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How Does Subatomic Matter Organize Itself? With their enormous
dynamic range in density and neutron–proton asymmetry, neutron stars
provide unique laboratories to answer this challenging question. Indeed, a
neutron star is a gold mine for the study of physical phenomena that cut
across a variety of disciplines, ranging from elementary particle physics to
general relativity. Although the most common perception of a neutron star
is that of a uniform assembly of neutrons packed to enormous densities, the
reality is far different and much more interesting. In this contribution, we
will focus on the dynamics of neutron-rich matter with special emphasis
on its impact on the structure and composition of the outer crust. In
particular, we will discuss a novel method that combines modern theoretical
approaches with Bayesian Neural Networks to build a new mass formula
that is then used to compute the crustal composition.
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1. Introduction

One century ago, on December 2, 1915, Albert Einstein published his
landmark paper on “Die Feldgleichungen der Gravitation” (“The Field Equa-
tions of Gravitation”). Almost two decades later, in an experiment that had
no connections with the laws of gravitation, Chadwick would discover the
neutron [1]. Very soon after Chadwick’s announcement, the term neutron
star appears in writing for the first time in the 1933 proceedings of the
American Physical Society by Baade and Zwicky who wrote: With all reserve
we advance the view that supernovae represent the transition from ordinary
stars into “neutron stars”, which in their final stages consist of extremely
closed packed neutrons [2]. It appears, however, that a couple of years ear-
lier Landau speculated on the existence of dense stars that look like giant
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atomic nuclei. For an in-depth and fascinating tale on Landau’s role on the
possible existence of neutron stars see, Ref. [3]. Adopting the view espoused
by Baade and Zwicky, Oppenheimer and Volkoff perform the first calculation
of the structure of neutron stars by employing the full power of Einstein’s
theory of general relativity [4]. Using what it is now commonly referred to
as the Tolman–Volkoff–Oppenheimer (TOV) equations [4, 5], Oppenheimer
and Volkoff demonstrated that a neutron star supported exclusively by the
quantum mechanical pressure from its degenerate neutrons will collapse into
a black hole once its mass exceeds seven tenths of a solar mass. Seventy five
years after such a pioneering prediction, the existence of neutron stars with
masses as large as two solar masses has been firmly established [6, 7]. This
fact alone highlights the vital role that nuclear interactions play in explain-
ing the structure of neutron stars. Indeed, it is the repulsive character of the
nucleon–nucleon interaction at short distances that provides the added pres-
sure required to support a two-solar mass neutron star against gravitational
collapse. This realization has created a powerful synergy between nuclear
physics and astrophysics. Moreover, as we articulate below, a neutron star
is a unique celestial laboratory for the study of nuclear phenomena over an
enormous range of densities and neutron–proton asymmetries.

Although it is fairly well-understood how the number of electrons de-
termines the chemistry of the atom and how this chemistry is responsible
for binding atoms into molecules and molecules into both traditional and
fascinating new materials, one would like to understand how does matter
organize itself at densities significantly higher than those found in everyday
materials; say, from 104–1015 g/cm3 (in this units nuclear-matter saturation
density equals 2.48 × 1014 g/cm3). Indeed, relative to every day phenom-
ena, these densities are so high that atoms become not thermal, but rather,
pressure ionized. Understanding what novels phases of matter emerge un-
der these extreme conditions of density is both fascinating and unknown.
Moreover, it represents one of the grand challenges in nuclear physics. Re-
markably, most of these exotic phases — Coulomb crystals, nuclear pasta,
color superconductors — cannot be realized under normal laboratory con-
ditions. It is gravity that leads to the stabilization of these novel states
of matter. In this manner, neutron stars become the catalyst for the for-
mation of unique states of matter and provide unique laboratories for the
characterization of the ground state of cold matter over an enormous range
of densities. Recall that a neutron star is not bound by the strong force
but rather by gravity. Indeed, the typical gravitational binding energy per
nucleon in a neutron star is about 100 MeV; this is more than ten times
larger than the characteristic nuclear binding energy of 8 MeV per nucleon.
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We have organized the paper as follows. In Sec. 2, we take a brief tour
of a neutron star in order to appreciate its enormous diversity and dynamic
range. After this brief journey into the neutron star, we provide in Sec. 3 a
detailed account of the relatively simple physics that determines the com-
position of the outer crust and establish the predominant role played by
the masses of a variety of exotic nuclei. In this section, particular emphasis
is placed on a novel method that incorporated Bayesian Neural Networks
(BNN) in the refinement of existing mass formulae. In turn, we use this
newly-created mass formula in Sec. 4 to predict the crustal composition of a
“canonical” neutron star. Finally, we conclude in Sec. 5.

