trivial insulator.
More recently, also the bulk physics of three (space) dimensional metals has
been argued to be governed by chiral anomalies, e.g. via the phenomenon
of negative magnetoresistivity. Of course, these are not ordinary metals but
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very special ones in which the Fermi surface lies at or very near linear band
touching points [16-18|. In these cases, the effective low-energy electronic
excitations near the band touching points are chiral fermions and the theory
of anomalous transport can be applied to infer and describe a variety of
exotic transport phenomena.

The aim of these lectures is to give an introduction to the subject with
emphasis on making the underlying quantum field theoretical concepts as
clear as possible. If one understands as a quantum field theory a prescription
of how to compute correlation functions of (gauge invariant) operators, then
the string theory derived holography needs also to be taken into account.
Indeed, holography has played a major role in the modern area of anomalous
transport and many subtleties arising when dealing with anomalies are most
easily understood using the holographic framework [19-24].

These notes are organized as follows: in Section 2, we will review chiral
triangle anomalies. Particular emphasis will be put on the ambiguities in the
regularization procedure and how they can be fixed by physical constraints.
This will lead to the concepts of covariant and consistent anomalies [25]. In
Section 3, we will discuss the Landau level quantization of chiral fermions.
We will see how the (covariant) anomaly arises as a conflict between normal-
ordering and spectral flow. We will emphasize that the spectral flow needs
to be supplemented with boundary conditions at a cutoff in momentum
space and from this we will give a physical picture via anomaly inflow of
the consistent anomaly. In Section 3, we will use the Landau level quanti-
zation to derive the anomalous transport formulas for chiral magnetic and
chiral vortical effects. In Section 4, we will briefly review relativistic hydro-
dynamics with anomalies and the fact that the contribution of the (mixed)
gravitational anomaly cannot be fixed by hydrodynamic arguments alone
due to a mismatch in the number of derivatives in the transport phenom-
ena and the anomaly. Section 5 will introduce a simple holographic model
allowing to make the relation between anomalies and transport coefficients
manifest. The derivative mismatch for the gravitational anomaly contri-
bution is overcome in holography by taking derivatives in the holographic
direction. Section 6 is devoted to the physics of Weyl semi-metals. After
a quick introduction, we will show how almost all exotic Weyl semi-metal
phenomenology can be understood from anomalous transport theory as out-
lined in the previous sections. These include negative magnetoresistivity in
magnetic fields, in axial magnetic fields, thermal hall transport and the ap-
pearance of edge currents related to Fermi arcs. Section 7 will then briefly
review a recently developed holographic model of Weyl semi-metal and show
that it can be used to derive a new transport phenomenon related to the
gravitational anomaly not contained in the ones discussed previously: odd
viscosity.
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2. Triangle anomalies

Let us start with a massless Dirac fermion

w:($g>. (2.1)

In a chiral (Weyl) representation of the v-matrices such that

75=<(1) _?) (2.2)

We define the left- and right-handed spinors via the projector Py = % (1£75).
The massless Dirac equation

iv'o =0 (2.3)
has two independent U(1) symmetries acting as 1, — €*¥+1), and ¢* —

e which we denote with U(1), gr. The corresponding conserved currents
are JE’R = U~H*P_ ¥ and on the level of classical field theory,

Oull = 0. (2.4)

For the future reference, let us also write down the Hamiltonians for left-
and right-handed fermion in momentum space

Hy = 155, (2.5)

which will be convenient once we discuss Weyl semi-metals.

2.1. Chiral anomalies

Let us focus now on a single chiral fermion. We can define the generating
functional that allows to compute arbitrary n-point functions of the current
via gauging. We introduce an external gauge field A, and write the action as

&:/&m%ﬂ@—mmmw. (2.6)
The quantum effective action (1-particle irreducible) is defined as!

Jw_/meﬁ# (2.7)

! More precisely, one might use the action Sy[A] + S_[0] in the exponent of the path
integral to get a well-defined Dirac operator.
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Since the action is invariant under the transformation 04, = 9, for arbi-
trary functions A(z), it follows seemingly that the quantum action is invari-

ant and obeys
01y [A]
/d4x Do+ A, = 0. (2.8)

By construction, functional variation with respect to the gauge field inserts
the operator J. Therefore, gauge invariance suggests that @LJi =0 as an
operator equation, i.e. that arbitrary correlation functions with one insertion
of the divergence of the chiral current should vanish. As it is well-known, this
is not true and the obstruction of defining such a gauge invariant quantum
action is the chiral anomaly.

Let us reconsider the anomaly in the elementary triangle diagram of three
chiral currents. Applying the usual Feynman rules to the triangle diagrams
in Fig. 1, we find the three-point amplitude (p + ¢+ k = 0)

—_— At (L) (D (] PPy
v = [ o (=P P +q)
+(perv,perq). (2.9)
I+q l+q
p,k P,k
l—p I-p

Fig. 1. Triangle diagrams with three currents at the vertices. While the diagrams
are linearly divergent, the sum is actually finite but undetermined. Physical condi-
tions such as the Bose symmetry on the external legs (chiral fermions) or covariant
coupling to the external field (covariant anomaly) or conservation of the vector
current (axial anomaly) have to be imposed in order to fix the ambiguity.

Details of the evaluation of this diagram are discussed in many textbooks
such as [26], so we will only sketch the most important features. First, we
note that the parity odd part of the projection operator P4+ is relevant. So
we replace it with § = 5, then use tr[y#y”yPy ys] = —4ie"’P*. Computing
the divergence

v d4l la(l _ p)ﬂ lOé(l + Q)ﬁ av
V=2 [ s (G G| e v ) =0,
(2.10)
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Because of the Lorentz symmetry, the integrals have to be proportional to
either p,pg or gogs and these combinations vanish once contracted with the
epsilon tensor. On the other hand,

prp _ ' laqﬁ (l B p)a(p + Q)ﬁ avBu
PV ‘2/<2w>4 [<z+q>2z2 LT +(“Hy’p2?1ﬁ

If the integrals were well-defined, we could make the substitution I — [+ p
in the second integral. The single integral is, however, linearly divergent and
has to be defined properly. Vanishing of p,V#*? depends now on the way
we have labeled the internal loop momentum. Any other choice is just as
good. The most general choice is | — [ + ¢(p — q) + d(p + q), where ¢, d are
arbitrary real numbers. Now, the integrals can be evaluated in a Lorentz
invariant fashion. All divergences cancel but the final result is undetermined
because of the ambiguity in labeling the internal loop variable (since the
gamma matrix trace gives an epsilon tensor, it is only the anti-symmetric
combination of external momenta that contributes). One finds

pu VP = i%(l — 0)ePBgoks, (2.12)

@ VI = ig_—l?(l — c)e“po‘ﬁkzapﬁ, (2.13)
T

k VP = 1%20 P gapp . (2.14)

Thus, the one-loop three-point function of three chiral currents is finite but
undetermined. This poses the question what is the correct value of ¢? Not
too surprisingly the answer to this question is: it depends! It does depend
on the physical constraints the three-point function shall obey.
First, let us go back to the quantum effective action and demand that
the three-point function of currents is
§3r

pop _ pHRvp _
1% ry A ALA, (2.15)

Since the order of differentiation does not play any role, we must impose
the Bose symmetry on the external legs, all three vertices couple in precisely
the same way to the gauge field. This imposes ¢ = 1/3. If we express the
anomaly now in terms of the current and the external gauge fields, we find

1
Tty = t oo PN F L Foy, (2.16)

For reasons to be explained shortly, this is called the consistent form of the
anomaly.



Notes on Anomaly Induced Transport 2623

On the other hand, we might be interested in defining a quantum opera-
tor J/ that has nice properties with respect to gauge transformations. More
precisely, we would like to think of the current as an object that couples
covariantly (i.e. without anomaly) to the external gauge fields. This singles
out one particular vertex and demands that the divergence on the other
two vertices vanishes. The solution for this covariant definition of current is
c =1 and the anomaly is now

Ol =t P FluFpy. (2.17)

3272

This looks almost the same as before except for the overall factor of 3 in
the anomaly. It is called the covariant anomaly. Since now we have treated
the vertices in different ways, it is clear that this definition of three-point
amplitude violates the Bose symmetry (2.15). This means that the covariant
current obeying the covariant anomaly equation (2.17) cannot be thought
of as a functional variation of a quantum effective action®. It might look
surprising that we obtained two different answers for the divergence of “the
current” by imposing two different but equally reasonable looking conditions.
Later, when discussing anomalies and transport, we will suggest physical
interpretations of these different quantum operators, the consistent (J*)
and the covariant (J#) currents.

2.2. Azial anomaly

On the level of classical physics, a Dirac fermion is the direct sum of left-
and a right-handed chiral fermions, ¥p = 1, @ ¥r. Anomalies pose a re-
striction on the possibility of defining chiral fermions in the quantum theory.
Not too surprisingly, they also have implications on this direct sum. Let us
proceed naively and simply define the quantum theory of a Dirac fermion as
the quantum theory of a left-handed and a right-handed fermion. We want
to keep the external gauge fields distinguishable, i.e. we introduce left- and
right-handed gauge fields coupling to the chiral currents independently. We
define vector and axial currents via

T =TT (2.18)
=T (2.19)

2 Tt also appears as the edge current in systems where the anomaly is localized on
a co-dimension one boundary and canceled via a higher dimensional Chern—-Simons
term as in quantum Hall systems. See also [27] for an application this in the context
of anomalous transport theory.
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and a basis of vector-like and axial gauge fields
Ay =3 (AL + A7), (2.20)
A =4 (AL — A . (2.21)
We can just add and subtract equations (2.16) to find

1
— ¢
4872

P (FuyFox + Fio Fy) (2.23)

T+ = S O o (2.22)

OnTs = 2472
where Fy,, = 0,A, — 0,A, and F,, = aquB/ — (‘),,AZ. We have chosen to
express this in terms of the consistent currents. The result is the same up
to an overall factor of 3 for the covariant currents. Equation (2.22) looks
troublesome: eventually one would like the vector current to play the role of
the electric current that couples to a dynamical gauge fields. Even without
quantizing the gauge fields, one should expect that the electric current acts
as source of Maxwell’s equations

TH =0, F" (2.24)

This is only consistent if the divergence of the vector current vanishes, since
0,0, F" = 0. One might say that this is still true in the absence of axial
gauge fields and that indeed in nature on a fundamental level axial gauge
fields do not exist. However, one should keep in mind that equation (2.22)
is just a short form for insertions of the divergence of the vector current in
correlation functions. Its meaning is that there is a three-point function of
a divergence of a vector current with an axial current and another vector
current that does not vanish. Furthermore, as we will see later in Weyl semi-
metals, such axial gauge fields do arise quite naturally in the low-energy
effective description of their electronics. So we need to solve this problem of
non-conservation of the vector current. Happily this has been done long time
ago [28] by noticing that once gauge invariance is lost, nothing prevents us
from introducing additional (non-gauge invariant) local counterterms to our
quantum action. These are called Bardeen counterterms and they redefine
the quantum action as follows

I'[AA°] - T'[AA°] + / d'z e PP A AL (1 Fpn + c2F) . (2.25)

If we now compute the (consistent) currents as variation of the effective
action with respect to the gauge fields and chose ¢; = ﬁ and ¢y = 0, we
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find
ouJ" =0, (2.26a)

1
éhj“zigﬁawﬁ(mmJ%A+FﬂFg). (2.26b)

This form of the anomaly is the consistent axial anomaly. The Bardeen
counterterms guarantee that a conserved vector current can be defined al-
ways, independently of the chosen regulator. We have not specified the
regulator but generically a left-right symmetric regularization would not
give a conserved vector current. On the other hand, manifestly gauge in-
variant regulators such as dimensional reduction automatically produce the
Bardeen counterterms in the effective action and nothing has to be added
“by hand”. The particular Chern—Simons terms that are the Bardeen coun-
terterms exist only if there are at least two independent gauge fields. That
makes the nature of the axial anomaly as a mixed anomaly manifest. The
precise statement of the axial anomaly is that there is no quantum theory
in which both the axial- and the vector-like currents are conserved at the
same time.

