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We discuss the existence of huge thermal neutron capture cross sections
in several nuclei. The values of the cross sections are several orders of mag-
nitude bigger than expected at these very low energies. We lend support to
the idea that this phenomenon is random in nature and is similar to what
we have learned from the study of parity violation in the actinide region.
The idea of statistical doorways is advanced as a unified concept in the
delineation of large numbers in the nuclear world. The average number of
maxima per unit mass, 〈nA〉 in the capture cross section is calculated and
related to the underlying cross section correlation function and found to
be 〈nA〉 = 3/(π

√
2γA), where γA is a characteristic mass correlation width

which designates the degree of remnant coherence in the system. We trace
this coherence to nucleosynthesis which produced the nuclei whose neutron
capture cross sections are considered here.

DOI:10.5506/APhysPolB.47.391

1. Introduction

Very low energy neutron capture cross sections are important ingredients
for nuclear research and applications. In the r-process of astrophysical sig-
nificance, these cross sections are of fundamental importance as they dictate
the path of nucleosynthesis. In applications, we mention energy production
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in reactors, and medical use in neutron capture therapy as well as in imag-
ing. A recent compilation of these cross section is given in [1]. In Table I,
we show a sample of this compilation.

TABLE I

Neutron capture cross section for several nuclei across the periodic table. The
choice of the nuclei was dictated by the mass region and the disparity in the value
of the thermal neutron capture cross section between adjacent nuclei or isotopes,
when available. The full compilation can be found in [1].

Nucleus Cross section [barn]
9Be [8.77± 0.35]10−3

10B 0.5± 0.0.1
n+10 B→4 He +7 Li 3.8× 103

14N [79.8± 1.4]× 10−3

15N [0.024± 0.008]× 10−3

16O [0.19± 0.019]× 10−3

20Ne [37± 4]× 10−3

21Ne 0.666± 0.110
28Si [177± 0.5]× 10−3

40Ar 0.660± 0.01
40Ca 0.41± 0.02
56Fe 2.59± 0.14
59Co 37.18± 0.06
58Ni 4.5± 0.2
63Cu 4.52± 0.02
84Kr 0.111± 0.015
90Zr 0.011± 0.005
103Rh 145± 2
113Cd 2.06× 104 ± 400
114Cd 0.34± 0.02
149Sm 4.014× 104 ± 600
157Gd 2.54× 105 ± 815
159Tb 23.3± 0, 4
208Pb 0.23± 0.23
209Bi 0.0338± 0.0007
232Th 7.35± 0.03
238U 2.68± 0.019

It is a known fact that the thermal neutron (0.025 eV) capture cross
section by 10B is about 0.5 barns. On the other hand, the fission cross
section of the reaction n+ 10B→ 4He + 7Li is 3.8× 103 barns. Though the
capture cross section for 10B is small, the absorption cross section is very
large. We remind the reader that the absorption cross section, intimately
related to the strength function [2], contains the capture cross section as a
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piece, plus other cross sections such as the above mentioned fission one. In
the case of heavy nuclei, one finds the similar behavior. Let us take the
case of gadolinium 157. The thermal neutron capture cross section is about
2.54× 105 barns, to be contrasted with the capture by the other isotopes of
gadolinium, which are of much smaller value. In fact, the capture by natural
gadolinium is 6 times smaller than that by 157Gd, yet it is still quite large
owing principally to the presence of this isotope in the natural sample. As
such, the cross section for natural gadolinium, extensively used as a contrast
agent in Nuclear Magnetic Resonance (NMR) imaging, is

σcapture = 0.0218σ152+0.148σ155+0.2047σ156+0.1565σ157+0.2484σ158 . (1)

For ultra cold neutrons (En < 0.001 eV), the capture cross section for
157Gd can reach 1.2× 108 barns. This is comparable to typical atomic cross
sections! The natural gadolinium capture cross section of these neutrons is
about 4 × 105 barns. Other cases of large thermal neutron capture cross
section are 153Cd, 2 × 104 barns, and 135Xe, 3 × 106 barns. The cadmium
isotope 113Cd is commonly used as a neutron absorber–moderator in reactors
and in other applications.