2. Neutron-star structure

To appreciate the enormous dynamic range and richness displayed by
these fascinating objects, we discuss briefly the anatomy of a neutron star.
For a fairly accurate rendition of the structure and phases of a neutron
star, see Figs. 1 and 2. Neutron stars contain a non-uniform crust above

Fig. 1. An accurate rendition of the fascinating structure and exotic phases that
are believed to exist in a neutron star — courtesy of Dany Page.
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a uniform liquid core that is comprised of a uniform assembly of neutrons,
protons, electrons, and muons in chemical equilibrium and packed to densi-
ties that may exceed that of normal nuclei by up to an order of magnitude.
The highest density attained in the stellar core depends critically on the
equation of state of neutron-rich matter, which at those high densities is
poorly constrained. However, for soft equations of state, namely, those with
a pressure that rises slowly with density, the highest density attained at the
core may be high enough for the emergence of new exotic phases, such as
pion or kaon condensates [8, 9], strange quark matter [10], and color super-
conductors [11, 12].

Fig. 2. An accurate depiction of the assumed composition of the crust of a neutron
star — courtesy of Sanjay Reddy.

At the other extreme, namely, at densities of about half of nuclear-matter
saturation density, the uniform core becomes unstable against cluster forma-
tion. At these “low” densities, the average inter-nucleon separation increases
to such an extent that it becomes energetically favorable for the system to
segregate into regions of normal density (nuclear clusters) and regions of low
density (dilute, likely superfluid, neutron vapor). Such a clustering insta-
bility signals the transition from the uniform liquid core to the non-uniform
crust. The solid crust is itself divided into an outer and an inner region. The
outer crust spans a region of about seven orders of magnitude in density;
from about 104 g/cm3 to 4×1011 g/cm3 [13–18]. Structurally, the outer crust
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is comprised of a Coulomb lattice of neutron-rich nuclei embedded in a uni-
form electron gas. As the density increases — and given that the electronic
Fermi energy increases rapidly with density — it becomes energetically fa-
vorable for electrons to capture into protons. This results in the formation
of Coulomb crystals of progressively more neutron-rich nuclei. This progres-
sion starts with 56Fe — the nucleus with the lowest mass per nucleon — and
is predicted to end with the exotic, neutron-rich nucleus 118Kr (see Fig. 2).
In essence, the most stable nucleus at a given crustal density emerges from a
competition between the electronic Fermi energy (which favors low Z) and
the nuclear symmetry energy (which favors N ' Z nuclei) [17, 18]. Even-
tually, however, the neutron–proton asymmetry becomes too large for the
nuclei to absorb any more neutrons and the excess neutrons form of a dilute
— likely superfluid — neutron vapor; this signals the transition from the
outer to the inner crust. At a neutron-drip density of about 4× 1011 g/cm3,
118Kr is unable to retain any more neutrons. As alluded earlier, at den-
sities approaching nuclear-matter saturation density (≈ 2.5 × 1014 g/cm3)
uniformity in the system will be restored. Yet the transition from the highly-
ordered crystal to the uniform liquid is both interesting and complex. This
is because distance scales that were well-separated in both the crystalline
phase (where the long-range Coulomb interaction dominates) and in the
uniform phase (where the short-range strong interaction dominates) become
comparable. This unique situation gives rise to Coulomb frustration. Frus-
tration, a phenomenon characterized by the existence of a very large number
of low-energy configurations, emerges from the impossibility to simultane-
ously minimize all elementary interactions in the system. Indeed, as these
length scales become comparable, competition among the elementary inter-
actions results in the formation of a myriad of complex structures radically
different in topology yet extremely close in energy. Given that these com-
plex structures — collectively referred to as nuclear pasta — are very close
in energy, it has been speculated that the transition from the highly ordered
crystal to the uniform phase must proceed through a series of changes in
the dimensionality and topology of these structures [19, 20]. Moreover, due
to the preponderance of low-energy states, frustrated systems display an in-
teresting and unique low-energy dynamics that has been captured using a
variety of techniques including numerical simulations [21–29] with some of
the most recent ones involving an enormous number of nucleons. Whereas
these impressive numerical simulations predict the development of unique
many-body correlations from a relatively simple underlying nucleon–nucleon
interaction, they miss potentially important quantum effects. In this con-
text, the structure of the inner stellar crust has been investigated for over
15 years using a fully quantum approach that, in particular, illustrates the
emergence of shell effects in the neutron vapor surrounding the heavy clus-
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ters [30–34] — an effect that is impossible to capture in the (semi-classical)
numerical simulations. Of course, given that most of the quantum effects
are incorporated at the mean-field level, quantum calculations miss some
of the many-body correlations that emerge in the numerical simulations.
However, this has created a unique synergy between the two complementary
approaches that has confirmed that the development of the nuclear pasta is
robust under the conditions present in the inner stellar crust.