2.8. Wess—Zumino consistency condition

So why the anomaly is called consistent? To understand this, we need
some more formalism. Our object of interest is the quantum effective ac-
tion I'[A] (for simplicity of notation, we go back to the case of only one
Abelian gauge field). An anomaly is a non-invariance of the effective action
under a gauge transformation. The gauge transformation can be written
as a functional differential operator 0y = [ d*z 8,)% and the anomaly is

expressed as

S\I[A] = Ay . (2.27)

The right-hand side arises because there is no regularization scheme that is
compatible with the symmetry. It is a remnant of the regularization and
remains even if we renormalize and take the regulator to infinity. That
makes it intuitively clear that it has to be the integral of a local expression
in the field A,. On the other hand, the quantum effective action arises
by integrating out massless (chiral) fermions and is essentially a non-local
expression. We further observe that the gauge transformations have to obey
the gauge algebra which, in our simple example, means that two gauge
transformations with different gauge parameters have to commute

[0x,05] =0. (2.28)
It follows now that the anomaly has to fulfill
0NAy — 0. AN =0. (2.29)
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This is the Wess—Zumino consistency condition. A more geometric formula-
tion can be given with one more piece of formalism. Let us promote the gauge
parameters to a Grassmann valued field A(z) — ¢(z) called the “ghost™. Tt
is useful to have the analogy of the exterior derivative ‘d” and the formalism
of differential forms in mind, e.g. the field strength of a gauge field (1-form)
A = A,dz" is defined as the exterior derivative I’ = %Fwdx“dx” =dA. In
an analogous way, let us introduce an exterior derivative on field space

)
= [ d'z0uc— 2.30
s / 2 Oucs A, ( )
which is nothing but a gauge transformation with the Grassmann valued
ghost field ¢ as gauge parameter. It is called the BRST operator®. As one
can easily check, it is nilpotent s> = 0. The anomaly can now be written as

sT[A] = A. (2.31)

We can think of the anomaly as a one-form on field space (a local integrated
polynomial of the field A,,, one ghost field and a finite number of derivatives,
i.e. having ghost number one). The Wess—Zumino consistency condition is
the fact that the anomaly is a closed one-form with respect to the BRST
operator

sA=0,  A#sly[A]. (2.32)

Here, we have included the condition that it should not be possible to write
the anomaly as the BRST variation of an integral of local term of ghost-
number zero. If that were the case, we could just add I as a counterterm
of the effective action and get a new redefined and BRST (gauge) invariant
quantum action. This maps the anomaly to a cohomology problem: the
consistent anomaly is a non-trivial element of the BRST cohomology on the
space of local integrated monomials in the fields at ghostnumber one. Fi-
nally, let us note that all this formalism can be extended in full generality
to non-Abelian gauge algebras.

2.4. Covariant anomaly

Now we know that the consistent anomaly is a solution to the consistency
condition. But what is the covariant anomaly? We observe that the con-
sistent current defined as the functional derivative of the quantum action is
not a gauge invariant operator if there is an anomaly. Using [s,0/0A,] = 0,

we find 5 4
sTH = E,4 — _me“”pkaychA, (2.33)

3 In the path integral quantization of non-Abelian gauge theories, this is the Fadeev—
Popov ghost that arises in defining the measure.
* See [29] for a recent review.
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where in the expression on the right-hand side we have specialized to one
chiral fermion again. We already know that in the triangle diagram we can
put all the anomaly into a single vertex. Thus, it must be possible to define
a current with covariant couplings to the external legs. In particular, we
should demand from this quantum operator sJ* = 0 even in the presence of
an anomaly.

From (2.33), it is easy to see that by adding a Chern—Simons current to
the consistent current, we can define

+1
2472

Adding the Chern—Simons current to the consistent current, we can con-
struct the covariant current. The defining characteristics of this current are
that it is invariant under all the gauge transformations, even the anoma-
lous ones, and that it cannot be obtained from variation of an action with
local counterterms. We emphasized this already in the analysis of the tri-
angle diagram but now we can also see it from the Chern—Simons current
n (2.34). We can compute the anomaly in the covariant current (it is a co-
variant object under the anomalous gauge transformations but it does have
an anomaly by itself)

Jir =T+ PR AL (2.34)

+1
3272
As expected, this is 1/3 of the consistent anomaly®.

We can go through the same exercise in the case of the axial anomaly

and construct the covariant vector and axial currents. With our canonical
choice of taking the vector current explicitly conserved, we have

Ol g = a5z Fu Fpy . (2.35)

1

F=T"+ — PP AP, (2.36a)
1

JE =T+ on —— PR ATED, (2.36b)

Note that only the axial gauge potential enters these expressions. This is
a reflection of the fact that we have chosen to put all the anomaly into the
axial current. For the future reference, let us also write down the covariant
vector and axial anomaly

1 1 /e o o

OuJ* = QGWMF Fp)\ = o2 (E -Bs + Es - B) , (2.37a)
1

Ot = 153 (FuwFpn + FR,F)) = 55 (E B+ Es- 35) . (2.37D)

® We could also define a conserved current by adding the Chern-Simons current with
an appropriate coefficient. Such a current is then neither consistent (variation of an
effective action) nor gauge invariant.
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The covariant anomaly looks completely vector—axial symmetric once we
express it in terms of electric and magnetic fields. Generally, there always
exist Chern—Simons currents that can be added to the consistent currents
making the resulting covariant current a covariant object under all gauge
transformations. They are also known as Bardeen—Zumino polynomials (not
to be confused with the Bardeen counterterms). The theory of covariant and
consistent anomalies goes back to [25].

2.5. Gravitational anomaly

There is one more anomaly that appears in the triangle diagram of
one chiral current and two energy-momentum tensors. This is the gravi-
tational contribution to the chiral anomaly (also mixed gauge-gravitational)
anomaly [30-32]. It is by nature a mixed anomaly and, therefore, one
can always use Bardeen counterterms to shift the anomaly between the
involved symmetries. Note that the Bardeen counterterms have the form
connection A connection A field-strength. In the case of gravity, the connec-
tion (= gauge field) is the Levi-Civita connection and the field strength is
the Riemann tensor. On a fundamental level, gravity is always gauged in
nature and this implies that there should not be any anomaly in the dif-
feomorphism symmetry. So it is customary to shift the anomaly completely
into the chiral current in which case it takes the form of

+1

=
Vud 76872

PR 5, RP ooy (2.38)
for a single chiral fermion. Again, one can find a covariant form of this
anomaly applying the principles outlined in the previous subsection. While
this looks a rather straightforward application of the principle that anomalies
are contractions of field strength tensors with the epsilon tensor, there is at
least one clear difference: the usual chiral and axial anomalies are expressions
involving two derivatives, whereas the gravitational anomaly involves four
derivatives.

2.6. Anomaly coefficients

Anomalies are subject to non-renormalization theorems. The anomaly
coefficient is exact at the one-loop level. Therefore, one can infer the presence
of an anomaly by analyzing the triangle diagram with generic currents at
the vertices. Let us assume a generic symmetry group generated by matrices
Ty, such that [T, Ty] = ifapcTe. Chiral anomalies are present if the anomaly
coefficient

dype = %Ztr({TaL?TbL}TCL) - %Ztr({Tf, TbR}TCR) (2.39)
L R
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does not vanish. Here, the sums run over the species of left- and right-
handed fermions and T™® are the representations of left- and right-handed
fermions and the curly bracket is the anti-commutator. In the case when
all symmetries are Abelian, this boils down to sums over triple products of

charges
dape = Y (QE:qu ch) -3 (qf”qg”qg) : (2.40)
L R
A mixed gravitational anomaly is present if

o= ar— Y af (2.41)
L R

is different from zero. We call dg. and b, the chiral and gravitational
anomaly coefficients. Note that dgp. is completely symmetric. By means
of adding Bardeen counterterms, one cancels some of the consistent anoma-
lies. This is precisely the case of the axial anomaly, where dayvy = dyay =
dyva # 0 but the consistent vector current is conserved.

3. Landau levels and anomalies

We now study chiral fermions in a magnetic field®. The Weyl equation is

iPpY =0 (3.1)

and the covariant derivative is D, = 0,, —iA,, (absorbing the electric charge
into the definition of the gauge field). The magnetic field is taken to point in
the z-direction and the chosen gauge field is A, = Bx. The Weyl equation is

i (at - 513) b =0. (3.2)

We now use the fact that the differential equation depends explicitly only
on z and not on the other coordinates, so we can use the Ansatz ¢ =
e~ Wt=Pyy=P=2)q) () to find the matrix equation

—1(0y + Bz — py) W+ ps Y
For w = p,, there is a simple solution ¥ o eXp[_(Bgigpy)Q] and ¥_ = 0,
whereas the corresponding solution with w = —p, and ¥, = 0 is non-

normalizable. This is the lowest Landau with s = +1, where s is the eigen-
value of the spinor wave function of - B/|B|. For a chiral fermion of opposite
chirality, one finds that the normalizable solution has w = —p, and s = —1.

6 A recent review on quantum field theory in magnetic field backgrounds is [33].



2630 K. LANDSTEINER

More generally, the whole spectrum arranges into Landau levels with energy
levels given by

Wp.ms = /P2 + B2n+1)F sB. (3.4)

The Weyl equation in a magnetic field can be separated into a plane wave
and a harmonic oscillator corresponding to the degrees of freedom along
and transverse to the magnetic field. Accordingly, the momentum along
the magnetic field is still a good quantum number but the momenta in
the plane transverse to the magnetic field are replaced by just the har-
monic oscillator quantum number n. In our gauge choice, the momentum in
y-direction parametrizes the degeneracy of the Landau levels of % states
per unit area. Almost all energy eigenvalues are spin degenerate, meaning
that for each spin up state of a given energy and momentum, there is also
a spin down state with the same energy and momentum except for the low-
est one with n = 0, and the spin either aligned or anti-aligned with the
magnetic field according to chirality. For these lowest Landau levels, the
energy is simply linear in the momentum p,. The spectrum is sketched in
Fig. 2. Let us apply now the standard argument that allows to derive the
chiral anomaly from spectral flow [34]. In addition to the magnetic field, we
switch on a parallel electric field F,. This field will pump momentum into
the system according to Newton’s law p, = E,. In the Dirac sea of the higher
Landau levels, all states are occupied and a fermion has no available state
to move to’. For the lowest Landau level, there is something more going
on. We assume, as usual in quantum field theory, that the infinite Dirac sea

-

= Pz

Fig.2. Landau level spectrum of a single Weyl fermion. The higher Landau levels
are spin degenerate and gapped. The lowest Landau level is chiral fermion whose
motion is restricted along the magnetic field. The Dirac sea is comprised of all the
states of negative energy which includes all lowest Landau level states of negative
momentum. The spin is polarized along the magnetic field.

" In condensed matter physics, it is known that fully occupied bands do not produce
an electric current (if not for topological reasons).
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of negative energy states is subtracted via a normal ordering prescription.
The electric field pumps momentum into the system and shifts the states in
the Dirac sea of the lowest Landau level to positive momentum. Occupied
states just below the normal ordered vacuum are shifted into empty states
just above the vacuum. This is a particle creation out of the vacuum. We
can also compute the rate of particle creation. The density of states for a
one-dimensional chiral fermion (such as the fermions in the lowest Landau
level) is dn = dp/(27) and their degeneracy is B/(2m). If we combine this
with the Lorentz force, we find

dn _E-B (3.5)

dt 472
But this is just a Lorentz non-covariant version of the anomaly equation
OpJt = 3—126‘“’ PAF uwFpx. So now the anomaly has been recovered from rather
elementary quantum mechanics of a single Weyl fermion without any fancy
quantum field theory. Why was this so easy and where does quantum field
theory hide? It hides in two aspects: first we assumed a notion of normal
ordered vacuum which is our trick to subtract the infinite Dirac sea. The
anomaly is then the incompatibility between the spectral flow and our nor-
mal ordering prescription. There is another aspect of it: where do all the
fermions come from? In this picture, we do not really have to ask this ques-
tion since the Dirac sea is infinite and any finite amount of states that we
pull out of the vacuum will not be able to deplete the infinite supply of states
in the Dirac sea®. In quantum field theory, there is another ingredient that
we will eventually have to take into account: a cutoff has to be introduced at
intermediate stages of the calculations. This will turn out to be an essential
ingredient to the proper spectral flow picture of the axial anomaly. For the
moment, we want to point out that the prefactor of the anomaly obtained
via the spectral flow argument is the one of the covariant anomaly. In
hindsight, this is not surprising, since we assumed that our chiral fermions
couple covariantly to the external fields (i.e. we assumed the usual form the
Lorentz force). The spectral flow picture of the chiral anomaly is sketched
in Fig. 3.

