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We argue that one has to distinguish between the Harari–Shupe model
(HSM) and the Harari–Shupe observation (HSO). The former — in which
quarks and leptons are viewed as composite objects built from confined
fermionic subparticles (‘rishons’) — is known to be beset with many dif-
ficulties. The latter may be roughly defined as this part of the HSM that
really works. We recall that the phase-space Clifford-algebra approach leads
to the HSO without any of the HSM problems and discuss in some detail
how this is achieved. The light which the phase-space-based view sheds
on the HSO sets then a new direction along which the connection between
space and particle properties could be studied and offers a glimpse into
weird physics that probably lurks much deeper than the field-theoretical
approach of the Standard Model.
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1. Introduction

It was a cold morning some hundred thousand years ago. Naoh1 acciden-
tally hit a rock with his flint axe and small stone flakes flew off. He looked at
the edge of his axe with fear and, angry at his clumsiness, struck one of these
flakes, mindlessly staring at even smaller pieces as they appeared. Suddenly,
a thought crossed his mind. He struck again one of the just produced flakes
with his precious axe and watched the new emerging chips. Then, he re-
peated the procedure. His theory worked! There were flakes within flakes
within flakes . . . forever.

1 The intelligent Neanderthal featured in “The Quest for Fire”, who contributed to the
gene pool of modern humans.

(1011)
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At present, driven by the desire to seek deeper and deeper into the struc-
ture of matter, we keep building better and harder axes to split such tiny
chips into even tinier ones. And yet, at the same time, we feel intuitively
that such divisibility cannot go on indefinitely. It cannot be ‘turtles all the
way down’. We accept the Democritean resolution of this Kantian antinomy:
at some point, we must reach chips which are not divisible any longer, true
‘atoms’ moving in the continuous background space. Yet, our evolutionary
background and the macroscopic everyday experience sit in us deeper than
the Democritean tenet. They induce us to continually shift down the level at
which divisibility stops. This is how we went from stone flakes to molecules
to chemical elements to hadrons to quarks. Although the nature of consec-
utive chips is altered at each level crossing along this chain, such a change
constitutes a mild modification only of the intuitive picture deeply ingrained
in our minds2. With each such successful step down, our confidence in the
continuing divisibility receives another boost. As a result, when at a new
level we are confronted with the existence of several similar objects that
may be grouped into Mendeleev-type tables, many followers of Democritus
retreat into the position of Naoh.

Today, when we have reached the level of the Standard Model (SM), an
analogous Mendeleev-type table is constructed for leptons and quarks, the
fundamental particles of the SM. Our earlier successes suggest then that the
level of Democritean indivisibility be shifted another step down. This is the
conceptual basis of the attempts to build quarks and leptons out of a novel
brand of subparticles: the preons [1]. The most famous of such attempts
is the Harari–Shupe rishon model3 [2]. The model is very economic and
so appealing in its internal symmetry that it is hard not to believe that
it contains an element of truth. Yet, at the same time, the model — and
indeed the whole idea of preons — is beset with numerous difficulties which,
in the eyes of disbelievers, strongly suggest that preons do not exist.

Can it be that both believers and disbelievers are at least partially right?
We think so. We believe that while the original formulation of the HSM
does not provide an adequate description of nature, the model contains a
very important element of truth (to be defined later). Furthermore, a sim-
ple assumption should exist which would produce this element only, while
simultaneously avoiding the difficulties of the HSM.

2 Strictly speaking, the transition from hadrons to quarks goes somewhat beyond what
this picture allows. The reason is that quarks, as we have good reasons to believe, are
forever confined, and only their conglomerates — the hadrons — satisfy the intuitive
definition of separate chips.

3 In the following, we use ‘HSM’ as the abbreviation for the Harari–Shupe rishon model
and ‘HSO’ for the Harari–Shupe observation (to be defined further on).
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Such an approach was proposed in a series of publications [3–7] over the
last several years. The basic underlying idea consists in the replacement
of the nonrelativistic (NR) arena of 3D space and time with the 6D phase
space. This phase-space approach seems to be often regarded as a scheme
that provides a theoretical justification for the preon models and, given
current lack of belief in such models, it is ignored. Such an attitude is based
on a complete misunderstanding. Let us state it clearly: the phase-space-
based scheme is not intended as a basis for any version of the preon model.
It is just to the contrary: the phase-space scheme shows how one can get
the relevant element of truth (which we call the Harari–Shupe observation,
or HSO for short) without any subparticle structure of quarks and leptons.