3. The outer crust: sensitivity to nuclear masses

As described earlier, at the very low densities of the outer crust, it be-
comes energetically favorable for nucleons to cluster into nuclei that arrange
themselves in a crystalline structure embedded in a neutralizing electron
background. Because of limitations in space — and due to recent devel-
opments in the improvement of mass models — we will concentrate in this
contribution exclusively on the structure and composition of the outer stellar
crust.

The dynamics of the outer crust is encapsulated in a relatively simple
expression for the total Gibbs free energy per nucleon, which at zero tem-
perature equals the total chemical potential of the system. That is [14–18],
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where xF = pe
F
/me and yF = (1+x2

F
)1/2 are scaled electronic Fermi momen-

tum and Fermi energy, respectively and with pe
F
= (Z/A)1/3pF . This dis-

cussion suggests that the only unknown in the determination of the crustal
composition is the optimal nucleus, namely, the one that minimizes the
chemical potential at a given pressure.

The search for the optimal nucleus is performed as follows. For a given
pressure P and nuclear species (Z,A), the equation of state is used to de-
termine the corresponding baryon density of the system which, in turn, de-
termines the Fermi momentum pF and the electronic chemical potential µe.
This is sufficient to compute the chemical potential of the system as indi-
cated in Eq. (1). This procedure requires scanning over an entire mass table
— which in some instances consists of nearly 10,000 nuclei. The (Z,A) com-
bination that minimizes µ(A,Z;P ) determines the optimal nucleus at the
given pressure. Naturally, if the density is very small so that the electronic
contribution to the chemical potential is negligible, then 56Fe — with the
lowest mass per nucleon — becomes the nucleus of choice. As the pressure
and density increase so that the electronic contribution may no longer be
neglected, then it becomes advantageous to reduce the electron fraction Z/A
at the expense of increasing the neutron–proton asymmetry. In turn, this
results in an increase in the mass per nucleon. Which nucleus becomes the
optimal choice then emerges from a subtle competition between the elec-
tronic contribution that favors Z = 0, and the nuclear symmetry energy
which favors (nearly) symmetric nuclei.

In summary, the structure of the outer stellar crust consists of a nuclear
lattice embedded in an electron gas that is responsible for driving the system
towards progressively more neutron-rich nuclei. In this way, the outer crust
represents a unique laboratory for the study of neutron-rich nuclei in the
Z ' 20–50 region that nicely complements our quest for a detailed map of
the nuclear landscape at terrestrial laboratories. In the following section, we
introduce the BNN approach that will be used to predict the masses of the
nuclei (some of them highly exotic) that populate the outer crust [35].