Let us now combine left- and right-handed Weyl fermions to get an idea
of the spectral flow of the axial anomaly. States are created and annihilated
since for each right-handed fermion pulled out of the vacuum, there is a left-
handed particle that is pushed further down into the Dirac sea. The total
anomaly is

dn  d(np—nr) 1 N
dt dt 272
8 Sometimes this is compared to the Hilbert Hotel with an infinite number of rooms.

Any new arrival can be accommodated by simply asking the occupants in room
number n to switch to room number n + 1 leaving the room number 1 available.

(3.6)
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Fig.3. (Color online) Spectral flow picture of the chiral anomaly. In parallel electric
and magnetic fields, the states of the lowest Landau level are pushed across the
normal ordered vacuum. The direction of the spectral flow is indicated by the
black/blue arrow. The electric field is indicated by the gray/green arrow. From
the quantum field theoretical perspective, particles are created out of the vacuum.
Since there is an infinite supply of states in the Dirac sea, it cannot be depleted.

For this particular case, we actually cannot decide if this is the covariant or
the consistent anomaly (2.22) with conserved vector current. Both anomalies
have the same coeflicient, which is not surprising since the vector current
is actually anomaly free and trivially a covariant object under (vector-like)
gauge transformations. The spectral flow picture for the axial anomaly is

depicted in Fig. 4.
\/

Fig.4. Spectral flow picture of the axial anomaly. Chiral fermions of both chirali-
ties are present. The particle creation of right-handed particles is counterbalanced
by annihilation of left-handed particles. The total number of particles does not
change but an imbalance in the number of right-handed and left-handed fermions
is pumped into the system.

Now, let us see how we can understand the spectral flow when we switch
on parallel axial electric field and usual (vector-like) magnetic field. The
spectral flow picture tells us that both left-handed and right-handed parti-
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cles are created out of the vacuum. This indeed looks problematic since it
would mean that vector-like charge (which we eventually want to identify
with the electric charge) is not conserved. To understand better what is go-
ing on, we need to keep in mind that the axial field Az is of different nature
than the true gauge field A, because of the anomaly. Whereas the proper
gauge field is not an observable itself Az is, in principle, observable. A pure

gauge AZ = 0, A5 does not decouple from the theory, it rather couples to the
anomaly. It is, therefore, natural to impose the boundary condition Az =0
at infinity, Az can be different from zero only in a compact domain. Let us
imagine that A # 0 but constant in a slab |z| < L. Then at = +L, there

is a strong gradient of Ag which is nothing but an axial electric field Es. Ifa
parallel (vector-like) magnetic field is present, the covariant anomaly (2.37a)
gets excited and creates charge out of the vacuum at z = —L but destroys
charge in equal amounts at z = +L. This is already good since globally no
net charge is created. But it is not yet good enough! Charge conservation is
a local equation and tells us that charge can only leave or enter a bounded
region via inflow or outflow of current. So even if with the boundary con-
dition AJ|e = 0, we still violate local charge conservation. This is where
the Bardeen—Zumino polynomial comes to rescue. The relation between the
covariant and conserved consistent current (2.36a) tells us that in a region
with non-vanishing axial vector AZ and simultaneous presence of vector-like
field-strength, a Chern—Simons current is created. This current is precisely
such that it provides the inflow guaranteeing local charge conservation. The
spectral flow picture of this consistent picture of the “anomaly” is depicted in
Fig. 5. The fermions following the spectral flow do not really just move out
to arbitrary high momentum. In quantum field theory, we always have to
include a finite cutoff A at intermediate stages of our calculations. So with
the regulator in place, the fermions subject to spectral flow hit the cutoff
and we need to tell them what they should do at the cutoff by imposing
boundary conditions in momentum space. Of course, the correct boundary
condition for a conserved electric current is that as soon as the fermions hit
the cutoff, they generate a current in space transporting precisely the right
amount of charge from the region of negative axial electric field to the region
of positive axial electric field. This inflow guarantees local charge conserva-
tion. Of course, we could also impose some sort of leaky boundary conditions
in which we allow some of the charge to vanish into to the region beyond
the cutoff. On the level of the effective action I', the boundary conditions
at the cutoff are parametrized by the Bardeen counterterms (2.25). This is
basically the same mechanism that is behind the anomaly inflow mechanism
of [15]. The only difference being that now the bulk is not gapped”.

9 In view of applications in condensed matter, we might propose the maps Callan—
Harvey < topological insulators vs. Bardeen—Zumino < topological metals.
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Fig.5. Spectral flow picture of the consistent current. We assume the boundary
condition A} = 0 at infinity and take constant but non-zero in a finite slab |z| < L.
At x = +, strong localized axial electric fields a present. In addition, we assume
a constant (vector-like) magnetic field B,. From the perspective of the covariant
anomaly, this activates the anomaly in the (covariant) vector current at « = £L
where charges of equal amounts are either created of destroyed. The boundary con-
dition on the axial vector field Az guarantees that no net charge is created. The
spectral flow of the fermions necessarily hits the cutoff A in the regulated quantum
field theory and is subject to boundary conditions there. Charge preserving bound-
ary conditions can be given which creates a current whose quantum field theory
implementation is the Bardeen—Zumino polynomial. This Chern—Simons current
generated at the cutoff guarantees local charge conservation.

The Chern—Simons current generated to guarantee the local charge con-

servation is J, = —%BZ. This looks precisely like the celebrated chiral
magnetic effect, i.e. the generation of a current via magnetic field. It is
only one part of the CME. So far, we have assumed that our system was in
a vacuum state with respect to the normal ordered vacuum, .e. no states
above the vacuum are occupied. In the region where A # 0, the vacuum
energies are shifted: the left-handed vacuum is shifted down by Ag and the
right-handed vacuum is shifted up by Ag. In the next section, we will study
another source of magnetic (and rotation) induced currents built up by the
occupied states above the normal ordered vacuum.

4. Transport from Landau levels

For a fermion, the vacuum is the state with vanishing Fermi surface. Let
us now go beyond this restriction and study what happens when there is
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a non-vanishing Fermi surface and once we are at it, we also introduce a
finite temperature (so strictly speaking, there is sharp Fermi surface but it
is smoothed by the temperature). To start, we study what happens if we
have a single chiral fermion in a magnetic field with chemical potential i, r
at temperature T'. Of course, the charge and energy are non-vanishing, and
this is described by the free-energy density'"

1 7
FL,R = —m <,U,%J7R + 27T2/,L%7RT2 + 157T4T4) y (41)

if the magnetic field is much smaller than temperature and chemical poten-
tials, and by

T2 2 VB-pL,R
FLr=-B (24 + ‘;;5) +0 <6T> : (4.2)
for large magnetic field. The last expression is valid as long as the magnetic
field induces a gap in the higher Landau levels v2B > (T, u,r). In that
case, the only states that contribute are the states in the lowest Landau level
and these are effective 1 4+ 1 dimensional chiral fermions. The contribution
from the higher Landau levels in this regime is exponentially suppressed.

Let us compute the current in a magnetic field. First, we start with the
higher Landau levels. Note that the current is simply the integral over the
velocity of the particles weighted by the Fermi—Dirac distribution

e}

dp OF, 1 1
JHLL = / — [ — — =0. 4.3
27T 8p 1 + eEnT It 1 + eEnT+# ( )

—0o0

The velocity in the higher Landau levels is the group velocity 0E, /Op, both
particles and anti-particles contribute the latter, however, with opposite
sign. The integrand is a total derivative and, therefore, the integral receives
contributions only from the boundaries. Since the probability of finding a
particle with infinite momentum is zero, there is no current generated in the
higher Landau levels.

The lowest Landau level is different. The integration region is only the
positive half line and the velocity is simply 4+1 depending on chirality. So

10 For the completely free fermions, we also could introduce independent left- and right-
handed temperatures. If we understand the expressions as lowest order in a perturba-
tive expansion of an interacting theory, only a common temperature can be defined.
Local interactions can preserve separate left- and right-handed U(1) symmetries so
different chemical potentials can be defined in the interacting theory. The anomaly
spoils this but only in the simultaneous presence of electric and magnetic fields.
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we find
Td 1
p HLR
JuiL = i/ — =+ (4.4)
) 2T 1+€P “TL,R 1+6P+“TL,R 2T

Now, we remember that these states come with a multiplicity of B/(2m) per
unit area and this give the current density

J = i‘iﬁr’?é. (4.5)

Finally here it is, the celebrated expression for the chiral magnetic effect:
the generation of a current in a magnetic field. Many things are remarkable
about this formula. First, we have computed it at finite temperature but
the result is completely independent of it. Only the lowest Landau level
contributes, but contrary to the expression for the free energy (4.1), this is
not an approximation valid for large field strength but it is an exact result.

Let us go a step further, let us also compute the energy current. Since
we are dealing with a relativistic theory, we can equally well call it the
momentum density along the magnetic field. The calculation is very similar,
only the lowest Landau level contributes and we find

o0
dp P P ,U% rn T2
J, =4 [ = =4 ’ — 4.6
N 0/277 [1 + eI * 1+ ep%” 4m * 12 (4.6)

giving

2 2
. T2\
Jo=+ (“L’R + ) B. (4.7)

This is the chiral magnetic effect in the energy current. Now, the tempera-
ture contributes but only in a very simple polynomial way.

It is a common lore in many-body physics that rotation has many sim-
ilarities to magnetic fields. For example, the Coriolis force F =2mixa
is similar to the Lorentz force F' = ¥ x @B if we identify 2md ~ qéll.
For relativistic, massless fermions we should replace the rest mass with the
energy. Now, we can calculate the current due to rotation

oo
d 2 2 I T2
J:i/p[ P+ pw]:i CLR | T2 (4.8)
21 147 I+eT 2 6

0

11 Of course, rotation also gives rise to a centrifugal force. It is quadratic in the angular
velocity w = V x ¥. We might try to ignore it on the grounds that it is higher order
in derivatives.
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and the energy current

7d 2p> 2p> 3 T2
Jezi/p[ r___°P ]:i(“L’R+“L’R” ) (4.9)

2 1+6% 1+QP+TM 3 3
0

These (admittedly somewhat hand-waving) arguments give rise to the chiral
vortical effects (CVE) in the current and energy current

2 2
> HLr  T%) |
=+ : — 4.1
J <4w2+12)°‘” (4.10)
3 2
> HLr  pLRITY .
Je==£ (6#2 + 5 )w. (4.11)

We get currents from the lowest Landau level. This is quite interesting by
itself but it gets even a bit more interesting remembering that the lowest
Landau level was also responsible for the anomaly. So is there a more direct
connection? The answer is yes! As a first step, let us generalize our results
for single fermions to many different species of fermions and label them with
an index f (we can also switch to a basis with left-handed fermion only).
Then assume that there is a bunch of U(1) symmetries labeled with an

index a under which the fermions carry charges q{; . The chemical potential
for the fermion species f is then ), qg pe = pf and it sees the magnetic
field Bf = Y qc{ B,. The current corresponding to symmetry a is likewise
Jo = 7 q({ JI. Now, use the expression for the elementally chiral currents

and obtain (summation over repeated indices is implied here)

- . - T2\ -
Ja:dabc%BCu Je: <dabclg;_léb+b024> 307 (412)
- pope |, T2 . - [aftbhe T\ |

Ja = (dabc47r2 —|—ba12> w, Je = (dabc 671'2 —|—ba,uaf W, (413)

where dgpe and by = > qu are the chiral and gravitational anomaly coef-
ficients. This is a hint towards the deep origin of these expression. The
currents are indeed induced by the chiral and gravitational anomaly as we
will discuss in the next sections. We have obtained these expressions without
having to worry about regularization issues. The integrals are finite because
they are damped in the UV by the exponential decay of the distribution
functions. Furthermore, in view of what we learned about the spectral flow,
we also know that the naive counting of particles around the Fermi sur-
face (or the normal ordered vacuum) gives us only the covariant current.
To get the consistent current, additional terms can and do arise from the
Bardeen—Zumino polynomials.
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Let us now specialize to the case of one Dirac fermion: we have dsyy =
dysy = dyys = 2, dsss = 2, and bs = 2. Let us study the magnetic
effects and include also the Chern—Simons current from the Bardeen—Zumino
polynomial, i.e. we want to write down the magnetic field induced currents
in terms of the conserved consistent current

