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Berggren ensemble of single particle states including bound, resonance and
non-resonant scattering states.
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1. Introduction

A deeper understanding of the mathematical foundation of phenomeno-
logical models of the atomic nucleus is often related to the studies in simple
models for which rigorous solutions can be obtained. In the domain of weakly
bound or unbound exotic nuclei, we are missing such models, even though
it is well-known that the coupling to continuum may enhance the pairing
correlations and the stability of weakly-bound nuclei [1].

The objective of this paper is to derive an approximate solution for the
schematic pairing Hamiltonian in the single-particle (s.p.) space involving
both bound and continuum states. This model is a generalization of the
rational Richardson–Gaudin (RG) model [2, 3] in the Berggren ensemble [4]
of s.p. states. We shall generalize the solution found by Richardson for the
rational RG model to describe the pairing interaction of particles in bound
and continuum s.p. states.

2. Pairing Hamiltonian in the Berggren basis

The pairing Hamiltonian for the rational RG model is given by

H =
D∑
α

εac
†
αcα +

G

4

D∑
α,β

c†αc
†
ᾱcβ̄cβ , (1)
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where εa and G are the energies of (bound) s.p. states and the pairing
strength, respectively. Here, D stands for the number of s.p states, i.e.
D = 2N + ν withN the number of pairs, ν =

∑U
a νa the number of unpaired

particles, and U the number of levels. The operators c†α(cα) stand for the par-
ticle creation (annihilation) operators and α ≡ {a,mα} = {na, `a, ja,mα}.

It is convenient to rewrite this Hamiltonian in terms of pair creation
(annihilation) operators b†a(ba) and particle number operator n̂a

n̂a =
∑
mα

c†αcα , b†a = 1/2
∑
mα

c†αc
†
ᾱ = (ba)

† . (2)

Then, the Hamiltonian becomes

H =
U∑
a

εan̂a +G
U∑
a,a′

b†aba′ . (3)

Expressing the pairing Hamiltonian (1) in the complete one-body Berggren
basis [4], including bound (b), resonance (r), and non-resonant (c) states,
one obtains

H =
∑
i∈b,r

εin̂i +
∑
c

∫
L+
c

εkc n̂kcdkc

+G
∑
i,i′∈b,r

b†ibi′ +G
∑
c,c′

∫
L+
c

b†kcbk′c′
dkcdk

′
c′

+G
∑

(i∈b,r),c

∫
L+
c

(
b†kcbi + b†ibkc

)
dkc . (4)

Note that the Hamiltonian of Eq. (4) is not exactly the same as in Eq. (1), as
the latter is defined in the Hilbert space, whereas the former is defined in the
rigged Hilbert space, comprising bound, resonant, and scattering states [5].
In this equation, the summation over c (c′) represents the summation over
different partial waves (`, j) until (`max, jmax). kc is related to the s.p. en-
ergy: εc = ~2k2

c/2m, with m the particle mass. The discrete sums run over
bound s.p. states and s.p. resonances inside the complex plane between the
k-contour L+ and the real k-axis. More about the complete Berggren s.p.
basis and its application can be found in Ref. [6]. The operators b†i,kc(bi,kc)
and n̂i,kc satisfy the commutation relations[

n̂i, b
†
i′

]
= 2δii′b

†
i ,[

bi, b
†
i′

]
= 2δii′

(
Ωi
4
± n̂i

2

)
(5)
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for discrete (bound and resonance states) s.p. states, and[
n̂kc , b

†
k′c

]
= 2δ

(
kc − k′c

)
b†kc ,[

bkc , b
†
k′c

]
= δ

(
kc − k′c

) Ωkc
2
± δkck′c n̂kc (6)

for the non-resonant scattering s.p. states. Here, Ωi,kc is the degeneracy
defined as Ωi,kc = 2ji,kc + 1. A Kronecker delta involving scattering states
had to be introduced in Eq. (6) to preserve antisymmetry. The upper (lower)
signs in these equations stand for bosons (fermions).