In figure 1, we show the thermal neutron capture cross section for a
variety of nuclei. The boron and gadolinium cases stand out as notable
exceptions of having an exceptionally large capture cross section. To be fair,
the 10B capture cross section, (n, γ), is rather small. What is very large is
the n-induced fission of the compound nucleus, 11B, namely,

n+ 10B→ 11B→ 4He(Eα = 1.47 MeV)

+7Li(ELi = 0.84 MeV) + γ(Eγ = 0.48 MeV) + 0.231 MeV . (2)
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Fig. 1. Neutron capture cross sections vs. the mass number of the compound nuclei.
The data were collected from the compilation of Ref. [1].
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The reaction products, α and 7Li, are ionizing particles with a high linear
energy transfer in environments such as living tissues, and they lose all their
energy within a micrometer distance, roughly the diameter of the Boron-
tagged cell. The large values of the thermal neutron capture cross section
in 157Gd; σ157 = 2.54× 105 barns; 153Cd; 2× 104 barns, and 135Xe, 3× 106

barns, and the 10B(nth, γ)α + 7Li; σ10 = 3.84 × 103 barns reaction has
received only minor attention as to their explanation.

In this contribution, we take a critical look at the capture cross sec-
tion data and present an analysis of both the fluctuating background using
random matrix-inspired means, and the aforementioned anomalously large
cases. In this latter case, we base our discussion on the idea of a statis-
tical doorway resonance which sits far up in energy but can influence the
cross section in basically the same way that such doorways influence the par-
ity violation, “sign” problem, seen in the measurement of the longitudinal
asymmetry of epithermal neutrons scattered by thorium, uranium and other
heavy nuclei [3]. Other cases involving the statistical doorways rôle in res-
onance reactions are the description of pre-equilibrium reactions [4, 5], and
the decay of giant resonances [6]. Of course, collective doorways, namely,
states formed by coherent excitation of simple configurations, of 1p–1h cou-
pled to 2p–2h states etc. are used in the description of giant resonance [7].

2. Abnormal nuclear resonance reactions
and the possible rôle of simple doorways

A notorious case of an abnormal resonance reaction is the intermediate
structure seen at low energy [8], and interpreted by Feshbach and Block [2]
as arising from simple doorways, that modulates the compound nuclear res-
onances. We refer the reader to Feshbach’s book on nuclear reactions [9].
A more recent example, which has been already alluded to above, concerns
the parity violation study using epithermal neutron scattering from several
heavy nuclei. The results of the experiments revealed a “sign” controversy,
namely, by looking at the longitudinal asymmetry of the neutrons, A, it
was found that the average 〈A〉 over the compound nucleus resonances is
predominantly positive, contrary to one’s belief that the average is zero in
accordance with the statistical nature of the CN resonances. Several the-
oretical attempts were made to explain the “sign” problem [10–12]. Quite
recently, data on the distribution of reduced neutron widths of capture on
platinum were obtained and analyzed by [13] and the idea was advanced
that the usual, expected Porter–Thomas distribution breaks down. This
finding prompted several theoretical works [14, 15], which employ in one
way or another a doorway mechanism to explain the deviation from the
PT distribution. Conventional reaction theory without resorting to door-
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way was also attempted [16]. Related phenomena which may shed light on
the resonance-dominated large capture cross section are the Stochastic Res-
onances [17], and Extreme Statistics [18]. In the following, we discuss in
detail the abnormally large thermal neutron capture cross section.