. _AD L
Js = %é. (4.15)

These two are the (proper) chiral magnetic effect and the chiral separation
effect (CSE). While they look very similar if written down in terms of the

5 2by
s = by
p=10
(b)
R
by =0 L
ps # 0 '
| 2by
p VP
s =0

(© (d)

Fig.6. The figure shows different fillings corresponding to different chemical po-
tentials and axial vector field backgrounds (with notation A3 = by, A =1b ). In
panel (a), us = Af and p = 0 so neither CME nor CSE are present. In panel (b),
still g5 = AJ but now p > 0 so only the CME vanishes. In panel (c), we have
ps # 0 and p # 0 but A} = 0 so now both CME and CSE are non-vanishing.
Finally, in panel (d), both chemical potentials are zero but A3 # 0 so here only the
CME is non-vanishing.
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covariant current, they are quite different once written in terms of the consis-
tent current. There is no contribution to the CSE by any Bardeen—Zumino
polynomial. Ultimately, this can be traced back to the fact that it depends
only on the chemical potential u related to a truly conserved current. On
the other hand, the CME receives two contributions, one from the states
that fill the energy range between the vacuum and the Fermi surface, and
another one that stems from the boundary conditions in momentum space
and depends on the specific gauge invariant regularization. We have already
mentioned that the role of AJ is to shift the tips of the Weyl cones in opposite
directions in energy. If this shift is equal to the imbalance in the chemical
potentials, then there is a perfect cancellation between the two terms and
the CME vanishes. In fact, if one defines the grand canonical ensemble for
axial charge in the usual way by introducing a Hamiltonian H — us@Qs, this
has the effect of achieving both effects: a non-vanishing occupation number
but also a shift in the locations of the tips of the Weyl cones in precisely
such a way that A3 = ps. This definition of equilibrium grand canonical
ensemble results in a vanishing CME. The different situations of vanishing
vs. non-vanishing CME are sketched in Fig. 6.

5. Hydrodynamics and triangle anomalies

So far we have derived the CME and the CVE (with some hand waving)
only for free fermions. We need to convince ourselves that the CVE expres-
sions have some physical meaning. We could try to do better and study an
ensemble of rotating fermions, except that this is still rather ill-defined. In
a relativistic theory, an equilibrium ensemble with constant rotation cannot
exist since at some large enough radius, the tangential velocity necessarily
would exceed the speed of light. In addition, we need to include interactions
as well. The lowest Landau level is subject to an index theorem that protects
it, so we might expect that interactions do not modify the expressions for
the CME. An effective way of studying an interacting gas or, more general, a
fluid of chiral fermions is the formalism of hydrodynamics. Hydrodynamics
is an effective field theory describing the time evolution of systems near equi-
librium'?. One assumes that locally the system equilibrates fast such that
local versions of thermodynamic parameters, the temperature 7" and the
chemical potential v can be defined. Intuitively, thermodynamics is what is
left of a system if we forget all the details that can be forgotten. That means
we know nothing but the indestructible conserved charges, like energy and
U(1) charges. Now, we promote these to local notions of energy density and
charge density. In relativistic systems we, therefore, need a four vector J*

12 Although the demanding closeness to equilibrium is probably too restricted. A mod-
ern point of view is that systems even relatively far from equilibrium can be well-
described by hydrodynamics. See Heller’s contribution to this volume [35].
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to describe the dynamics of the U(1) charge and a symmetric second rank
tensor T to describe the dynamics of the energy and momentum densi-
ties. Let us study energy-momentum conservation in quantum field theory.
We assume a quantum action depending on a source field coupled to the
energy-momentum tensor. This source field is the metric. If there are no
diffeomorphism anomalies, this quantum action should be diffeomorphism
invariant such that

/ iz =g [ = 5‘”; Vet \/1—7£ (0 (243) + @FM)] —0,
(5.1)

where we used that the metric and gauge field transforming under diffeo-
morphisms as

69;“/ = vufu + vufu y (5~2)
§A, =0, <§AAA) +EFy,, (5.3)

where the vector field 5“ is the generator of the diffeomorphism. Further-
: : 2 1 A
more, we identify e 5 g =TH" and F = JH. Since £" is arbitrary,

we infer that the energy-momentum tensor hab to fulfill
V. T = F" ungt — A"V ,J". (5.4)

So the energy-momentum tensor is naturally symmetric and conserved up to
the terms on the right-hand side. The first term represents the injection of
energy and momentum by the external electric and magnetic fields. The sec-
ond term vanishes if the current is conserved. When an anomaly is present,
it does contribute to the energy-momentum conservation. Now, we use our
knowledge about anomalies gained in the previous sections. They come as
consistent and as covariant ones, and the covariant one couples only to the
external field strengths but not to the external vector field A,. Indeed, if
we write the consistent current as covariant current plus a Bardeen—Zumino
polynomial, the term proportional to the anomaly in (5.4) vanishes. So
energy-momentum and charge conservation laws in terms of the covariant
current takes the simpler form

8T = F ,J~, (5.5)
1
Opd" = o5 P Fu Fpn (5.6)

where we have also set the metric to the flat one. These are already the equa-
tions of motion for hydrodynamic effective field theory. The five equations
can determine five dynamical variables which are commonly parametrized
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at the local temperature 7', chemical potential ;v and the fluid velocity u,,
obeying u? = 1. Energy-momentum tensor and charge current are now ex-
pressed in terms of the local fluid variables in a derivative expansion (see 36|
for a recent review of relativistic hydrodynamics)

TR = TR LT 4 (5.7)
JH =Ty + I+ (5.8)

To zeroth order in derivatives,
T(’ég = (e + p)ufu” — pnt”, (5.9)
J(‘g) =put. (5.10)

The energy density, pressure and charge density are computed via thermo-
dynamic relations from the free energy F'(T, 1) defined at equilibrium.

To first order in derivatives, one has to deal with a large set of ambiguities
since redefinitions of the local temperature, chemical potential and fluid
velocity of the form of T — T + §T etc. compete with the terms at higher
order in derivatives. These ambiguities are fixed by a choice of frame. One
of the standard frames is the so-called Landau frame, which is defined by
demanding T""u,, = eu to all orders. It is also useful to define the projector
transverse to the fluid velocity P** = n** — utu”. Another important point
is that for the covariant current, only covariant field strengths can enter
the expression. It is useful to introduce electric and magnetic fields in the
local rest frame BY = %e‘“”’)‘uquA and E* = F*u, and the local vorticity

wY = %EWP)‘uuﬁpu,\. The first order terms then take the form of

(1)

Ty =
Here, 7 is the shear viscosity, ( is the bulk viscosity and o is the electric con-
ductivity. The new coefficients g and &, give room for response to external
magnetic and electric fields. One more important point about hydrodynam-
ics is that it also includes a local form of the second law of thermodynamics.
One needs to define an entropy current with a non-negative divergence.
Again, the entropy current can be built up in a derivative expansion. It
takes the form of

T — —pprepvs (Gaug + Opuq — 2/3na58AuA> — (P8, (5.11)

—oTPF*Q, (%) + oE* + EgB* + £ w0t (5.12)

1

B gt B ogp
St = su TJ(U
where s is the local entropy density and Dp and D, new response coeffi-
cients. Now, one demands

+ DB" + Dyw", (5.13)

9,8" >0 (5.14)
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and this constrains the transport coefficients in such a way that n,{, o > 0.
Surprisingly, this constraint is much stronger for response coefficients due
to magnetic field or rotation. In [37, 38|, it was shown that these coef-
ficients are almost completely determined by the second law (5.14) up to
some undetermined integration constant ~y

53—1;2<u—;€ip(u2+ﬂ2)> : (5.15)
1 2 2 2 p 3 2
b = 3 <u +9T° — 3547 (1® 4 3yuT )) , (5.16)
Dp = 8;';? +~T, (5.17)
13
D, = 92T + 2yuT . (5.18)

Furthermore, the new coefficients do not contribute to entropy production,
i.e. they describe dissipationless transport. If we compare these with the
expressions (4.12), (4.13), we see some similarity but also differences, the
most striking is that there is no energy current. This can be traced back to
the underlying choice of frame. We can go to another frame by redefining
the four velocity such that the terms depending on charge p, energy e and
pressure p vanish. This can be done by redefining u* — u* + du*, where

L
8m2e+p

4
(u? +~T%) B* + 3 (1 + 3yuT?) wh| . (5.19)

In this frame, the anomaly related transport coefficients take the form of [39]

T = o, g (U'B” +u”B") 4+ o, (WW'w” + u”wh) | (5.20)
JH =opB" + o,w. (5.21)

If we expand for small velocities u* = (1,7) to first order in ¥, we can
identify the o coefficients with (4.5), (4.7), (4.10), (4.11). This also fixes the

so far undetermined constant v = %-.

The frame has a very nice physical interpretation [40]. In the presence
of anomalies, the chiral magnetic and chiral vortical effects give rise to dis-
sipationless charge and energy flows. In the new frame, the four velocity u*
parametrizes then only the dissipative “normal” flow. If one allows momen-
tum to relax, e.g. by placing an obstacle such as a heavy impurity into the
flow, then on long time scales all the normal flow will vanish described by
ut = 0, while charge and momentum flow induced by CME and CVE are
still present.
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An alternative way of deriving the transport coefficients of a fluid sub-
ject to anomalies is the effective action approach [41]. Higher orders in
derivatives have been studied in [42, 43].

The entropy argument fixes the dependence of the anomalous transport
coefficients on the chemical potentials but not their temperature dependence.
On the other hand, we have seen already that the temperature dependence
naturally has the gravitational anomaly coefficient attached to it. Since the
gravitational anomaly is fourth order in derivatives and hydrodynamics is
developed only to the one derivative level here, there is no natural way it
can enter here. A more general argument based on geometry was presented
in [44]. Probably the most straightforward way of demonstrating a direct
relationship between the gravitational anomaly and the temperature depen-
dence of anomalous transport coefficients comes from holography as we will
review below.

6. Holography

The AdS/CFT correspondence or holographic correspondence [45] has
developed over the last years into a very useful and powerful tool for studying
strongly coupled field theories at finite temperature and density. Recent
useful reviews are [46, 47].

Before discussing how holography can be used to gain insight into anoma-
lous transport, we very briefly review the basics of the AdS/CFT correspon-
dence.

The origin of the AdS/CFT correspondence is the duality between
type IIB string theory on AdS; x S5 and A/ = 4 supersymmetric gauge
theory. The N' = 4 supersymmetric gauge theory is a non-Abelian, four
dimensional quantum field theory whose field content consists of six scalars,
four Majorana fermions and a vector field. They all transform under the
adjoint representation of the gauge group SU(N). It features four super-
symmetries and this fixes all the couplings between the different fields. As
it is a gauge theory, physical observables are gauge invariant operators such
as tr(Fy, F'*). The global symmetry group SO(6) acts on the scalars and
the fermions (in the SU(4) spin representation of SO(6)).

The dual theory is a theory of gravity (this is what type IIB string
theory is) but living in quite a few more dimensions, ten as opposed to the
four the field theory knows about. But five of these ten are easily got rid
of: the isometries of the S5 part of the geometry form SO(6). The S5 is the
geometric realization of what appears as an internal, global symmetry group
in the field theory.

The field theory is characterized by two parameters, the gauge coupling
gyMm and the rank of the gauge group N. The dual string theory has a string
coupling g5 (the amplitude for a string to split in two) and a fundamental
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length scale lg, the string scale. Furthermore, the geometry is determined
by a scale L determining the curvature of the AdSs as R = —20/L?. The
AdS/CFT correspondence relates these parameters in the following way:

2 L4
gymN e (6.1)
1/N x gs. (6.2)

The AdS/CFT correspondence is, therefore, a strong weak coupling dual-
ity: for weak curvature, we have large L and, therefore, also large 't Hooft
coupling. In this regime of weak curvature, stringy effects are negligible
and we can approximate the string theory by type IIB supergravity. If we
furthermore take the rank of the gauge group N to be very large, we can
also neglect quantum loop effects and end up with classical supergravity!
This is the form of the correspondence most useful for the applications to
many-body physics: classical (super)gravity on (d 4+ 1) dimensional anti-de
Sitter space.