In this paper, we attempt to clarify these points, trying to be as simple as
possible. Thus, we avoid discussing those details of the phase-space scheme
that could unnecessarily complicate our presentation and refer to the original
papers for the more involved calculations and further arguments. We will
first describe the HSM together with its difficulties and define what we mean
by the HSO. Then, we present the main elements of the phase-space scheme
showing how it reproduces the HSO. Subsequently, we move on to analyze
point by point all the main difficulties of the HSM that result from the
supposed preon substructure of leptons and quarks, and explain why these
difficulties do not appear in the phase-space scheme. Finally, we present the
weird spatial picture that the phase-space scheme suggests for the connection
between quark and hadron levels of the description of matter and argue that
it provides a glimpse into how space and time are related to some underlying
pregeometric structure.

2. The approaches

2.1. The Harari–Shupe model

The original Harari–Shupe model assumes that there are only two types
of truly fundamental spin-1/2 particles: the ‘rishon’ T of charge QT = +1/3
(in units of proton charge), and the rishon V of charge QV = 0. Naturally,
these particles are accompanied by their antiparticles: T̄ and V̄ . A compos-
ite particle may have half-integer spin when the number of its constituent
spin-1/2 subparticles is odd (thus at least three). Accordingly, in the HSM,
the ordinary spin-1/2 elementary particles (leptons and quarks) are built
out of three confined rishons. Specifically, νe, uR, uG, uB, e+, d̄R, d̄G, d̄B,
the eight elementary particles of a single SM generation are identified with
ordered rishon combinations shown in Table I. The corresponding antipar-
ticles, i.e. ν̄e, ūR, ūG, ūB, e−, dR, dG, dB, are built as in Table I with V
replaced by V̄ and T by T̄ . The HSM is very economic and exhibits some
additional nice features. For example, since there is an equal number of pro-
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tons and electrons in the Universe, and since a proton–electron pair contains
an equal number of rishons and antirishons (4T , 4T̄ , 2V and 2V̄ ), it follows
that nature is fully symmetric under matter–antimatter interchange at the
rishon level.

TABLE I

The Harari–Shupe Model: rishon structure of the I3 = +1/2 members of a single
SM generation.

νe uR uG uB e+ d̄R d̄G d̄B

V V V TTV TV T V TT TTT V V T V TV TV V

2.2. Criticisms of HSM

The main problems with the original HSM are:
— With rishons being spin-1/2 particles, one expects that their spins

could also be added so as to form spin-3/2 partners of leptons and
quarks. However, such states are not observed.

— There is a serious problem with rishon statistics: identification of col-
ored quarks with the ordered (i.e. not antisymmetrized) combinations
of rishons is in conflict with the assumed fermionic nature of rishons.

— There is a problem with the origin of lepton/quark masses. In the
currently dominant field-theoretical picture, rishons are imagined as
particles confined to distances smaller than the maximum acceptable
quark or lepton size of about 10−16 cm. Consequently, momentum
uncertainties of such subparticles should be huge, and their energies
— much larger than electron or light quark masses. Why, therefore,
are those masses so small?

— There is no naturally appearing SU(3) color symmetry: the relevant
three-rishon combinations are identified with colored quarks solely on
account of the triplicity of states built of two different rishons.

— No underlying rishon-binding dynamics is proposed. Specifically, it is
not explained why:
(1) TTT , V V V are free, but TV V , TTV are confined,
(2) TT T̄ , V V V̄ are not observed (even as confined objects),
(3) the observed free particles are built from TTT , V V V , T̄ T̄ T̄ ,

V̄ V̄ V̄ , T T̄ and V V̄ only,
— the model admits unobserved baryon-number-violating processes such

as u + u → e+ + d̄ which is possible via exchange of rishons, e.g.
TTV + TV T → TTT + TV V .
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These problems have been addressed in various papers formulated within the
general subparticle paradigm. Their main idea was to endow the approach
with some additional complex structure that removes the shortcomings of
the original model.