A compound nucleus resonance-dominated thermal neutron capture cross
section can be written as

σn = 4× 106 [barns]
ΓnΓγ

(E − ER)2 + 1/4(Γ )2
. (3)

The neutron width Γn depends on energy and can be written as Γn =
γn
√
En/1 eV, where γn is the reduced width. At thermal energy, En =

0.025 eV (T = 300 K, vn = 2200 m/s), the neutron width becomes about
0.1 MeV, if a reduced width is taken as γn = D × Sn, where Sn is the l = 0
neutron strength function and D is the average spacing between compound
resonances. From the systematics cited in [2], the strength function for an
excitation energy of 8 MeV and A = 157 is about 5 × 10−4. The γ width
Γγ is about 0.15 eV. For thermal energies and A = 157 (gadolinium), D is
42.6 eV. Accordingly, the ratio Γn/Γγ = 6.8 × 10−4 is an extremely small
number. For all practical purposes, the total width in Eq. (3) is Γ = Γγ .
Thus, we can write for the (n, γ) reaction, Eq. (3),

σn = 1.0× 102
[
barns (eV)2

] 1

(En − ER)2 + 1/4(Γγ)2
. (4)

If a resonance is close to the thermal energy, the above expression gives
σn = 1.78 × 104 [barns]. The thermal neutron capture on 157Gd is σn =
2.26 × 105 [barns]. However, the capture on the other stable isotopes of
gadolinium are orders of magnitude smaller (with the exception of 155Gd
which has a capture cross section of σn = 6.0 × 104 [barns]). The question
is why is so great variation in the value of the capture cross section. A
resonance could be situated close to the thermal neutron energy in the case
of 155Gd and in 157Gd, and not in the other isotopes. However, another esti-
mate of the capture cross section can also be obtained for a resonance energy
far from the thermal neutron energy, say, at ER = 22 eV. This gives σn = 2
barns, a huge difference from the ER = 0.025 eV case above. This difference
of about 5 orders of magnitude is what dictates the difference in the capture
cross sections of the gadolinium isotopes. But how accurate a measurement
can be to be able to distinguish between an energy level in the compound
nucleus at 8.0+2.5×10−6 MeV from that at 8.0 MeV? This is hardly possible
even with current advances in energy measurement techniques. The uncer-
tainty in the position of the resonances in the compound nucleus prompted
people to speculate that the occurrence of abnormal capture cross section is
a random phenomenon.
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The randomness idea can be better formulated using the concept of a
doorway resonance sitting far away from the CN resonances, and having a
total width much larger than that of the compound resonances ΓD � ΓCN.
Most of the discussion to follow was invoked by Bloch and Feshbach back
in 1963 in their seminal paper [2] on the fine structure seen in the neutron
strength function 〈Γn〉/〈D〉, below the usual giant structure. This inter-
mediate structure was independently introduced and discussed in [8]. The
doorway states are simple 2p–1h states which are coupled to the neutron
and γ channels, and to the more complicated configurations in the com-
pound system, 3p–2h, 4p–3h, etc. This latter coupling gives the doorway
a spreading or damping width, Γ ↓D, the former accounts for the coupling to
the open channels and gives the doorway an escape width, Γ ↑D. The door-
way states are also considered at higher energies in the so-called statistical
multistep compound pre-equilibrium emission [4, 5]. In these reactions, the
relative importance of the escape to the damping widths, Γ ↑

Di/Γ
↓
Di , of the

different classes of the ever more complicated doorways populated in the
reaction is very important. For a very recent review on compound nucleus
reactions, see [19]. The important feature that distinguishes the doorway
resonance from the CN resonance is that the total width of the doorway is
ΓD = Γ ↓D + Γ ↑D, while that of the CN is just an “escape” width to the open

channels. Using Feshbach’s formula [2, 9, 20], ΓCN

DCN
= Γ ↑D

DD
, where D stands

for the doorway resonance, we can estimate the average escape width of the
doorway resonance (taken here to be a single isolated one). The density of
states of the 2p–1h doorway states is given by the formula,

ρ(E?)2p−1h ≡
1

D2p−1h
=
g(gE? − 1/2)2

8(2π)1/2σ3
× (2j + 1) exp

[
−(j + 1/2)2/2σ2

]
,

(5)
where σ is the spin cutoff parameter, g is the average single particle level
spacing near the Fermi level, given approximately by g = A

15 , and the spin
cutoff parameter is taken to be σ2 = 3×0.24A2/3. We take for the excitation
energy, E?, the average neutron separation energy in the compound nucleus.
We show in figure 2 a plot of the 2p–1h density vs. mass number. Taking for
the excitation energy in the compound nucleus 158Gd, 8.0 MeV, we obtain
for the density of 2p–1h states the value (j = 2, 1) 1