Based on this original example, we can conjecture that every theory of
gravity plus some suitably chosen matter fields on (d+1) dimensional anti-de
Sitter space is a dual to a certain quantum field theory in d dimensions. In
fact, we might even be a bit more brave and delete the words “dual to a” in
the previous phrase. This is the point of view taken in the applications of the
AdS/CFT correspondence to the world of solid state physics. The additional
matter fields are then chosen to reflect a particular symmetry content of the
underlying quantum field theoretical system one is interested in. Having this
in mind, we will forget from now on some of the seemingly non-essential'’
ingredients, such as supersymmetry, string theory and extra dimensions in
form of the Ss.

For the applications to quantum field theory it is most useful to write
the AdS metric in the form of

7,2

dSQZﬁ(

L2
—dt* + dz?) + T—erQ : (6.3)
The space on which the dual quantum field theory lives is recovered by
taking the limit ds2 rr = im0 r~2ds?. This is why sometimes it is said
that the dual field theory lives on the “boundary” of AdS and why the
AdS/CFT correspondence is also referred to as “holography“. The physical
interpretation of the holographic direction is that it represents an energy
scale. We can identify the high-energy UV limit in the field theory with the
r — oo limit in the AdS geometry, whereas the low-energy IR limit is » — 0.

13 Note, however, that non-supersymmetric AdS solutions to string theory have been
recently conjectured to be unstable [48].
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The asymptotic behavior of the fields in AdS has the form of
® =12 (Bg(z) + O (r2)) +r 2 (1(z) + O (r72)) . (6.4)

The exponents AL obey A_ < A, and depend on the nature of the field,
e.g. for a scalar field of mass m, they are Ay = £(d £ V/d? + 4m?L?).

We now would have to evaluate the path integral over the fields in AdS
keeping the boundary values @y(x) fixed. The result is a functional de-
pending on the boundary fields ®(z). Now, the boundary field @¢(z) is
interpreted as the source J(x) that couples to a (gauge invariant) operator
O(x) of conformal dimension A in the field theory

20 = / dd exp(—iS[®)) . (6.5)
Do=J

Connected Green’s functions of gauge invariant operators in the quantum
field theory can now be generated by functional differentiation with respect
to the sources

B 6" log Z
CSJi(xn) -6 (Tn)

In the limit in which the gravity theory becomes classical, ¢.e. the large N
and large coupling g%MN limit, the path integral is dominated by the classi-
cal solutions to the field equations and log Z can be replaced by the classical
action evaluated on a solution of the field equations. In this case, the co-
efficient @;(x) of the asymptotic expansion (6.4) is the vacuum expectation
value of the operator sourced by @,

(O(x)) x P1(x). (6.7)

To explicitly compute @1 (x), we need to supply a second boundary condi-
tion, so far we have fixed only the asymptotic value ®@y. For time-independent
solutions, we demand regularity in the interior of the (possibly only asymp-
totically) AdS space. For time-dependent perturbation, one needs to impose
the more general “infalling” boundary conditions.

The holographic dictionary relates in this way (gauge-invariant) local
operators to fields in the bulk of AdS and can be summarized in Table I.

Anomalies can be incorporated rather easily: they are represented by a
five-dimensional Chern—Simons term. Therefore, to study anomalous trans-
port with the means of holography, the following model is a good starting
point [24]:

(O1(z1) -+ - On(n)) (6.6)

1
S = /d% V=g [R +24 — ZFMNFMN

(8
+MNPRE A, <§FNPFQR + AR%NPREQR)} : (6.8)
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TABLE I

The holographic dictionary.

Gravity QFT
d + 1 dimensions d dimensions
holographic direction | RG scale
strongly coupled weakly coupled
scalar field scalar operator
gauge field conserved current
metric tensor energy-momentum tensor

The model contains only one five-dimensional U(1) gauge field. In the dual
field theory, we consider only one anomalous symmetry. The anomaly is
of U(1)3 type, of a single chiral fermion and the mixed chiral-gravitational
anomaly. We note that action (6.8) has diffeomorphism symmetry and that
the U(1) symmetry is preserved up to a boundary term. This boundary term
takes precisely the form of the chiral and chiral-gravitational anomaly. We
can also derive the operators J# and TH” as the variations of the on-shell
action with respect to the boundary values of the gauge field [43] and the
metric

ju:\ﬁ<F7‘u+43 Wp/\AF >’ (6.9)

6.
™ = /=g ( KM — K’y"” + 2\elPAe < F\RY + Ds(A,R™) >>
1

(6.10)
Here, Greek indices are four-dimensional boundary indices, R the intrinsic
four-dimensional curvature of the boundary, 7,, the boundary metric, D,
the covariant (with respect other 7,, ) boundary derivative. The divergences
are

D, J" = ehwer (gFWFpA + AR 5, R a,,A) , (6.11)
D, T" = F"J, + AD,J" (6.12)

which are nothing but the consistent form of the chiral and chiral-gravita-
tional anomalies.

Now, we have our holographic theory but we need a state with chemical
potential u and temperature 1. This is represented by a charged black hole
solution. The five-dimensional metric takes the form of

dr?

=

—r2f(r)dt? + r2dz?. (6.13)
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We assume that lim,_,~ f(r) =
that at some finite value f(rp)
temperature

1 (the spacetime is asymptotically AdS) and
= 0, there is a non-degenerate horizon with

_ rif'(rn)
7=t (6.14)

The chemical potential is related to a non-trivial profile of the temporal
component of the gauge field. In its most elementary definition, the chemical
potential is the energy that is needed to add one unit of charge to the thermal
ensemble. The thermal ensemble is represented by the black hole and to add
a unit of charge is to take this charge from infinity to behind the horizon.
The chemical potential can, therefore, be identified with the difference of
the potential energy at the boundary and at the horizon

n = Ao(OO) — A()(TH) . (6.15)

A subtlety related to the value of the gauge field on the horizon [23] should
be mentioned. If one defines the equilibrium state as the one with a smooth
Euclidean geometry, then we need also to impose Ag(rg) = 0. This con-
straint comes from the fact that at the Euclidean time ¢ = i7 the black hole
geometry simply ends at r = 7y, there is no interior and the geometry is
smooth only if 7 is periodic with periodicity 1/7T. If Ag(rg) # 0, an integral
¢ Apdr would be non-vanishing for an infinitely small circle and indicate a
field strength of delta function support at r = 7.
The equations of motion for f(r) and Ag(r) are

(r*Ah(r) =0, (6.16)

4 4 (Ar)°

f/(T') + ;f(’l“) — ; + 6r =0. (617)

The solution for the gauge field is Ag(r) = a— 525. The chemical potential is

W.
p = 2rfu. If we impose vanishing of the gauge field at the horizon, we also
have o = p. The solution for the metric component is f(r) =1 — % + %.

Before we go on and compute the chiral magnetic and chiral vortical
effects, we note that the current (6.9) energy-momentum tensor (6.10) has
a trivial part that is determined solely by the boundary values of the fields.
Since we want to have a flat boundary metric, these terms vanish for the
energy-momentum tensor. For the current, the corresponding Chern—Simons
term is just the Bardeen—Zumino polynomial that relates covariant and con-
sistent current. In holography, the UV origin of the Bardeen—Zumino poly-
nomial is manifest as it is a pure boundary term. We conclude that the
holographic form of the covariant current is

Jov =V=9F "1 500 - (6.18)
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Now, we are ready to compute chiral magnetic and chiral vortical effects.
In order to do so we introduce appropriate sources. For the magnetic field,
it is straightforward we need to impose the boundary condition

Aylr—oo = Bz (6.19)

or any equivalent gauge.

For the chiral vortical effect, we need to implement boundary conditions
encoding rotation. That can be done via a metric perturbation. We remem-
ber that metric components with mixed time and space indices represent
metric fields generated by rotating bodies and they induce by themselves
rotation via the frame dragging effect. In fact, in the formalism of gravito-
electromagnetism rotation is represented via the gravito-magnetic field B; =
€ik0;90k- A simple way of seeing this is via a fluid picture. The fluid at rest
can be defined by the contra-variant four vector u* = (1,0,0,0), while the
vorticity is defined through the co-variant components w* = %e“” p)‘u,ﬁpuA.
Therefore, for small velocities, vorticity and gravito-magnetic field are re-
lated as 2@ = 8.

This motivates us to chose the metric perturbations

gry = B f(r)r?. (6.20)
It turns out that the gravito-magnetic field also induces a gauge field
Ay =Bz (6.21)
v 272

Now, the linear response due to B and B can be computed via the
equations of motion. We will concentrate on the response in the current.
The corresponding equation of motion is

4 2
(3 F(r)al(r)) — gh’;(r) —8aBL —aBY 1 AB 2 f'(r)?] =0, (6.22)
r r
where the prime denotes 0/0r. We note that the covariant current in the
z-direction is J, = lim,_ 7“3fa’z. All the terms in this equation are total
derivatives. This tells us that

2
(r?’f(r)a'z(r)) _ Py (r)+ 40437% + 0415":—4 + AB2rt f'(r)? = const . (6.23)

Evaluating this on the horizon assuming regularity of a, there and demand-
ing also that the metric perturbation h! vanishes at the horizon allows us
to compute the constant on the right-hand side. Then we can evaluate this
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equation on the boundary where all terms except the constant on the right-
hand side and the current vanish (the metric perturbation has to fall off at
least as 1/r%). This gives the result

J. = 8auB, + (dap® + 320°N\T?) B, . (6.24)

Comparing (6.11) to the anomalies of a single chiral fermion, we can identify
a = 32% and A\ = 768%. Then these are the same results as in the free
field theory! The relation between the chiral-gravitational anomaly and
the temperature dependence of the chiral vortical effect is very direct in
holography. It is interesting to note how holography manages to correct the
mismatch in derivatives. It is still true, of course, that the gravitational
anomaly and also the five-dimensional gravitational Chern—Simons term are
higher order in derivatives. As can be seen in equation (6.22), the term
proportional to A is indeed of fourth order. But the trick of holography
is that three of these derivatives are along the holographic direction and
only one is along the actual spacetime. Non-renormalization of the CME
and CVE have been discussed in holography in [49-51], using field theory in
[52, 53], in a model-independent way based on a mixed hydrodynamic/geo-
metric approach [44] and a more general relation to gravitational anomalies
has also been investigated in [54].

We need to discuss one more point: we have set the horizon value of the
metric perturbation hl(r) to zero. More generally, we can leave it arbitrary
and fix it later. It turns out that this integration constant corresponds to
the choice of frame that we discussed in hydrodynamics, e.g. we could have
used it to set the response in the energy-momentum tensor to zero, then we
could recover the expression of chiral vortical and chiral magnetic effect in
the Landau frame.

7. Anomalous transport and Weyl semi-metals

As stated in the introduction, anomalous transport phenomena play an
important role in many branches of physics. One of the most interesting and
active fields of applications of anomalous transport phenomena is condensed
matter theory and experiment. The electronics of a new class of materials
known as Dirac and Weyl (semi-)metals [18, 55, 56| (or, more generally,
topological metals) is governed by the Weyl equation. In this chapter, we
will briefly review the physics of Weyl semi-metals from the point of view of
anomalous transport theory.