To discretize continuum in Eq. (4), it is convenient to define new oper-
ators: b̃†q = b†q

√
wq and ˆ̃nq = wqn̂q , where wq is a weight which equals one

for bound and resonance states, and is equal to the Gauss–Legendre quadra-
ture weight for scattering states. Index q runs over bound, resonance and
discretized scattering states which are all normalized to one. New operators
satisfy [

ˆ̃nq, b̃
†
q′

]
= 2δqq′ b̃

†
q , (7)[

b̃q, b̃
†
q′

]
= 2δqq′

(
Ωq
4
±

ˆ̃nq
2

)
. (8)

The pairing Hamiltonian expressed in these operators

H =
U∑
q

εq ˆ̃nq +
U∑
q,q′

Gqq′ b̃
†
q′ b̃q ; Gqq′ =

√
wq
√
wq′G (9)

contains the state-dependent pairing force and is not integrable [7].

3. The approximate solution of the pairing Hamiltonian

An approximate solution for the pairing Hamiltonian (9) in the contin-
uum can be found by replacing the Kronecker delta in the commutation
relation (6) by the Dirac delta[

bkc , b
†
k′c

]
= 2δ

(
kc − k′c

)(Ωkc
4
± n̂kc

2

)
. (10)

With this change, the new pair operators b̃†q(b̃q) satisfy[
b̃q, b̃

†
q′

]
= 2δqq′

(
Ωq
4
±

ˆ̃nq
2wq

)
(11)

and the commutation relation involving ˆ̃nkc remains the same.
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Let us now derive the solution of a Schrödinger equation for fermions

H|Ψn;norm〉 = En|Ψn;norm〉 ; En =
N∑
γ=1

EJγ +
U∑
q

νqεq , (12)

where EJγ are the pair energies. The derivation for bosons is similar and
will not be given here.

For the many-body state, we take the following Ansatz:

|Ψn;norm〉 =
N∏
γ=1

B†Jγ ;norm|ν〉 ; B†Jγ ;norm = cJγG
U∑
q

b̃†q
√
wq

2εq − EJγ
, (13)

where the normalization constants cJγ are given by

1

(cJγG)
2 =

1

CJγ
2 =

U∑
q

wq(
2εq − EJγ

)2 . (14)

Here |ν〉 is a state of unpaired particles satisfying

b̃q|ν〉 = 0 , ˆ̃nq|ν〉 = νq|ν〉 . (15)

To simplify, we define B†Jγ = B†Jγ ;norm/CJγ and write

|Ψn;norm〉 =
N∏
γ=1

CJγB
†
Jγ
|ν〉 = Cn|Ψn〉 ; Cn =

N∏
γ=1

CJγ . (16)

Let us begin by evaluating the commutatorH, N∏
γ=1

B†Jγ

 =

N∑
γ=1

γ−1∏
η=1

B†Jη

[H,B†Jγ]
 N∏
µ=γ+1

B†Jµ

 . (17)

For that, we rewrite the Hamiltonian (4) in a discretized form

H =

U∑
q

εq ˆ̃nq +GB†0B0 ; B†0 =

U∑
q

b̃†q
√
wq , (18)

where U is the total number of bound, resonance and discretized continuum
states. Knowing the commutation relations for b̃†q, b̃q, and ˆ̃nq, one obtains

[
ˆ̃nq, B

†
Jγ

]
=

2b̃†q
√
wq

2εq − EJγ
,

[
B0, B

†
Jγ

]
=

U∑
q

wqΩq/2− ˆ̃nq
2εq − EJγ

(19)
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and ˆ̃nq, N∏
µ=γ+1

B†Jµ

 =
N∑

µ′=γ+1

2
√
wq b̃

†
q(

2εq − EJµ′
)
 N∏
µ=γ+1;6=µ′

B†Jµ

 . (20)