DD
= 20 MeV−1, see

figure 2. This supplies the escape width of the doorway in 158Gd as Γ ↑D =

Γγ
D2p−1h

DCN
= 0.15 eV [50 keV

42 eV ] = 0.18 keV. An estimate of the damping width
is more difficult to obtain. However, we can make a reasonable guess of
Γ ↓D ≈ 1 keV. This will guarantee that the doorway will have an effect over
Γ ↓D/DCN = 1 keV/42.6 eV = 22 CN resonances. With this value of the
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damping width, we can assess the condition that the doorway resonance is an
isolated one in the sense, ΓD/DD = [0.18 [keV]+1 [keV]]/50 [keV] = 0.024,
a perfect condition for isolated resonances.
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Fig. 2. 2p–1h density of states vs. the mass number of the compound nucleus. The
excitation energy, E?, for thermal neutron capture, En = 0.025 eV, is taken to be
the average neutron separation energy of the compound nucleus.

The coupling of the neutron channel to the 2p–1h doorway results in a
modified expression for the capture cross section. To clearly demonstrate
how the doorway resonance affects the capture cross section, we resort to
the relevant reaction theory as given by [9, 20], and first write the amplitude
for the (n, γ) transition through the doorway as

Tn,γ =
gD,ngD,γ

E − ED + iΓD/2
, (6)

where g is the amplitude for the transition from the doorway to the open
channel. The important difference between the doorway resonance and the
compound resonance is that in the former, the total width of the doorway
contains a damping width Γ ↓D, such that ΓD = Γ ↓D + Γ ↑D, where the es-
cape width, Γ ↑D is the sum of all partial decay widths to the open channels,
the usual width of a resonance. The compound nucleus width is basically
an escape width. The partial width of the doorway is ΓD,n = 2π|gD,n|2.
We now make the assumption that the doorway state only couples to the
neutron channel and not to the γ one. This means that the γ emission
proceeds from the compound nucleus resonances, q. Then, we can write
gD,γ = Γ ↓D[ED − Eq + iΓq/2]−1gq,γ , where q labels the compound nucleus
resonance. Of course, experience has taught us that, in general, γ emission
can happen both from the doorway as well as from the compound nucleus.
In fact, in the γ decay of giant resonances in nuclei such as 208Pb, [21, 22],
the two contributions are comparable. At the very low neutron energies
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considered here, and the excitation energies in the compound nucleus sitting
several MeV below the giant quadrupole resonances considered in [21, 22],
we ignore the “direct” doorway γ decay, and consider this channel to be
entirely open only to the compound nucleus resonances. Thus, the cross
section becomes

σn =
1

π2
× 106 [barns]

ΓD,n

∣∣∣Γ ↓D∣∣∣2
(E − ED)2 + 1/4(ΓD)2

Γq,γ

(ED − Eq)2 + 1/4(Γq)2
. (7)

The q states are the compound nucleus resonances to which the doorway
is coupled and we take them to be such that Eq = ED, and ED � En,
accordingly,

σn =
1

π2
× 106 [barns]

ΓD,nΓq,γ

(
Γ ↓D

)2(
E2

D + 1/4 (ΓD)2
)

(Γq/2)2

≈ 4

π2
× 106 [barns][ΓD,n]

(Γ ↓D)2

(ED)2(Γq)

≈ 1

π2
× 104 [barns/(eV)]ΓD,n = 1.0× 105 [barns] , (8)

where the neutron width of the doorway was in our model taken to be equal
to its escape width of 0.18 keV. This is consistent with our assumption that
the γ decay proceeds only through the CN resonances in the vicinity of the
doorway. The above cross section is less than half in value of the empirical
one 2.54 × 105 [barns] cited above and listed in the compilation of [1]. In
obtaining the above estimate, we have used ED = 50 keV. Of course, it is
quite possible that the doorway could be located at a smaller energy. If we
take ED = 30 keV, we would get for the cross section σn = 2.7×105 [barns].