7.1. Weyl semi-metals

Weyl semi-metals are materials in which two bands cross at isolated
points in the Brillouin zone. In Fig. 7, we sketch a typical situation arising
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Fig. 7. The figure sketches the band structure of a Weyl semi-metal derived from
a tight-binding model. The energy bands are periodic along the Brillouin zone
of which a section with p, = py, = 0 is shown. If the Fermi energy lies near the
band crossing points, the effective low-energy electron dynamics is well-described

by the Weyl equations of opposite chirality. This makes the theory of anomalous
transport applicable.

from a tight-binding model of a Weyl semi-metal. If the Fermi level is at or
near the band crossing point, the effective Hamiltonian near such a crossing
point is

Heg = £ 5k, (7.1)

where k = (kz, ky, k-) measures the momentum relative to the position of
the band crossing point. These are the Hamiltonians for a Weyl fermions
of either left- or right-handed chirality. For simplicity, we have assumed
rotational symmetry around the band crossing point. The Nielson-Ninomiya
theorem [57] makes the band crossing points to come always in pairs with
opposite choices of signs in (7.1), i.e. with opposite chiralities. In general,
there might be many more band crossing points but clearly the simplest
situation is one with only two. The effective low-energy degrees of freedom
are then a left- and right-handed Weyl fermion. A more field theoretic way
of describing this, is the Dirac equation

(i) — vsh) ¥ =0. (7.2)

The four vector b, shifts the momenta and frequencies of left- and right-
handed fermions

WL = +bo + (ﬁ— 5)2 . (7.3)

For a start, this will serve as a model for the physics of Weyl semi-metals
up to one more ingredient: in a crystal, the Brilloin zone is bounded and
periodic. This has two effects we need to account for if we want to use
model (7.2): one is that the linear dispersion cannot be extended to arbi-
trary high energies and related to it chiral symmetry is not exact even at
tree level. The fact that the bands are really periodic means that there is no
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cutoff at infinite energy. States can only move along the band in a periodic
fashion'? but can never disappear. For our purpose, this implies that we
have to supplement our field theoretical model with cutoff preserving the
total number of states. More precisely, an anomaly in the total charge cur-
rent stemming from both left-handed and right-handed Weyl cones is not
allowed. We know already that in the quantum field theoretical description,
this singles out the conserved consistent current as the unique candidate for
the electric current. Furthermore, we need to take into account that the
chiral symmetry is only an accidental one. Even without anomaly, it cannot
be preserved for arbitrary momenta and energies along the band dispersion.
Thus, the description in terms of Weyl fermions is an approximate one and

E covariant current Jeoy

Fermi level e p

P

Cutoff A

hern-Simons current Jf ¢

Fig.8. Local (in the Brillouin zone) model of the electronic band structure of a
Weyl semi-metal. Inter-valley scattering leads to equilibration of the Fermi levels
of left- and right-handed Weyl cones. The local model has to be supplemented by
a charge preserving cutoff. The covariant current is the current that stems from
quasiparticles excitations near the Fermi surface. The total electric current has
another component given by the Bardeen—Zumino polynomial or Chern—Simons
current generated at the cutoff and guaranteeing charge conservation. From the
point of view of the quantum field theoretical model, the chemical potentials have
to be measured with respect to the tips of the Weyl cones. So in the equilibrium,
there is a non-vanishing axial chemical potential us = by as long as the Weyl cones
are shifted in energy. This shift in energy is given by the temporal component by in
the local model (7.2). On the other hand, by acts precisely as temporal component
of an axial vector field A5 = by = ps.

14 As electrons indeed do in very pure samples upon switching on an electric fields. The
produced current shows oscillating behavior, the Bloch oscillations.
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there is always a non-vanishing amplitude for an electron to scatter out of
the left-handed Weyl cones and into the right-handed Weyl cone. This pro-
cess is known as inter-valley scattering, it leads to an effective decay time
for axial charge. On the other hand, scattering processes that leave the
electron within its Weyl cone are called intra-valley scattering. It is also
usual assumed that the scattering rate for inter-valley scattering is much
smaller than the scattering rate for intra-valley scattering. Inter-valley scat-
tering will always lead to equilibration of the Fermi surfaces of left-handed
and right-handed Weyl cones. Therefore, the equilibrium situation can be
sketched in Fig. 8.

7.2. Applying anomalous transport theory to Weyl semi-metals
7.2.1. CME

While the actual Fermi energies are equal for both Weyl cones in the
local Dirac model of (7.2), we have to assign different chemical potentials
to them. Intuitively, the chemical potential measures the size of the Fermi
surface and it is clear that as long as the parameter by is different from
zero, the size of the Fermi surfaces of left- and right-handed Weyl fermions
will be different in equilibrium. This means that the equilibrium state is
described by a non-vanishing axial chemical potential us = by. On the other
hand, this parameter is nothing else than the temporal component of an
axial vector field A3 = by. Now, we can compute what happens if we switch
on a magnetic field. The current due to the CME has to be calculated as

. -
j:MTQOB:O. (7.4)

So there is no chiral magnetic effect in equilibrium. This is in accordance
with explicit numerical simulations of the CME and, more generally, with
the so-called Bloch theorem [58-60] that forbids a non-vanishing equilibrium
expectation value for a precisely conserved current. Instead of insisting on
a description in terms of relativistic Weyl fermions, one might also stick to
the convention that energies should be measured with respect to a common
reference for both Weyl cones. Then there is simply no difference in the
energy one needs to add an electron to the left-handed or right-handed Fermi
surface. In this sense, there is no true axial chemical potential [61].

In order to activate the chiral magnetic effect, there are in principle
two possibilities. One can either try to manipulate the relative occupation
numbers in the Weyl cones or one can try to change the separation in energy
of the tips of the Weyl cones. Both options should give a CME signal. Let
us explore the first one. The key is to change the equilibrium state s = by.
A conventional way of doing this is by using the axial anomaly itself. We
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switch on parallel electric and magnetic fields. The change in the rate of
axial charge is then [34, 62]

o BB L ()0
p5 = E-B - (p5 p5). (7.5)

Here, we have also included the axial charge relaxation due to inter-valley
scattering. The equilibrium axial charge density can be computed from the
equation of state ps = (OF (us, p, T'))/(0us) by inserting us = by. We define
the axial susceptibility as x5 = dps/0us and express the axial charge via the
axial chemical potential as dps = x50us. In parallel electric and magnetic
fields, a stationary non-equilibrium state will be reached with

_T5E'§
x5 2m?

O (7.6)

The induced current is then the sum of ohmic and chiral magnetic current

) T. B;B;

Ji = oE; + 2—;@32- - <05U + g 4;47> E;, (7.7)
where o is the usual ohmic conductivity in absence of the magnetic field.
If the axial symmetry were not explicitly broken, the induced conductivity
would be infinite. This reflects the non-dissipative character of the chiral
magnetic current'”. So the chiral magnetic effect manifests itself as an en-
hancement of the electric conductivity along the magnetic field with a char-
acteristic quadratic dependence on the magnetic field strength'®. This is the
anomaly-induced negative magnetoresistivity along the magnetic field. Sig-
natures compatible with it have been measured in a variety of experiments
recently [64-72].

Another option is to change the energy levels of the band touching points.
Using a tight-binding model, it has recently been shown that this can be
achieved by applying strain [73]. In this case, the current will not be sta-
tionary but decay over a time given by the axial charge relaxation rate of
around 10~? seconds.

7.2.2. Anomalous Hall effect

Another effect present in our simple model is the quantum anomalous
Hall effect [74-76]. A current perpendicular to an applied electric field. In

15 In a hydrodynamic approach, it has been shown that there are additional terms in
the case of finite axial chemical potential [63].

16 Targe magnetic fields can induce anisotropies in o, and they can also change the
values of the relaxation times and the axial chemical potential. For example, for
large magnetic fields, the electrons will be mostly in the lowest Landau level and
then the axial susceptibility will be itself proportional to B.
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our quantum field theoretical setup, it is exclusively due to the Bardeen—
Zumino polynomial and takes the form of

1 - -

J = 52k xb. (7.8)

It follows from the Chern—Simons current in (2.36a) by identifying A5 =p.
We note that the parameter b breaks time reversal symmetry. In time rever-
sal invariant Weyl semi-metals, there are several pairs of Weyl nodes such
that the vector sum ) b; = 0 and the axial anomaly induced Hall effect is
absent. The Bardeen—Zumino polynomial also implies an induced charge in
magnetic field of the form of

1

J? = 550 B, (7.9)
a three-dimensional generalization of what is known as the Streda formula
in condensed matter theory [77].

7.2.3. Fermi arcs

From the identification /_f5 = I;, we can learn a lot more. First, we
note that a Weyl fermion cannot be given a mass in a gauge invariant way.
This is what makes the Weyl nodes stable in a Weyl semi-metal. On the
other hand, we know that outside any finite piece of material, there are no
low-energy fermions, the vacuum is a (trivially) gapped state in which the
electrons are massive. The only way to make the Weyl fermions massive is
to bring them together at the same point in momentum space and switching
on a Dirac mass term. This means that the vector b must go to zero as one
crosses the edges of the material. On the edge of a Weyl semi-metal, there
is necessarily a gradient of b. This is nothing else but an axial magnetic
field Bs = V x As [78]. An axial magnetic field acts like a usual magnetic
field but with opposite signs for Weyl fermions of opposite chirality. Lets
make a simple model in which there is a sharp edge at say x = 0 and
b= bO(y)é,. Thus, there is a strong axial magnetic field localized at the
edge Bs = bé(y)éz. The Weyl fermions will have zero modes localized at
the axial magnetic field lines (the states in the lowest Landau level). In a
usual magnetic field, these zero modes are 1+ 1 dimensional chiral fermions
of opposite chirality but in the axial magnetic field, the zero modes which
have the same chirality. The local density of states is the one of the lowest
Landau level, Bs/(27) for each Weyl cone. So, in total, we predict localized
chiral edge states with linear dispersion only along the axial magnetic field
lines and degeneracy b/m. These are the famous Fermi arcs [55]. In actual
materials, Fermi arcs turn out not to be just straight lines and this has been
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connected to boundary conditions for the Weyl fermions in [79]. It would
be interesting to see how the simple picture of the axial magnetic field can
be modified to catch these subtleties.

We can also apply anomalous transport formulas to the physics of Fermi
arcs. Let us assume we have a doped Weyl semi-metal. Then we can employ
a version of the chiral magnetic effect for axial magnetic fields

J = #Bg, . (7.10)
This is an edge current. We can also derive the anomalous Hall effect from
this. We assume that there are two edges at say y = 0 and at y = L, and in
between a WSM with b, > 0. In this situation, there will be no net current
since the edge currents at y = 0 and at y = L cancel each other exactly. Let
us now inject additional electrons at the edge at x = 0. This will rise the
local chemical potential there and, therefore, increase the local edge current.
Now, there is net current in the form of

A
I, = /dij - Fy’;bz. (7.11)
So we get a net current perpendicular to the gradient of the chemical po-
tential. This is very similar to (7.8) except that now the current is localized
at the edges, whereas in (7.8) it is better thought of as a bulk current. As
usual for the quantum Hall effect, it appears either as edge current or as
bulk current depending on whether one pumps charge from one edge to the
other via a bulk current generated by an external electric field or one directly
injects fermions at the edges.

7.2.4. Thermal Hall effect

Let us study now the energy transport instead of the charge transport.
One of the most interesting aspects is that the thermal transport is sensitive
to the gravitational anomaly. In particular, in an axial magnetic field, we
have ) .

- W 9 .

Je = <47r2 + 12T > Bs, (7.12)
since in Weyl semi-metals there necessarily exists a strong axial magnetic
field at the edge, and we can use this to derive the thermal Hall effect.
As before, suppose that there are two edges at y = 0 and at y = L. In
equilibrium, the net energy current vanishes since the currents at opposite
edges cancel each other exactly. Let us heat up the edge at y = L to a
temperature T + AT. Now, there is a net heat current fQ =J. - uj along
the z-direction (keeping the chemical potential fixed)

Joue = ¢TA,Th, (7.13)
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from which we can infer the thermal Hall conductivity

KT Hall = —b] - (7.14)

G|
Contrary to the Hall effect, this is a pure edge current. The bulk current in
the Hall effect was related to the Bardeen—Zumino polynomial that converts
the non-conserved covariant current into the conserved consistent current.
There is an analogue Bardeen—Zumino current for the consistent energy-
momentum tensor. It is (just as the gravitational anomaly itself) of higher
order in derivatives. Thus, there is no thermal Hall current in the bulk as a
response to a gradient in the temperature.