2.3. The Harari–Shupe observation

The essence of the Harari–Shupe model consists in the observation that
the charges of the eight fundamental fermions of I3 = +1/2 can be con-
structed in a specific additive way from only two charges QT = +1/3 and
QV = 0, as shown in Table II. The word ‘specific’ means that the three
distinguishable orders of adding QT , QT , and QV (i.e. QT + QT + QV ,
QT +QV +QT , QV +QT +QT ) are indeed treated as such (and likewise for
QT ↔ QV ).

TABLE II

The Harari–Shupe observation: additive structure of the charges for the I3 = +1/2
members of a single SM generation.

νe uR uG uB

0 + 0 + 0 1
3 + 1

3 + 0 1
3 + 0 + 1

3 0 + 1
3 + 1

3

e+ d̄R d̄G d̄B
1
3 + 1

3 + 1
3 0 + 0 + 1

3 0 + 1
3 + 0 1

3 + 0 + 0

In order to explain the HSO, Harari and Shupe assume the subparticle
paradigm. Within that paradigm, the component charges necessarily re-
side on subparticles. It should be clear, however, that this assumption of
the existence of subparticle components of quarks and leptons constitutes
a superfluous addition to the observation made in Table II. Although the
charge of an elementary particle is built in Table II via the addition of some
‘components’, this does not imply that these components reside on sepa-
rate particles4. There may exist a principle different from the subparticle
paradigm, which leads to Table II without the associated baggage of the
HSM problems.

The general philosophy of extended rishon-like models is to supplement
the HSM with an additional drawback-correcting structure. In other words,
one first introduces preons together with all the drawbacks they induce and
then adds the correction mechanism. Wouldn’t it be simpler and more in

4 Compare the case of a stick: although the number of its ends is naturally obtained as
a sum 1 + 1 = 2, a component of this sum (‘1’) does not sit alone on any individual
‘substick’.
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accord with Occam’s razor to avoid both the introduction of problems in the
first place and the subsequent introduction of the mechanism of their avoid-
ance? As we shall see, this is what the Clifford algebra phase-space approach
does actually achieve.

2.4. Clifford algebra phase-space approach

The Clifford algebra phase-space approach is based on a generalization
of Dirac’s trick. In the simplest nonrelativistic case, this trick consists in
the linearization of momentum vector square p2 = p2

1 + p2
2 + p2

3. Namely,
one writes p2 as a product of two identical factors linear in vector p

p2 = (p ·A)(p ·A) , (1)

whereA = (A1, A2, A3) represents some momentum-independent vector-like
object. The absence of terms proportional to pmpn (with m 6= n) on the
l.h.s. of Eq. (1) requires that Ak satisfy anticommutation rules

AmAn +AnAm = δmn , (2)

which may be reproduced if one takes Ak = σk, where σk are Pauli matrices.
With the spin operator of spin-1/2 particles being given in terms of Pauli
matrices as s = 1

2σ (we choose units such that ~ = 1), the requirement that

p ·A (3)

be invariant under ordinary rotations links then the quantum concept of
spin with the rotational properties of vectors in macroscopic 3D space.

One can provide various philosophical and symmetry-based arguments
(see e.g. Ref. [7]) that Eq. (3) should be generalized to its phase-space ex-
tension

p ·A+ x ·B , (4)

where x denotes position vector, while A and B are two dimensionless
vector-like objects independent of momentum and position. In order to
make the above addition of momentum and position terms possible, pro-
posal (4) requires the introduction of a new constant of nature κ (just as
with ~, we set it equal to 1 by an appropriate choice of units), of dimen-
sion [momentum/length] so that x may be measured in momentum units.
Together with the quantum constant ~ of dimension [momentum × length],
the two constants set the absolute scale of both momenta and distances5.
The absolute scale of masses is defined when the speed of light c is added.

5 This does not necessarily mean that ~/κ defines a universal minimal quantum of
distance.
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Elements Am and Bn satisfy a straightforward generalization of anticom-
mutation relations (2), i.e.