How frequent does such a doorway enhancement occur? We can estimate
the probability of such a doorway enhancement by considering the ratio
η ≡ ΓD,n/Γq,n, which is the ratio of the cross section in the presence of the
doorway, first equation in Eq. (8), to that without the doorway. The width
Γq,n is the usual CN neutron width when no doorway is present. What is
random are the width amplitudes,

√
2πgD,n and

√
2πgq,n, whose squares are

the widths. At very low energies where the resonances are isolated, these
amplitudes are real. Let us call the distribution of the amplitudes P (x). The

probability that the ratio η =
ΓD,n

Γq,n
=

g2D,n

g2q,n
defined above attains a certain

value, η0, is obtained by evaluating the integral

P (η0) =

∞∫
0

∞∫
0

dxdyP (x)P (y)δ

(
x

y
−√η0

)
. (9)
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If a normalized Gaussian distribution is taken for P (x) and for P (y), the
integral above can be readily evaluated to give,

P (η0) =
1

2π

1

1 + η0
, (10)

resulting in a very small probability for the occurrence of the doorway en-
hancement. Accordingly, very large values of neutron capture cross sections
are inhibited by statistics.

3. Average density of maxima in the capture cross section vs. A

The thermal capture cross section vs. A is exhibited in Fig. 1. For the
purpose of theoretical analysis to follow, we show in Fig. 3, the same data
as in figure 1 but with a line that passes through the points. Further, in
Figs. 4–6, we present an enlarged figure 3, which exhibit the maxima in
a clear and countable manner. One notices the abundance of fluctuations
in σn vs. A shown in these figures. These fluctuations may very well be
random, though the capture cross section on a given nucleus as a function
of the neutron energy is in the region of isolated resonances.
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Fig. 3. The same as in figure 1, but with a line passing through the fluctuating
cross section to clearly exhibit the maxima.

A measure of the statistical nature of the capture cross section which
we propose here is the average number of maxima or minima in the cross
section as a function of the mass number of the compound nucleus. This
measure was suggested over 50 years ago by Brink and Stephen [23] for the
cross section vs. bombarding energy, and it relies on Ericson’s correlation
function [24]. Later, in condensed matter theory, Efetov [25] worked out the
correlation function in the case of variation of an external parameter such
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as an applied magnetic field on the shape of a nano-devise such as an open
quantum dot. He showed that the correlation function is the square of a
Lorentzian, in contrast to Ericson’s function for the variation with respect
to energy, which is a Lorentzian.
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Fig. 4. Neutron capture cross sections vs. the mass number of the compound nuclei
in the internal 50 < A < 100. The data were collected from the compilation of
Ref. [1].

Fig. 5. Neutron capture cross sections vs. the mass number of the compound nuclei
in the interval 100 < A < 150. The data were collected from the compilation of
Ref. [1].

Recently, the results of Brink and Stephen were extended to Efetov’s
correlation function and subsequently to a general value of the tunneling
probability, p, ranging between zero, for a closed system, to a maximum
value of unity for an open quantum dot system [26–28]. When apply-
ing Efetov’s theory to nuclei, one would ask what is the external param-
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Fig. 6. Neutron capture cross sections vs. the mass number of the compound nuclei
in the interval 150 < A < 200. The data were collected from the compilation of
Ref. [1].

eter? We trace the external parameter to the Universe which through Big
Bang (BBN) and Stellar nucleosynthesis created all the nuclei whose thermal
neutron capture cross sections are shown in Fig. 1. The correlation func-
tion, defined as C(δA) ≡ [〈σ(A)σ(A + δA)〉 − 〈σ(A)〉2]/〈σ(A)〉2 would be
C(δA) = 1

[1+(U(δA)/γA)2]2
, where U(δA) is the universal external parameter

responsible for the creation of the nuclei shown in Fig. 1. We take this func-
tion to be linear in the variation δA, U(δA) = cδA and accordingly define
the correlation width γA = γA/c. The Efetov correlation function is then,
for a maximum value of the tunneling probability, p = 1,

C(δA) =
1

[1 + (δA/γA)2]2
. (11)