7.2.5. Axial negative magnetoresistivity

The covariant form of the anomaly also suggests that one can induce
negative magnetoresistivity via an axial magnetic field since

B B
2m?

p= (7.15)
combined with the axial magnetic effect (7.10) should give a large enhance-
ment of the conductivity. At first glance, there is seemingly a problem. In
the case of the negative magnetoresistivity induced by the usually parallel
electric and magnetic fields, the axial charge decays also due to tree level
non-conservation. This makes the induced conductivity finite. In the case
of the electric charge, this is impossible, because of gauge invariance the
electric charge can never decay. This seems to give the unphysical result of
an infinite conductivity in parallel electric and axial magnetic fields. The
resolution comes from the nature of the axial field. As we noted, it can exist
only inside the Weyl semi-metal and has to vanish necessarily in the vacuum
outside the material. The net total charge induced by (7.15) is

d
2 [0 o

where (2 denotes a region of space that contains the Weyl semi-metal. This
region can always be taken much larger than the space region occupied by
the material. Since the axial vector vanishes on 92, no net charge can be
induced. Every region with a positive covariant anomaly must necessarily be
offset by a region with equal amount of negative covariant anomaly. From the
point of view of the consistent anomaly, everything that is happening is that
a current is created transporting the charge from one region to another. Since
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now the charge distribution is inhomogeneous, we need to take diffusion into
account

- o E-B
J = —oVu+ - Bs, (7.18)

272
or from the point of view of the consistent current where the covariant
anomaly is interpreted as an inflow via the anomalous Hall effect

p+V-J =0, (7.19)
J = —oVu+ #35 - #b « E . (7.20)
The local growth of charge due to Hall current inflow is eventually counter-
balanced due to diffusive charge outflow such that in a stationary situation,
p = 0. We also note that these considerations also apply to the case where
Bs is created in the bulk of the material via strain [80]. Negative axial
magnetoresistivity has recently been also discussed in [81, 82].

Let us work out a simple example. We describe the Weyl semi-metal as
the region with b = bé,[0(y) — O(y — L)]. At the edges, there is strong axial
magnetic field Bs = Bsé, with Bs = b[d(y) — 6(y — L)]. In an electric field
parallel to the axial magnetic field, the stationary solution is

BsE
which is solved by
bE L
- _ —(y — —L)——=]. .22
n=-— {yG(y) (y—L)O(y — L) 2} (7.22)
Here, Ap = p(0) — p(L) = UL;EQ is the Hall voltage. The total current in
direction along the electric field is
2
= 0 oy—L))| E. 2
To= |7+ 220 + s - D) (7.23)

The conductivity is strongly enhanced at the edges due to the axial magnetic
effect. For fixed width L, the enhancement is stronger as the bulk conduc-
tivity gets smaller. In the limit of vanishing bulk conductivity, the edges are
perfect conductors. This is the limit in which only the edge states contribute
to the conductivity. They are chiral fermions which indeed have formally
infinite conductivity. On the other hand, for finite bulk conductivity o, the
charge of the edge states can diffuse into the bulk and this is what makes
the anomalous enhancement finite!”.

17 A similar conclusion has been reached in a more microscopic model in [83].
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7.8. Chiral collective waves

Another direct consequence of the chiral magnetic effect is the so-called
chiral magnetic wave. We combine the chiral magnetic and the chiral sepa-
ration effect with current conservation (assuming absence of an electric field
parallel to the magnetic field). Assuming that vector and chiral charges
are linearly related to the chemical potentials and a spatially homogeneous
magnetic field, we find

—

. B -
Xshs + 55 Vi=0, (7.24)
1+ éﬁ =0 (7.25)
XM D) ps =Y. .

Fourier transforming in space and time, and setting the determinant to zero
gives the mode equation

wdmyxs — (E §>2 =0. (7.26)

This is the chiral magnetic wave. It can be understood as propagating
oscillation between axial and vector charge. In the limit of large magnetic
field, it follows from (4.2) that its velocity approaches the speed of light.
The chiral magnetic wave should be observable as a collective mode of the
electron fluid in Weyl semi-metals. It also has an important application
in the physics of the quark—gluon plasma, where it leads to a quadrupole
moment in the charge distribution of the final hadronic state in non-central
heavy-ion collisions. This signal has been theoretically predicted in [9, 84, 85]
and observations in experiment compatible with it are reported in [10, 86].

Chiral hydrodynamics has been used to find many more interesting col-
lective modes such as appearance of non-linear Burgers solitary waves due to
the chiral vortical effect [87], a chiral vortical wave [88] at non-zero chemical
potentials, a chiral heat wave [89, 90|, chiral Alfven waves |91].

8. The holographic Weyl semi-metal

So far, we have worked with a very simple field theory model for a (time-
reversal breaking) Weyl semi-metal based on the theory of anomalous trans-
port. Holography has been of the highest importance to gain understanding
of anomaly induced transport and even to unravel some unexpected relations
such as the one between the temperature dependence of the chiral vortical
effect and the gravitational anomaly. This motivated work on a holographic
model of Weyl semi-metal and the relation between anomalies and transport
phenomena in this model [92-94].
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The important feature is that the Weyl physics arises in the infrared
region. This is unusual from the point of view of high-energy physics where
massless fermions are usually thought of as being a good approximation
for high-energy processes. A simple field theoretic model of how effective
low-energy Weyl physics can arise, is the Lorentz breaking massive Dirac
equation

(i) — M +vsp) ¥ = 0. (8.1)

This model has been invented to investigate the consequences of Lorentz
symmetry breaking in particle physics [95] and as a model for the physics of
Weyl semi-metals in [75].

We will concentrate on the case in which the four vector b, is purely
space-like and without loss of generality we take it to point in the z-direction.
At high energies, the mass term is irrelevant and the theory is basically the
same as (7.2). If we are interested in the behavior at low energies, there
is some interesting non-trivial phase transition. It turns out that as long
as |M| < |I;|, the low-energy theory is not gapped. Rather the low-energy
theory is given again by (7.2) but with an effective low-energy parameter
beg = Vb2 — M?2. So the low-energy theory is one of massless Weyl fermions
despite the fact that there is a mass parameter in the fundamental La-
grangian. On the other hand, for |[M| > |b|, the theory is gapped with a
mass gap of A = VM2 — 2. So there is a quantum phase transition at
M = b, in fact, it is a topological phase transition since the topology of
momentum space changes from a situation with band crossing points to the
one with a gap (see Fig. 9). What is the signature of this topological phase
transition? We can argue that it should be the anomalous Hall effect. Since
the Hall effect is the response to static and homogeneous fields, it is an IR
property and it should be governed by the properties of the IR theory. We
already know that a Dirac fermion with a constant axial vector A5 =

Fig.9. Left panel: For b> > M?, there are two Weyl nodes in the spectrum. They
are separated by the distance of 2¢/62 — M? in momentum space. Right panel: For
b? < M?, the system is gapped with a gap 2A = 2/ M2 — b2,
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features an anomalous Hall effect (7.8). Since in the IR theory the relevant
parameter is beg, we expect that there is an anomalous Hall conductivity of
the form of
b2 — M2
——0
272

The calculation of this Hall conductivity in field theory (even the free
one) is not easy and subject to all the renormalization ambiguities we dis-
cussed already in the case of the triangle diagrams [96]. Instead of analyzing
the field theory any further, we will take it as motivation to write down a
holographic model that also has a topological quantum phase transition be-
tween a topological state with non-zero Hall conductivity and a topologically
trivial state with vanishing Hall conductivity.

Now, we want to construct a holographic model based on the dictio-
nary in Table I. We want to implement the particular symmetry and their
breaking patterns based on the free fermion model (8.1). Most basically,
the theory lives in the flat Minkowski space. The Lorentz symmetry is only
broken by the vector b, which we understand as a background of an axial
gauge field. There are also two U(1) symmetries, a vector-like one represent-
ing the electric charge conservation and an axial one that is broken at tree
level by a mass term. The mass operator ¥ is rotated into ¥ys% under
the action of the axial U(1) symmetry. The field content of our holographic
model has to have a metric to represent energy and momentum conservation
related to Lorentz symmetry, a completely conserved vector gauge field V,,
an axial gauge field Ay, a complex scalar field whose real part corresponds
to the mass operator. The scalar is also charged under the axial U(1). The
axial anomaly has three parts, a pure axial cubed anomaly, a mixed axial
vector anomaly and a mixed axial gravitational anomaly, and is represented
in holography via Chern—Simons terms. This motivates the action

(Io] = [M]) . (8.2)

ny =

1 12\ 1 1
_ 5 — - i D = R 7 * M o
S = [dPxy/ g{%z <R+L2> 2P 1 (Du®) (DY 3) -V (@)

«
+MNPRE 4, (3 <3]:NPFQR+FNPFQR> +<RLKNPRKLQR>] - (8.3)

The covariant derivative is Dy; = 0y +1iqA s since the scalar is charged only
under the axial symmetry. The scalar field potential is chosen to be V(®) =
m?|®|? + 5|®|*. The mass determines the dimension of the operator dual to
& and we chose it to be m?L? = —3. Here, L is the scale of the AdS space.
In the following, we set 2k? = e> = L = 1. The operator dual to @ has,
therefore, dimension three just as the mass term in the Dirac equation (8.1).
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The electromagnetic and axial currents are defined as

J = lim \ﬁ—g(FW n 4aem5ﬂ0Ango) , (8.4)
. dov o
Ji = 1im =g (R + e ABFS,). (8.5)

We are looking for solutions that are asymptotically AdS. In addition, the
holographic analogues of the mass term and the time-reversal breaking pa-
rameters in (8.1) are introduced via the boundary conditions at r = oo,

lim r® =M, lim A, =b. (8.6)

r—00 r—00

Our Ansatz for the zero temperature solution is

d 2
ds? = u (—dt2 + daz? + dyz) + % + hd2?,
A = A,dz, P=¢. (8.7)

Note that due to the conformal symmetry at zero temperature, only M /b is
a tunable parameter of the system.

Critical solution: The following Lifshitz-type solution is an exact solution
of the system:

d 2
ds? = ugr? (—dt2 +dz? + dy2) + T:Q + hor?#dz2,
0
Az = Tﬂ y ¢ = ¢0 . (88)

It has the anisotropic Lifshitz-type symmetry (¢,z,y,7~ %) — s(t,z,y,771)
and z — s”z. We need to introduce irrelevant deformations to flow to
the UV and match the boundary conditions (8.6). We can use the scaling
symmetry z — sz to set the coefficient in A, to be 1. There are four con-
stants {uo, ho, B, ¢o} determined by the value of A, m and ¢q. To flow this
geometry to asymptotic AdS in the UV, we need to consider the following
irrelevant perturbation around the Lifshitz fix point v = u0r2(1 + du ro‘),
h = horﬁ(l + 5hr"‘), A, = 7‘6(1 + &Lra), ¢ = qﬁo(l + 5q§ra). Because
of the scaling symmetry, only the sign of d¢ is a free parameter. Nu-
merics shows that only d¢ = —1 corresponds to asymptotic AdS space at
the UV. We also fix ¢ = 1,\ = 1/10. In this case, the numerical values
are (ug, ho, B, ¢o, ) ~ (1.468,0.344,0.407,0.947,1.315) and (du,dh,da) ~
(0.369, —2.797,0.137)d¢. Integrating towards the UV gives the value M /b ~
0.744.
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Topological non-trivial phase: The topologically non-trivial solution'®
in the IR is
2.2 .
uw=r?, h=r?, Az:al—i—ﬂalgble*%q,
16r
a1q 3/2 _ajq
6= vro(5e) e (8.9)

A appears only at higher order terms and a; can be set to a numerically
convenient value. Once the solution is found, it can be re-scaled to b = 1.

Starting from this near-horizon solution, we can numerically integrate
the equations towards the UV and taking ¢; as shooting parameter. One
gets an AdS; to AdSs domain wall which for the chosen values of A and ¢
exists only for M /b < 0.744.

Topological trivial phase: The near-horizon expansion of the trivial so-
lution is

(1+ 83)\> 27 h:7'2, Azzalrﬁ)l’ ¢ = \/7+¢1T/82

(8.10)

where (1, 82) = ( 1+ ;i%z/\ —-1,2 331280/\/\ — 2). For the chosen A\ and ¢

numerically (81, f2) = (w/— 1,1 W ) We set a1 to 1 and take ¢y
as the shooting parameter. Again, one finds an AdSs to AdS5 domain wall.
This type of solution only exists for M /b > 0.744.

10-¢ 10-% 0.01 100 10%  10°

o |ls
ol = F

Fig.10. (Color online) The bulk profile of background A, and ¢ for M/b = 0.695
(blue), 0.719 (green), 0.743 (brown), 0.744 (dashed/red), 0.745 (orange), 0.778
(purple), 0.856 (black).

18 Similar near-horizon geometries were found in [97, 98] in the context of holographic
superconductors.
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Figure 10 shows the behavior of the scalar field and the gauge field for
all three phases at several different values of M/b. For a given value of M /b,
only one of the three types of solutions exists. The value of the gauge field
on the horizon matches continuously between the two phases, whereas the
value of the scalar field on the horizon jumps discontinuously.