AmAn +AnAm = BmBn +BnBm = δmn ,

AmBn +BnAm = 0 , (5)

and may be represented by 8 × 8 matrices, whose explicit form may be
chosen as

Am = σm ⊗ σ0 ⊗ σ1 ,

Bn = σ0 ⊗ σn ⊗ σ2 . (6)

In addition to the mutually anticommuting Am and Bn, the algebra com-
posed of (1) a unit element, (2) Ak and Bl, and (3) all antisymmetric mul-
tiple products of Am and Bn (i.e. the Clifford algebra in question) contains
one additional element which anticommutes with all Am and Bn. It is con-
structed from Am and Bn as

B = iA1A2A3B1B2B3 = σ0 ⊗ σ0 ⊗ σ3 . (7)

The phase-space analog of Eq. (1) is obtained by squaring expression (4)
under the quantum condition that [xm, pn] = iδmn. One finds

(p ·A+ x ·B)(p ·A+ x ·B) = p2 + x2 +R , (8)

where

R = − i
2

∑
k

[Ak, Bk] =
∑
k

σk ⊗ σk ⊗ σ3 . (9)

The appearance of nonzero R is due to the fact that position xm and mo-
mentum pn do not commute for m = n.

The fundamental conjecture of the phase-space approach consists in
the identification of the charge operator Q with an appropriately modified
(scaled) product (8)

Q = 1
6

[(
p2 + x2

)
vac

+R
]
B , (10)

where (p2 + x2)vac = 3 is the lowest (vacuum) eigenvalue of p2 + x2. Thus,
formulas (8), (10) propose a link between the properties of phase space and
the concept of quantized charge. In other words, just as the properties of
quantized spin are tied to rotations in ordinary 3D space, so the properties
of quantized charge are conjectured to be tied to certain transformations in
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6D phase space6. As we will show, it is assumption (10) that replaces the
subparticle paradigm of the HSM. Equation (10) may be rewritten as

Q = I3 +
Y

2
, (11)

with the third component of (weak) isospin I3 and (weak) hypercharge Y
defined as:

I3 =
B

2
=

1

2
σ0 ⊗ σ0 ⊗ σ3 ,

Y =
1

3
RB =

1

3

∑
k

σk ⊗ σk ⊗ σ0 ≡ Y1 + Y2 + Y3 . (12)

On the r.h.s. above, we have introduced three ‘partial hypercharges’ (k =
1, 2, 3)

Yk ≡ −
i

6
[Ak, Bk]B =

1

3
σk ⊗ σk ⊗ σ0 . (13)

In the phase-space language, the ordinary three-dimensional rotations and
reflections are naturally understood as simultaneous operations on vectors
p and x (and their matrix counterparts A and B). It is easy to check that
operators I3 and Y are invariant under these operations7. In addition, one
finds that

[Yk, Ym] = [Y, Ym] = [I3, Ym] = [I3, Y ] = 0 . (14)

Thus, the eigenvalues of all Ym, Y and I3 may be simultaneously specified.
One gets [3–7]

I3 = ±1
2 ,

Yk = ±1
3 . (15)

Yet, the eigenvalues of Y1, Y2, Y3 are not independent of one another. One
finds the constraint Y1Y2Y3 = −1/27 and a restricted set of eigenvalues of Y

Y = −1,+1
3 ,+

1
3 ,+

1
3 . (16)

For the antiparticles, one has to substitute Yk → −Yk. The allowed com-
binations lead to eight possibilities for {Y1, Y2, Y3}, which are gathered in
Table III.

6 Quantization of charge and the 64-(complex)-dimensional Clifford algebra were re-
cently also connected in an alternate octonionic approach [8].

7 Indeed, R is proportional to the difference of two scalar products: A ·B and B ·A,
while B is proportional to a product of two mixed (pseudoscalar) products: A1A2A3

and B1B2B3.
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TABLE III

Alternative version of the Harari–Shupe observation: the allowed decompositions
of the eigenvalues of Y/2 into the eigenvalues of Y1/2, Y2/2, and Y3/2. Upper and
lower rows correspond to particles and antiparticles respectively (both labeled with
the names of the eight I3 = +1/2 members of a single SM generation).