3.1. Density functional theory meets Bayesian Neural Networks

Quantum Chromodynamics (QCD) is widely regarded as the funda-
mental theory of the strong interaction. However, the complexity of QCD
presents enormous challenges in solving the theory in the non-perturbative
regime of relevance to nuclear systems. Although inspired by QCD, to date
the description of the nuclear dynamics relies on effective theories using
appropriate degrees of freedom, such as nucleons and mesons. Among the
effective approaches, density functional theory (DFT) is the most promis-
ing — and perhaps unique — microscopic approach that may be applied



666 J. Piekarewicz, R. Utama

to both finite nuclei and neutrons stars — objects that differ in size by 18
orders of magnitude! In the past decades, enormous progress has been made
in building sophisticated nuclear energy density functionals (EDFs) of both
non-relativistic [36–39] and relativistic character [40–45]. Besides relying on
some more sophisticated fitting protocols, some of the most recent EDFs
provide full uncertainty quantification. However, in spite of such enormous
gains, one must recognize that these effective theories are, at best, approx-
imations to QCD. Moreover, whereas model predictions tend to agree near
stability, they are often in stark disagreement far away from their region of
applicability [46]. Based on these inevitable facts, we propose a novel ap-
proach that starts with the construction of an accurately-calibrated EDF
that incorporates as much physics as possible in both the quality of the
functional and the set of observables used to constrain the fit. However,
once the calibration is completed, one transfers control to a proven sophisti-
cated numerical algorithm to perform a fine tuning. We propose to perform
the fine tuning by using Bayesian Neural Networks. The BNN approach is
predicated on the existence of a “universal approximator” that is capable of
approximating any real function of one or more real variables [47, 48]. The
utility of the Bayesian approach to neural-network optimization is that it
furnishes an estimate of the uncertainty in the approximated function in a
computationally convenient manner. Although in this contribution we illus-
trate the approach for the important case of nuclear masses, it should be
underscored that it may be easily extended to any other nuclear observable.

The proposed method starts by computing nuclear masses over the en-
tire nuclear chart using modern relativistic energy density functionals. In
the spirit of Strutinsky’s energy theorem [49], we may regard these mass
predictions as providing the large and “smooth” contribution of the under-
lying mass function MDFT(Z,N). The next step consists of a refinement of
the mass model by “training” a suitable neural network on the mass resid-
uals; that is, on the difference between the (imperfect) predictions of the
mass models and experiment. Once properly trained, we used the resulting
“universal approximator” δLDM(Z,N) (a) to validate the approach and (b)
to make predictions in regions where experimental information is presently
unavailable. That is, the resulting mass formula becomes equal to

M(Z,N) ≡MDFT(Z,N) + δBNN(Z,N) . (4)

Given that both the predictions of MDFT and of the residuals δBNN involve
the calibration of an objective function, all mass predictions are accompanied
by properly estimated theoretical errors.
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4. Results: The composition of the outer crust