Then, using Eq. (19), we get

[
H,B†Jγ

]
= EJγB

†
Jγ

+B†0

(
1 +G

U∑
q

wqΩq/2− ˆ̃nq
2εq − EJγ

)
. (21)

Inserting (21) and (20) into Eq. (17), one findsH,Npair∏
γ=1

B†Jγ

=

Npair∑
γ=1

EJγ

Npair∏
η=1

B†Jη

−G N∑
γ=1

U∑
q

B†0
2εq−EJγ

 N∏
η=1;6=γ

B†Jη

 ˆ̃nq

+

N∑
γ=1

(
1 +

U∑
q

GwiΩq/2

2εq − EJγ

)
B†0

 N∏
η=1;6=γ

B†Jη


−

N∑
γ=1

µ=γ+1

U∑
q

2G
√
wqB

†
0b̃
†
q(

2εq − EJγ
) (

2εq − EJµ
)
 N∏
η=1;6=µ,γ

B†Jη

 . (22)

Now, applying the commutator (22) on the vacuum state |ν〉, and using the
relation

U∑
q

b̃†q
√
wq(

2εq − EJγ
) (

2εq − EJµ
) =

B†Jγ −B
†
Jµ

EJγ − EJµ
, (23)

we obtain

H|Ψn〉 = En|Ψn〉+
Npair∑
γ=1

(
1 +

N∑
q

Gwq (Ωq/2− νq)
2εq − EJγ

)
B†0

 Npair∏
η=1;6=γ

B†Jη

 |ν〉
−
Npair∑
γ=1

 Npair∑
µ=1; 6=γ

2G

EJµ − EJγ

B†0

 Npair∏
η=1;6=γ

B†Jµ

 |ν〉 . (24)

As H|Ψn〉 = En|Ψn〉, one obtains the generalized Richardson equation for
pair energies of the discretized pairing Hamiltonian in the Berggren basis

1−
U∑
q

Gwq (νq −Ωq/2)
2εq − EJγ

+
N∑

µ=1; 6=γ

2G

EJγ − EJµ
= 0 . (25)
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In the continuum limit, when the number of discretized scattering states
becomes infinite and their weights go to zero, these equations take the form

1−
∑
i∈b,r

2Gdi
2εi − EJγ

−
`max,jmax∑

c

∫
L+
c

2Gdkc
~2k2

c/m− EJγ
dkc +

N∑
µ=1;6=γ

2G

EJγ − EJµ
= 0

(26)
with di = νi/2−Ωi/4.

4. Discussion and conclusions

It is interesting to discuss limiting cases of the generalized Richardson
equation (25). If we deal with a discrete set of bound s.p. levels, the weights
wq are all equal one and Eq. (25) reduces to the exact Richardson solution
for the rational RG model [2, 3]. By the same argument, Eq. (25) provides
an exact solution of the pairing model with a continuum treated in the pole
approximation, i.e. neglecting the non-resonant continuum states. Finally,
Eq. (25) is also the exact solution of the pairing model in the non-resonant
continuum because in this case, one may take the same weights wq ≡ w for all
states q and renormalize the pairing strength G′ = Gw. At this level, we no
longer use the Gauss–Legendre quadrature, as we start from the Richardson
equations taken at continuum limit, so that it is possible to use another
discretization scheme where all weights are equal for simplicity. In this
particular case, the second sum in Eq. (25) goes to zero and one obtains

2G

∫
dk

2εk − Ei
dk = 1 . (27)

In a most general case of the rational RG Hamiltonian in the Berggren
ensemble of s.p. states, Eq. (25) provides a reliable approximation of the
exact solution in the limit of weak pairing correlations. The quantitative
comparison between results of Eq. (25) and exact results of Gamow Shell
Model [9, 10] for the pairing Hamiltonian in the Berggren basis will be
discussed elsewhere [11].
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