νe uR uG uB

− 1
6 −

1
6 −

1
6 + 1

6 + 1
6 −

1
6 + 1

6 −
1
6 + 1

6 − 1
6 + 1

6 + 1
6

e+ d̄R d̄G d̄B

+ 1
6 + 1

6 + 1
6 − 1

6 −
1
6 + 1

6 − 1
6 + 1

6 −
1
6 + 1

6 −
1
6 −

1
6

One notes strict correspondence between Table III and the original HSO:
Table II is obtained from Table III simply by adding ∆ = +1/6 to each
eigenvalue of Yk/2. Thus, the phase-space approach indicates that the orig-
inal HSO could be equally well formulated in terms of the eigenvalues of
Y and Yk. The correspondence between the original (Table II) and the new
(Table III) version of HSO is (k = 1, 2, 3 labels the position of rishon in the
HSM state)

QV = 0 ↔ Yk = −1
3 , (17)

QT = +1
3 ↔ Yk = +1

3 . (18)

In the HSM, the antiparticles of the set given in Table I (i.e. the eight
fermions of I3 = −1/2) are composed of antirishons T̄ and V̄ . The cor-
responding versions of Tables II and III are obtained by simply changing
all of the signs in their entries. Therefore, the connection between the two
antirishon versions of the HSO is obtained by adding ∆ = −1/6 to each
eigenvalue of Yk/2.

3. Disappearance of HSM difficulties

Let us now discuss the HSM difficulties and their absence in the phase-
space scheme.

Absence of spin-3/2 partners of leptons and quarks

Assumption (10) which connects the concept of quantized charge with
the symmetry properties of nonrelativistic phase space avoids the use of
fermionic subparticles. Thus, one cannot infer the existence of spin-3/2
partners of ordinary leptons and quarks. However, even if we tried to aug-
ment the phase-space scheme with underlying spin-1/2 rishons à la HSM,
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we would necessarily fail, for such an introduction of spin-1/2 subparticles is
impossible. Indeed, within the phase-space scheme, a partial hypercharge Yk
cannot be assigned to a spin-1/2 subparticle. It cannot be done for the sim-
ple reason that Yk refers to one (the kth) direction in ordinary 3D space
only, while any discussion of spin requires the inclusion of all three spatial
directions.

Absence of antisymmetrization

Assumption (10) does not introduce fermionic subparticles. Consequently,
the ‘composite states’ are simply not there, and there is no way to attempt
their antisymmetrisation. There is also no reason for any antisymmetriza-
tion: the phase-space scheme gives the HSO directly, i.e. no modifications
of the scheme are needed.

The problem of mass

The absence of subparticles naturally prevents the appearance of any
paradox that might result from the confrontation of the smallness of lep-
ton/quark masses with the huge momentum uncertainty of confined con-
stituent rishons.

Yet, while the original HSM mass paradox disappears, the problem of
mass acquires an altogether different and very interesting look. Indeed,
with the presence of two phase-space constants κ and ~, the absolute scale
of masses is fixed when the speed of light c is added. Thus, one may expect
that the phase-space scheme, when properly developed, should constitute a
basis for a totally different approach to the problem of mass [9]. In fact,
this problem constituted one of the main reasons behind the development
of the scheme. This reason may be analyzed starting from the HSO in the
modified form of Table III. Namely, one observes that the permutation

νe ↔ uR , uG ↔ uG , uB ↔ uB , (19)

may be achieved by the following interchange among Yks

Y1 → Y ′1 = −Y2 , Y2 → Y ′2 = −Y1 , Y3 → Y ′3 = Y3 . (20)

This interchange may, in turn, be obtained from Eq. (13) via the following
operation on elements Am and Bn (among other possibilities):

A1 → A′1 = B2 , A2 → A′2 = −B1 , A3 → A′3 = A3 ,

B1 → B′1 = A2 , B2 → B′2 = −A1 , B3 → B′3 = B3 . (21)
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The above operation has its natural counterpart in phase space

p1 → x2 , p2 → −x1 , p3 → p3 ,

x1 → p2 , x2 → −p1 , x3 → x3 , (22)

which constitutes a specific joint rotation (by π/2) in phase-space planes
(p1, x2) and (x1, p2). Equation (22) interchanges some momenta coordinates
with some position coordinates. Thus, via Eq. (22), a symmetry transfor-
mation (19) that changes a lepton into a quark, transforms the standard
Dirac Hamiltonian of a lepton, i.e. α · p + βm, into a translationally non-
invariant expression. Consequently, in the phase-space scheme, a colored
quark is not described by the Dirac Hamiltonian. Since this contradicts the
basic assumption of the Standard Model, it might be argued that the whole
phase-space idea should be immediately discarded. It turns out, however,
that the above drawback may be turned into a virtue. In fact, the issue
just raised may be considered a hint on how the concept of quark mass and
the relation that it is supposed to fulfill are to be reinterpreted. A detailed
analysis of how the concept of quark mass was originally introduced into the
Standard Model shows that such a reinterpretation is possible. For more
details, see Refs. [7, 13]. Below, we will use only some of the hints that
Eq. (22) does suggest.