To illustrate the power of the BNN refinement, we display in Fig. 3 the-
oretical predictions for the masses of the four exotic 102Kr, 105Kr, 108Kr,
and 111Kr isotopes where experimental information is not yet available. The
figure includes predictions for all these four isotopes from a representative
set of successful mass models. These include the microscopic–macroscopic
mass models of Duflo and Zuker (DZ) [50] and the finite range droplet model
(FRDM) of Möller and collaborators [51] — as well as the two accurately-
calibrated microscopic models HFB19 and HFB21 [36]. Given the lack of
experimental data, results are displayed relative to the predictions of Duflo
and Zuker. Note that these predictions are depicted in the figure without
theoretical error bars. As expected, we observe a significant spread in the
model predictions when experimental data is not available (for a dramatic
depiction of this effect, see Fig. 42 in Ref. [46]). However, once the BNN
refinement is implemented, most of these systematic differences disappear.
Moreover, because the determination of the universal approximator is imple-
mented through a Monte Carlo approach, all mass predictions now contain
a proper quantification of the theoretical uncertainties. Ultimately, one can
then compute a “world average” value by combining the BNN-improved pre-
dictions. In this manner, a “BNN-world” mass table has been created [35].
Such a mass table will now serve to predict the composition of the outer
crust of a neutron star by implementing the procedure described in Sec. 3.
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Fig. 3. Pre- and post-BNN improved mass predictions relative to the “bare” Duflo–
Zuker values for 102Kr, 105Kr, 108Kr, and 111Kr. The BNN predictions include
statistical errors and “World” represents the world average of the four models.
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Once a mass table is constructed, we can identify the nuclear species
that minimizes the total chemical potential given in Eq. (1) as a function of
the pressure. The outcome of this procedure is displayed in Fig. 4 where
the composition of the outer crust as a function of depth is obtained for a
“canonical” 1.4M� neutron star with an assumed radius of 12.78 km. Once
the mass and radius of the neutron star has been selected, the crustal com-
position as a function of depth may be obtained from integrating inwards the
Tolman–Oppenheimer–Volkoff equations. Predictions for the crustal compo-
sition are shown using three mass models: the newly created “BNN-world”,
Duflo–Zuker, and HFB19 — the last two without any BNN refinement. The
composition of the upper layers of the crust where the pressure and density
are low — depicted in light gray/yellow and spanning about 100 m — con-
sists of Fe–Ni nuclei with masses that are well-known experimentally. As
the Ni-isotopes become progressively more neutron rich as a consequence of
an increase in density, it becomes energetically favorable to transition into
the magic N = 50 isotone region. In the particular case of BNN-world, this
intermediate region is predicted to start with stable 86Kr and then progres-
sively evolve into the more exotic isotones 84Se (Z = 34), 82Ge (Z = 32),
80Zn (Z = 30), and 78Ni (Z = 28). In this region, most of the masses are
experimentally known, although for some of them the quoted value is not
derived from purely experimental data [52]. Note, in particular, that the
newly created BNN-world model predicts a binding energy per nucleon for
the doubly magic 78Ni nucleus of B/A = 8232.412(390) keV. Ultimately, at

Fig. 4. Composition of a canonical 1.4M� neutron star with a 12.78 km radius as
predicted by three mass models: “BNN-world”, DZ, and HFB19.
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the highest densities encountered in the outer crust, it becomes energetically
favorable for the system to transition into the magic N = 82 isotone region.
In this region, none of the relevant nuclei have experimentally determined
masses. Although not shown, it is interesting to note that the composition
of the HFB19 model changes considerably after the BNN refinement, bring-
ing it into closer agreement with the predictions of both the BNN-world and
Duflo–Zuker models.

5. Conclusions

Neutron stars provide a powerful intellectual bridge between nuclear
physics and astrophysics. In this contribution, we explored the fascinating
structure of neutron stars and established the prominent role that nuclear
physics plays in elucidating the underlying physics. In the particular case
of the outer crust, we established the fundamental role that mass measure-
ments of exotic nuclei at rare isotope facilities will play in elucidating its
unique composition.

Given that the composition of the neutron star crust — as well as
r-process nucleosynthesis — demands knowledge of nuclear masses far away
from stability, we introduced a novel approach that combines modern den-
sity functional theory with Bayesian neural networks. Whereas density func-
tional theory provides the most powerful theoretical framework to compute
nuclear properties throughout the nuclear chart, large systematic uncertain-
ties among the various models hinder the interpretation of both experimental
and observational data. Moreover, these uncertainties grow to unacceptable
levels when predictions are made in regions of the nuclear chart where ex-
perimental data is unavailable. The addition of the BNN approach was able
to overcome some of these limitations and provided the necessary fine tun-
ing to account for the small deviations from experiment. Most importantly,
the spread in the predictions of the various mass models was considerable
reduced. Finally, due to its inherent probabilistic nature, the Bayesian ap-
proach provided improved mass predictions with proper theoretical errors.

As a first test of the new mass model, we have computed the exotic
composition of the outer crust of a neutron star. Suffice it to say that none
of the exotic nuclei that are predicted to inhabit the bottom layers of the
outer crust have been measured. And while this situation is likely to persist
for many years to come, it is still essential to continue the experimental
exploration of the nuclear chart in an effort to inform theory. Finally, we
conclude by underscoring that a precise knowledge of the crustal composition
is vital in the study of certain elastic properties of the crust, such as its
shear modulus and breaking strain — quantities that are of great relevance
to magnetar starquakes [53, 54] and gravitational wave emission [55].
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