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Quark—gluon plasma (QGP), a novel state of deconfined nuclear mat-
ter, has been studied in high-energy heavy-ion collisions at the Relativis-
tic Heavy Ion Collider (RHIC). Due to the color screening of the quark—
antiquark potential in the QGP, production of heavy quarkonia (e.g. J/v, T')
is expected to be suppressed. However, there are also other effects that may
influence the observed quarkonium yields (e.g. secondary production in the
QGP, cold-nuclear-matter effects). To understand those effects, we need
to study production of heavy quarkonia in various colliding systems. We
present preliminary results on nuclear modification factor of J/v produc-
tion at mid-rapidity via the di-electron decay channel in minimum bias
U+U collisions at /syy = 193 GeV at the STAR experiment and the
current status of analysis of J/¢ production in central U+U collisions.
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1. Introduction

Measurements of heavy quarkonium production in heavy-ion collisions
are used to study properties of the QGP. Heavy quarkonium production is
expected to be suppressed in the presence of the QGP compared to produc-
tion in p + p collisions due to the color screening of the quark—antiquark
potential in the deconfined medium. This phenomenon has long been con-
sidered as one of the most prominent signatures of the QGP [1].

However, there are other effects that may modify the observed suppres-
sion such as cold-nuclear-matter effects, feed down effects, secondary pro-
duction via coalescence of charm quarks. To understand these different
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mechanisms it is important to study the heavy quarkonium production in
different collision systems and at different collision energies and centralities.

Modification of heavy quarkonium production in nucleus+nucleus colli-
sions (A + A) compared with p 4+ p collisions is usually quantified by the
so-called nuclear modification factor R4 4. It is defined as the ratio of the
number of particles produced in A + A collisions to the number of par-
ticles produced in p + p collisions scaled by the average number of binary
nucleon—nucleon collisions (N, ). With no medium effect, the yield of heavy
quarkonia in heavy-ion collisions should scale with the number of elementary
binary collisions and the resulting R 44 should be equal to unity. As it turns
out, the medium produced in heavy-ion collisions can modify this scaling
resulting in the effect of suppression R44 < 1 or enhancement R4 > 1.

At the STAR experiment, effects of the hot medium on J/¢ produc-
tion have been studied in Au+Au collisions at /syy = 39, 62.4, 200 GeV
[2-4]. STAR has also collected data on U+U collisions at /syy = 193 GeV.
Since U nuclei are larger than Au nuclei, it is expected that in the U+U col-
lisions, the energy density of the created medium is higher than in Au+Au
collisions [5]. This applies particularly for the most central U+U collisions
in which the achievable energy density is expected to be up to ~ 20% larger
relative to Au+Au collisions. Thus, they allow for further testing of the
color screening hypothesis [5].

2. Data analysis

The Solenoidal Tracker at RHIC (STAR) [6] is a multi-purpose detector
composed of various subsystems. It excels in tracking and identification of
charged particles at mid-rapidity and with full coverage in azimuth.

In the analyses presented here, J/v¢ was studied in 377 M of minimum
bias and 115 M of 0-5% most central U+U collisions collected in 2012 at
VSNN = 193 GeV at STAR. J/4 signal was reconstructed via the di-electron
decay channel (J/1) — eTe™) with a branching ratio Be. = 5.9%. Electron
candidates were selected from tracks which satisfied selection criteria on
signals in the STAR Time Projection Chamber (TPC) [7]|, Time-of-Flight
(TOF) [8] detector and Barrel Electromagnetic Calorimeter (BEMC) [9].
The TPC provides particle tracking and identification via their specific en-
ergy loss dE/dx. nolFC, the difference from the expected In(dE/dx) for
electrons expressed in terms of standard deviation units, was required to
be in the range of (—1.5,2.0) for all electron candidates. The TOF detec-
tor measures velocity STOF of the particles and together with TPC enables
separation of electrons from hadrons up to 1.4 GeV/c. For particles with
momenta lower than stated, we required 0.970 < 1//6’TOF < 1.025. The cut
on 1/B8TOF for p > 1.4 GeV/c was used if particles had a signal in TOF.
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The BEMC measures energies of high-p particles. Its fast response allows
to trigger on high-pr electrons. This is called the High Tower (HT) trigger.
Since electrons are expected to deposit all of their energy in the detector
while hadrons not, the BEMC is used for electron-hadron separation by
pe/EBEMC cut, where EBFMC is the energy deposited in the BEMC and p
is the momentum of the track. For particles with p > 1.4 GeV/c, we re-
quired EBFMC > (.15 GeV and 0.5 < pc/EBFMC < 2.0 in minimum bias
and 0.7 < pc/EBPMC < 2.0 in 0-5% most central collisions. Figure 1 shows
1/8TOF and naeTPC distributions and application of corresponding cuts in
0-5% most central collisions.
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Fig. 1. Left: 1/8TOF of particles with depicted cut for electron candidates (black
lines). Right: nolfC of particles satisfying TOF and BEMC cuts, black lines
denote the noTFC cut.

3. Results

J /v signal was reconstructed from the invariant mass distributions of
the eTe™ pairs. Combinatorial background of the J/1) signal was estimated
by the like-sign in minimum bias and mixed-event background method in
0-5% central data. After the combinatorial background subtraction, the
invariant mass distribution of di-electron pairs was fitted with a crystal ball
function to describe the signal, while the residual background was fitted with
a linear function. Figure 2 shows J/1 signal after combinatorial background
subtraction and fits for the signal and the background in minimum bias
(left panel) and 0-5% central (right panel) U+U collisions. The J/v yield
calculated by the bin counting method in the invariant mass region (2.9,
3.2) GeV/c? was 9440 4 640 with a significance of 12.90 in minimum bias
and 4960 + 580 with a significance of 8.60 in 0-5% central U+U data.
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Fig.2. J/1 signal after combinatorial background subtraction fitted with a crystal
ball function together with a linear function used to describe the residual back-
ground in minimum bias (left) and 0-5% central (right) U+U collisions.

Figure 3 (left panel) shows STAR preliminary results on J/1 invariant
yield in minimum bias and HT triggered U+U collisions. To quantify the hot
medium effects on J/v¢ production, nuclear modification factor in minimum
bias Au+Au and U+U collisions has been measured [2-4]. The right panel
of figure 3 shows the nuclear modification factor in minimum bias and HT
triggered U+U collisions [2]. Raa as a function of pr is similar to that
observed in AutAu at /syn = 200 GeV [2].
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Fig.3. Left: J/4 invariant yield versus transverse momentum in minimum bias
and HT triggered U+U collisions. Right: J/¢ R4 as a function of pr in minimum
bias and HT triggered Au+Au and U+U collisions [2].

4. Summary

In this work, we have presented preliminary results on nuclear modifica-
tion factor for J/1 production in minimum bias U+U collisions at /syy =
193 GeV at the STAR experiment and the current status of J/v¢ produc-
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tion analysis in 0-5% most central U+U collisions. Suppression of J/v
production in minimum bias U+U collisions is similar to that observed in
VSNN = 200 GeV Au+Au collisions. In 0-5% most central U+U collisions,
a strong signal of J/1 of significance 8.60 has been observed.

Data analysis leading to the extraction of J/1 nuclear modification factor
in 0-5% most central U+U collisions is underway. Results of this analysis
will extend our knowledge of J/1 production modification in U+U collisions
at the highest achievable energy density at RHIC.

This work was supported by the grant of the Grant Agency of Czech
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