Absence of SU(3)

As the basic equations (8), (10) show, the phase-space scheme naturally
introduces the group of rotations in the 6D phase space (i.e. the SO(6)
group). From mathematics, we know that this group contains U(1) ⊗ SU(3)
as a subgroup. Simple analysis shows then that the SU(3) transformations
do not affect the lepton sector in Table III (i.e. a lepton is a singlet un-
der SU(3) transformations), but transform between themselves the sectors
of three colored quarks in this table (see e.g. Ref. [4]). Thus, contrary to
the HSM case, in the phase-space scheme, there is a color SU(3) group that
transforms between TTV , TV T , and V TT sectors of the original HSO. A
more elaborated connection to quantum chromodynamics is missing, how-
ever.

Binding of rishons

In the original HSM no rishon dynamics is proposed. The resulting
rishon-binding problem manifests itself in various ways in different multi-
rishon states. Its general resolution in the phase-space scheme is based on
three observations:
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1. that T and V̄ both correspond to Y = +1/3, while V and T̄ to Y =
−1/3,

2. that the distinction between T and V̄ (or between V and T̄ ) consists in
shifts by ∆ = +1/6 for the charges of rishons T , V and by ∆ = −1/6
for the charges of antirishons T̄ , V̄ ,

3. that there is a specific connection between phase-space variables and
lepton/quark sectors.

We proceed now to the discussion of various ways in which the binding
problem reveals itself.

TTT , V V V are free, but TV V , TTV are confined

The difference between these two types of three-rishon states is twofold.
First, one observes that the total hypercharge Y of these states is integer
(±1) for TTT , V V V states and fractional (±1/3) for TV V , TTV . As a reso-
lution of the problem, one could, therefore, simply postulate that states with
fractional values of Y are individually unobservable. However, since con-
finement refers to the macroscopic classical behavior of particles, its deeper
discussion must involve the classical concept of particle separation in ordi-
nary 3D space. Consequently, and this is the second point, the difference in
the spatial behavior of particles with integer and fractional values of hyper-
charge should be correlated with the phase-space variables which appear in
the relevant (lepton and quark) Hamiltonians. From Eq. (22), we see that
for quarks, the ordinary momentum in the lepton Hamiltonian is replaced
by a more general form of ‘canonical momentum’ in which some momentum
coordinates are replaced by the corresponding position coordinates. Since
the appearance of these position coordinates leads to translationally nonin-
variant Hamiltonians for individual quarks, the requirement of translational
invariance at our classical macroscopic level (satisfied for the TTT and V V V
combinations by assuming the Dirac form of lepton Hamiltonians) naturally
forbids the appearance of TV V , TTV combinations as free particles.

TT T̄ , V V V̄ are not observed

First, for these combinations, their total values of Y are fractional which
brings us close to the cases of TTV and V V T . Second (and more impor-
tantly), these combinations correspond to the total values of I3 equal to
∆(T ) + ∆(T ) + ∆(T̄ ) = ∆(V ) + ∆(V ) + ∆(V̄ ) = 1/6 + 1/6 − 1/6 = 1/6
which is unacceptable as I3 has to be integer or half-integer. Thus, in the
phase-space scheme, the TT T̄ and V V V̄ combinations simply do not exist.
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Observed free particles are built from TTT , T̄ T̄ T̄ , V V V , V̄ V̄ V̄ , T T̄ , and V V̄
only

Indeed, the individually separable particles are:

(1) four leptons, built from rishons as TTT , T̄ T̄ T̄ , V V V or V̄ V̄ V̄ and
(2) mesons and baryons, built from rishons as shown below.