Given a cross section auto-correlation function, C(z), the average density
of maxima in the fluctuation cross section is found to be [23, 26]

〈nz〉 =
1

2π

√
−C ′′′′(δz)|δz=0

C ′′(δz)|δz=0

. (12)

Considering the general case of a tunneling or transmission probability in
the interval 0 ≤ p ≤ 1, the correlation function as a function of a variation
in energy, E, or A can be derived [27],

C(δz) =
Az

1 + (δz/γz)2
+

Bz
(1 + (δz/γz)2)2

, (13)
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where AE = 3p(2 − p) − 2, BE = 4 + 4p(p − 2), AA = 2p(1 − p), and
BA = 2 + p(3p − 4). The average density of maxima, Eq. (12), is then
given by, when the general correlation function of Eq. (13) is used, 〈nz〉 =

(
√

3/πγz)
√

(Az + 3Bz)/(Az + 2Bz).
The tunneling probability alluded to above and used in the compound

nucleus case would be small in the limit of weak absorption corresponding
to isolated resonances, [〈Γq,n〉/〈D〉] � 1, and unity in the case of strong
absorption corresponding to overlapping resonances, [〈Γq,n〉/〈D〉] � 1. To
turn these ratios into a probability, we resort to the Moldauer–Simonius
theorem [29, 30] which states that in the general case, the average S-matrix
has the property, det|S| = e−πΓ/D which in the one-channel case gives
1 − |S|2 = 1 − exp [−2π〈Γ 〉/〈D〉], where 〈Γ 〉 is the average width of the
compound nucleus. The tunneling probability is then taken to be an aver-
age transmission coefficient, p = 1− |S|2.

Finally, we can write for the average number of maxima in the cross
section as the energy is varied 〈nE〉 and as the mass number is varied 〈nA〉
[26–28]

〈nE〉 =

√
3

πγE

√
9p2 − 18p+ 10

5p2 − 10p+ 6
(14)

and

〈nA〉 =

√
3

π
√

2γA

√
7p2 − 10p+ 6

2p2 − 3p+ 2
, (15)

where γE is the correlation width of Ericson’s fluctuations and γA is the
correlation width of Efetov fluctuations. In the limit of interest to us in the
current paper, namely, p < 1, we can set p = 0, and obtain

〈nE〉 =

√
5

πγE
(16)

and
〈nA〉 =

3

π
√

2γA
. (17)

This last result is a new one in the nuclear context and can be used
directly to extract the correlation width γA from the empirical data. In
the case of compound nucleus fluctuations, we obtain for 3〈nA〉 = 18/50 +
23/50 + 17/50 = 1.16, see Figs. 4, 5 and 6. Thus 〈nA〉 = 0.39, and accord-
ingly giving for the correlation width, γA, the value

γA =
3

0.39π
√

2
= 1.94 . (18)
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Accordingly, for all practical purposes, the remnant coherence in the oth-
erwise chaotic behavior of the capture cross section is restricted to ∆A = 1
and 2, which is expected as the nucleosynthesis which produced the nuclei
occurring predominantly by adding one or two nucleons (s- and r-processes,
notwithstanding BBN which involves several fusion reactions with ∆A > 2).
The above findings also indicate the adequacy of using a fully statistical de-
scription of the compound nucleus, a known fact. Of course, the doorways
are left out in this discussion as they correspond to extreme and rare events.

4. Conclusions

In conclusion, we have addressed the question of why the thermal neutron
capture cross section by a very few nuclei is very large and escapes the normal
trend found in most cases. We proposed that this effect may be traced to
simple 2p–1h doorway states that accidentally affect the neutron capture
in some nuclei. The chance for this to happen is very small as required by
the data. We have also suggested a new measure of the degree of chaoticity
of the compound nucleus cross sections based on the average density of
maxima. Our findings could potentially be of value in finding other cases
of very large capture cross sections and possible application to the study
of radiative capture involving exotic nuclei, of relevance to the s-process in
astrophysics.

Partial support from the CNPq and FAPESP are acknowledged by B.V.C.
and M.S.H.
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