Finite temperature solutions: Finite temperature solutions with a reg-
ular horizon can be found with the Ansatz

d 2
ds? = —ud?+ 2 ¢ f (de + dy2) + hdz?,
u
A= Ads, S=0¢ (8.11)

imposing the conditions that at r = ro f,h,®, A, are analytic and u has
simple zero. Using the scaling symmetries of AdS and the constraint from
the equations of motion at the horizon r = rg, we are left with only two
dimensionless parameters. In the UV, these are mapped to M /b and T'/b.

Conductivities can now be computed with the help of Kubo formulas

Orn = lim %(JWLJ (w, k= 0) . (8.12)
In holography, the retarded Green’s functions can be obtained by studying
the fluctuations of the gauge fields around the background with infalling
boundary conditions at the horizon [99)].

The anomalous Hall conductivity is the off-diagonal part of (8.12). To
compute it, we need to switch on the following fluctuations 8V, = v, (r)e~*?,
8V, = vy(r)e”™" and define vy = v, + ivy. The equation of motion for this
fluctuation is

nood w? S8war
" / /
v — 4+ — v —vy+ —=A vy =0. 8.13
i+<2h+u>i+u2i U\/E 2Vt ( )
These are the same for the zero and finite temperature backgrounds. To
solve these equations, we follow the usual near—far matching method [100].
The Green’s function can be read off by normalizing the fluctuation to unity
at the boundary. The response in the current is then given by

Gy = —U\/Hv’i]r:oo T S8abw . (8.14)

The second term stems from the Chern-Simons current in (8.4), i.e. it is the
contribution of the Bardeen—Zumino polynomial. We only need to compute
the leading order in w. For both cases T'= 0 and T > 0, we can express the
result as

Ozy = 8aA,(r0), (8.15)

Ozz = Oyy = \V/ h(r0) . (8.16)
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For T' = 0, we have 79 = 0 and h(0) = 0 thus the diagonal conductivi-
ties vanish at zero temperature. The anomalous Hall effect (see Fig. 11)
is determined by the IR value of the axial gauge field. We can identify
bef = A.(r = 0)! We emphasize that this result is crucially dependent on
the usage of the consistent (conserved) current. At zero temperature, it
is non-vanishing only in the second type of solutions described above. It
is, therefore, the topologically non-trivial solution with non-vanishing Hall
conductivity. The third kind of zero-temperature solution is characterized
by the restoration of time-reversal invariance at the end point of the holo-
graphic RG flow A,(0) = 0 and absence of Hall conductivity. Therefore, we
have a holographic model of a topological quantum phase transition between
a topological and trivial semi-metal.

Fig.11. (Color online) Anomalous Hall conductivity for different temperatures.
The solid lines correspond to our holographic model. For T' = 0, there is a sharp
but continuous phase transition at a critical value of M /b (blue) which becomes
a smooth crossover at T' > 0. We show the curves for 7'/b = 0.1 (black), 0.05
(purple), 0.04 (red), 0.03 (brown). For comparison, we also show the result for
the weak coupling model as a dashed (green) line. Near the transition, the Hall
conductivity behaves as (oapg/b) o« ((M/b). — M/b)® with a =~ 0.211 (to be
contrasted with the field theory model for which o = 0.5).

Longitudinal conductivity: The longitudinal electric conductivity at both
finite and zero temperature can be computed from the fluctuation 6V, =

v,e” ™! with equation of motion

/ / o w2
U/Z/+<f_+u)v;+u2fuz_0. (8.17)
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At zero temperature, we substitute f = u. We find

I
\/ﬁ T=r0 '

The three types of background solutions can be classified according to
the presence or absence of the anomalous Hall effect. There is a phase for
M /b smaller than a critical value in which the axial gauge field flows along
the holographic direction towards a constant but non-zero value in the IR.
The end point of this holographic flow of the axial gauge field determines the
Hall conductivity ogy. At M = 0, the flow is trivial and the Hall response
is completely determined by the Chern—Simons current at the boundary of
AdS space (the Bardeen—Zumino polynomial). For M # 0, a non-trivial flow
develops, the Hall conductivity has now two parts, a dynamical part that can
only be determined by solving equations (8.13) and the Chern—Simons part
determined by the boundary values of the fields. At the critical value (for our
choice of parameters this is (M/b). ~ 0.744), the Hall conductivity vanishes.
At this value, there is a critical solution with a non-trivial scaling exponent
in the z-direction. For even larger values of M /b, the solution shows no
Hall effect. The axial gauge field flows to A, = 0 in the far IR. In contrast,
now the scalar field obtains a non-trivial IR value. This corresponds to the
cosmological constant having a different value in the far IR; ¢.e., the trivial
solution is a domain wall in AdS similar to the zero-temperature supercon-
ductor solutions described in Ref. [97]. Since in holography the cosmological
constant is a measure of the effective number of degrees of freedom, the
trivial solution can be interpreted as one in which some of the UV degrees
of freedom are gapped out along the RG flow. We have thus found a holo-
graphic zero-temperature quantum phase transition between a topological
phase characterized by a non-vanishing Hall conductivity and a topological
trivial phase with zero Hall conductivity. All diagonal conductivities vanish
at zero temperature.

At T # 0, the quantum phase transition becomes a smooth crossover.
The far IR physics is covered by a horizon at some finite value of the holo-
graphic coordinate. It is also interesting to observe the behavior of the
diagonal conductivities at finite 7" as a function of M /b (see Fig. 12). We
see that the transverse diagonal conductivities develop a peak roughly at
the critical value, whereas the longitudinal one develops a minimum. The
height of the peak and the depth of the minimum grow with temperature.
At M = 0, we simply have 0.4.4y.. = 71 and for large M, the conduc-
tivities tend to a value of 0,4 4y .. = el with ¢ < 1 and independent of
temperature. This is consistent with the interpretation that some but not
all degrees of freedom are gapped out in the trivial phase and that the phase
transition is between a topological semi-metal and a trivial semi-metal.

Ozz =

(8.18)
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Tdiag 4

Fig.12. (Color online) The transverse and longitudinal electric conductivities for
different temperatures. The solid lines are for o, = o,y and the dashed lines are
for o,, from our holographic model with T/b = 0.05 (black/purple), 0.04 (light
gray/red), 0.03 (dark gray/brown). The dashed vertical/gray line is the critical
value of M /b at the topological phase transition.

Hall viscosity: So far we have shown that our holographic model of a Weyl
semi-metal has a quantum phase transition between a topological phase and
a trivial phase distinguished by the presence of anomalous Hall conductivity.
This is by itself interesting but so far, the model does not do anything new
compared to the free fermion model (8.1). So can we use the holographic
model to compute something new? It turns out the answer is yes! In three
dimensions, anisotropic time reversal breaking systems have a very compli-
cated viscosity tensor. Viscosity can be defined as a response to gradients
in the fluid velocity

T = —Npwpr0pty - (8.19)

The Lorentz invariance restricts this to two independent components, the
shear and the bulk viscosity (5.11). More generally, we can define the vis-
cosities via the Kubo formula

.1 R
Mijkl = }}E}) ;Im (G5 (W, 0)] (8.20)
with the retarded Green’s function of the energy-momentum tensor
G (w,0) = —/dtd?’xeiwte(t)(mj(t,f),Tkl(Q0)]). (8.21)

This has even and odd components under the exchange of the index pairs ij
and kl. We are interested in the odd components. Choosing our coordinates
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such that b = bé,, the two odd viscosities related to the anti-symmetric
part of the retarded Green’s function under the exchange of (ij) <> (kl) are
(T denotes here the index combination zz—yy)

NHy = —Nzzyz = Myzzz NH, = Ney, T = —NT,zy - <8~22)

These odd viscosity components can be calculated for the holographic
Weyl semi-metal. They are non-zero in the finite temperature backgrounds.
The results can be expressed via the values of the bulk fields at the hori-

zon [94] )
> A% f?
T, = 4C? ’ (823)
r=ro
m, = 8C*¢°f A, (8.24)
r=rq

As can be seen from the plots (Fig. 13), the odd viscosities are very
much suppressed in the topological phase. They rise steeply (in the chosen
parametrization) and peak near the critical value of M/b. Then they fall
off again. This is an indication that the odd viscosity is a property related
to to the underlying quantum critical point that separates the topological
from the trivial phase. In this region, scaling laws for the odd viscosities
(and other transport coefficients) can be obtained from expressions (8.23),
(8.24) [94], e.g. we find ng; oc T2 and || o 748 and B is the scaling
exponent of A, of the critical solution.
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Fig. 13. Odd viscosity nu L (left panel) and 7y as a function of M/b at different
low temperatures normalized by 7°3.

9. Outlook

Anomalies are one of the cornerstones of quantum field theory. Almost
50 years after the realization that anomalies explain the decay of neutral
pions, they still are a major source of progress in theoretical and also ex-
perimental physics. In these notes, I have summarized some of the story of
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anomalous transport phenomena emphasizing a few subtleties and hinting
towards some applications. While the basic phenomenology is now rather
well-understood, after a complicated history |16, 101-106] of discovery, ne-
glect, re-discovery and final breakthrough there remain some pressing issues
that need to be understood better.

First is the still somewhat mysterious way of how the mixed gravita-
tional anomaly manages to influence transport at the one-derivative level.
A hint is given by holography which allows to swallow surplus derivatives
up in the extra dimension. Steps towards a holography-independent under-
standing have been made, e.g. combining hydrodynamics with geometric ar-
guments [44], non-renormalization theorems [52, 53|, considering Berry flux
through Fermi surfaces [61] and links to global gravitational anomalies [54].
Beyond that, there is a pressing need of addressing the experimental side of
the gravitational anomaly. In high-energy physics, a direct measurement of
pion decay into gravitons seems hopeless but in condensed matter be it the
quark—gluon plasma or the electron fluid of Weyl semi-metals the collective
transport phenomena induced by the gravitational anomaly are, in princi-
ple, accessible. Hopefully, ingenious experimental physicists will get excited
about this possibility in the near future.

While holography can probably not claim to have discovered anomalous
transport, it has certainly played a major role in gaining a better understand-
ing. But the holographic story has not yet ended: as we have reviewed, a
holographic model of a Weyl semi-metal state shows very unusual viscosity
properties in the quantum critical region that lies between the topological
and trivial phase. Viscous flow of the electron fluid in graphene has recently
been measured [107-109]. So one naturally hopes that this (string theory
based) prediction of odd viscosity in the quantum critical region of Weyl
semi-metals can be measured one day as well.

There are many aspects that are missing from this review. Especially, the
application of anomalous transport theory to the physics of the quark—gluon
plasma. Suffice it to point to the recent reviews [110-112|. Another impor-
tant subject totally missing from this paper is chiral kinetic theory [113-115].
Another very systematic approach to anomalous transport has been devel-
oped in [116]. Anomalies in d dimensions are governed via the so-called
descent equations by invariant polynomials in the field strengths in d + 2
dimensions. The anomalous currents can be obtained from the invariant
polynomials substitution rule F — u, (po(R) — —T2,pp>1 — 0), where
pr(R) is the Pontryagin classes, i.e. invariant polynomials in the Riemann
tensor, pa(R) is the gravitational contribution to the chiral anomaly.
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We have always assumed that the electric and magnetic fields are external
and non-dynamical. Including dynamics of the gauge fields is, however, an
important issue and leads to several new aspects. First of all, the actual
QCD axial anomaly has a contribution form the gluon fields which have
strong quantum dynamics in physically interesting situations such as heavy-
ion collisions. This allows for processes that actually create net chiral charge
and was the origin of the idea of the presence of the chiral magnetic effect
in heavy-ion collisions |7]. Also the values for the anomalous transport
coefficients are affected [53, 117]|. In holography, anomalies with dynamical
gluons can be modeled by using the Stiickelberg mechanism in the bulk of
AdS [49, 118]. Coupling the chiral magnetic current to Maxwells equations
leads to the so-called chiral magnetic instability [119-122] converting axial
chemical potentials into helical magnetic fields.

I would like to thank the organizers of LVI Cracow School on Theoretical
Physics in Zakopane, Poland for inviting me to present this material and for
providing a stimulating environment. I also thank all my collaborators for
helping me to unravel and understand some of the issues involved. My
research has been supported by FPA2015-65480-P and by the Centro de
Excelencia Severo Ochoa Programme under grant SEV-2012-0249.
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