Specifically, mesons are composed of rishons as

I3 = 0 , uū =
(
TTV, T̄ T̄ V̄

)
→
(
T T̄
)2 (

V V̄
)
,

I3 = 1 , ud̄ = (TTV, V V T )→ (TTT ) (V V V ) ,

I3 = 0 , d̄ =
(
V̄ V̄ T̄ , V V T

)
→
(
T T̄
) (
V V̄

)2
,

I3 = −1 , dū =
(
V̄ V̄ T̄ , T̄ T̄ V̄

)
→
(
T̄ T̄ T̄

) (
V̄ V̄ V̄

)
, (23)

which, in the second version of HSO, are all of the same form (of total Y = 0)

(Y1 + Y2 + Y3, Y1 + Y2 + Y3) = (1/3 + 1/3− 1/3,−1/3− 1/3 + 1/3) . (24)

Similarly, baryons are composed of rishons as

I3 = 3/2 , uuu = (TTV, TTV, TTV )→ (TTT )2(V V V ) ,

I3 = 1/2 , uud =
(
TTV, TTV, V̄ V̄ T̄

)
→ (TTT )

(
T T̄
) (
V V̄

)2
,

I3 = −1/2 , udd =
(
TTV, V̄ V̄ T̄ , V̄ V̄ T̄

)
→
(
T T̄
)2 (

V V̄
) (
V̄ V̄ V̄

)
,

I3 = −3/2 , ddd =
(
V̄ V̄ T̄ , V̄ V̄ T̄ , V̄ V̄ T̄

)
→
(
T̄ T̄ T̄

) (
V̄ V̄ V̄

)2
, (25)

which, in the second version of HSO, are all of the same form (of total Y = 1)

(Y1 + Y2 + Y3, Y1 + Y2 + Y3, Y1 + Y2 + Y3)

= (1/3 + 1/3− 1/3, 1/3 + 1/3− 1/3, 1/3 + 1/3− 1/3) . (26)

When compared with leptons and states composed of leptons (e.g. e+νe =
(TTT ) (V V V )), which all are free states, the rishon composition of hadrons
differs by the possible presence of (T T̄ ) and (V V̄ ) factor states. Since in the
phase-space scheme we associated T (T̄ ) with∆ = +1/6 (−1/6) contribution
to I3, one gets integer (zero) value of total I3 for the (T T̄ ) state, but neither
integer nor half-integer values for the (T ) and (TT ). Analogous results hold
for states (V V̄ ), (V ), (V V ) as well as for (V T̄ ) etc. In addition, the (T ),
(TT ), and other similar states have fractional values of Y , while for (T T̄ ) one
has Y = 0. Thus, the absence of (T ), (TT ) and other similar factor states
on the right-hand side of Eqs. (23), (25) constitutes merely a translation of
the conditions that for the observed free particles, the values of their Y are
integer and those of I3 are integer or half-integer.
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Obviously, as the concept of particle freedom refers to particle’s behavior
in space, one still needs to connect the above quantum number argument
with a space picture. In fact, we have already pointed out that in the phase-
space scheme, contrary to the case of leptons, the Hamiltonians of individual
quarks violate translational invariance. This was interpreted as equivalent
to quarks not being free particles. It is, therefore, of great interest to see
whether certain conglomerates of quarks can be made to appear free in the
phase-space scheme, i.e. if (and — if yes — how) the translational invariance
could be restored for hadronic states. We will discuss this issue in Section 4.

Baryon number violation

The HSM rishons are introduced as ordinary (even though confined) par-
ticles. Thus, the states composed of rishons may exchange their components
upon sufficiently close contact without any obvious penalty. As a result, the
state TTV + TV T may rearrange its rishons into TTT + TV V , i.e. transi-
tion u + u′ → e+ + d̄ appears possible. Unfortunately for the HSM, this is
a baryon-number-violating process which has not been observed in nature.

In the phase-space scheme, such a transition requires an ‘exchange’ of
partial hypercharges (e.g. Y u

3 ↔ Y u′
3 )(

Y u
1 = 1

3 , Y
u

2 = 1
3 , Y

u
3 = −1

3

)
+
(
Y u′

1 = 1
3 , Y

u′
2 = −1

3 , Y
u′

3 = 1
3

)
→(

Y e
1 = Y u

1 , Y
e

2 = Y u
2 , Y

e
3 = Y u′

3

)
+
(
Y d̄

1 = Y u′
1 , Y d̄

2 = Y u′
2 , Y d̄

3 = Y u
3

)
. (27)

Such an interchange assigns to individual partial hypercharges a particle-
like independence that is not built into the phase-space scheme. The partial
hypercharges that define a given particle cannot be traded between different
particles. Thus, baryon-number violation does not occur in the phase-space
scheme.

4. A glimpse of physics to come?

As already stressed, integer (fractional) values of Y are associated with
free (confined) particles. In order to proceed with the discussion of this
connection between the value of hypercharge and the spatial behavior of
elementary particles, including the emergence and behavior of hadrons as
envisaged in the phase-space approach, we introduce now two reasonable
assumptions:

1. a connection between particle–antiparticle conjugation and phase-space
variables (to treat the case of mesons which involve both quarks and
antiquarks) and
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2. a plausible prescription for how to combine the canonical momenta of
quarks.

For simplicity, we will restrict our discussion to hadronic states composed of
quarks and antiquarks of a single flavor (e.g. u and ū) and the association
of their canonical momenta with phase-space variables. Inclusion of d and d̄
is discussed in Ref. [6].

The connection between particle–antiparticle conjugation and phase-
space variables may be established by a simple analysis of the assumed
invariant behavior of position-momentum commutation relations under the
operations of P and T . We have

P : i→ +i , p→ p′ = −p , x→ x′ = −x ,
T : i→ −i , p→ p′ = −p , x→ x′ = +x . (28)

If CPT is an identity operation, then C is represented in the phase-space
language8 by a product of P and T , i.e. by

C : i→ −i , p→ p′ = +p , x→ x′ = −x . (29)

Consequently, in order to go from particles to antiparticles, we have to (1)
change everywhere the sign in front of the imaginary unit i (which leads
to complex conjugate representations and the opposite sign of charge), and
(2) reverse the signs with which position coordinates enter into the rele-
vant formulas (which leads to an unorthodox interpretation of antiparticles
in macroscopic terms, a phase-space-based counterpart of the Feynman–
Stückelberg interpretation).

In order to discuss in some detail the issue of spatial properties of states
composed of quarks, we turn first to states composed of ordinary, freely ob-
servable particles, such as e.g. a two-lepton state. As a whole, this state is
characterized by its total momentum, i.e. by the sum of the momenta of its
constituents. Similarly, when two hadrons collide and a resonance is formed,
its momentum is taken to be the sum of the momenta of initial hadrons. This
additivity of momenta, an established and elementary property of any sys-
tem of free particles or macroscopic objects, is so deeply ingrained in our
minds that in the standard approaches we take it for granted that it applies
also to quarks. In the phase-space scheme, however, quarks are described
with the help of ‘canonical momenta’ in which some momentum components
are replaced by position components. Should we apply then the additivity

8 It is a fallacy to identify an abstract description of reality (such as e.g. the field-
theoretical approach to elementary particles, however successful it is) with this reality
itself. Consequently, the representation of C may depend on the language chosen.



1026 P. Żenczykowski

principle to the ordinary momenta or to the canonical momenta? Our fun-
damental conjecture is that it is more natural to combine the canonical
momenta.

We stress that, contrary to the case of free particles, the additivity of
the physical momenta of individual colored quarks in a given hadron cannot
be confirmed in a strictly experimental way. Indeed, due to confinement,
a colored quark cannot be observed (as an individual free particle) and,
consequently, its physical momentum cannot be measured. As a result, in
current approaches to strong interactions, this momentum is merely assigned
to an individual quark. This is done with the help of both theory and phe-
nomenology. There is no rigorous theoretical transition between the level of
measured hadron momenta and the level of quark momenta. Consequently,
there is also no rigorous way to check the additivity of quark physical mo-
menta, a property which is again merely assigned to any system of quarks.
We suspect that the phenomenological problems encountered in the stan-
dard description of various properties of hadrons in terms of their quark
structure (in space or in momentum space) appear precisely because of the
conflict between these standard assignments and our conjecture that one
should combine quarks’ canonical momenta.

4.1. Translational invariance and confinement

If we accept that one should apply the additivity principle to canonical
momenta, several interesting conclusions follow. First, in agreement with
Eqs. (22), (29), we note that uR and ūR are associated with canonical mo-
menta as follows (the bar signs over phase-space variables for the antiquark
distinguish them from those for the quark)

uR ↔
(
− xR1 ,+xR2 , pR3

)
,

ūR ↔
(

+ x̄R1 ,−x̄R2 , p̄R3
)
. (30)

The additivity principle — when applied to canonical momenta — leads
then to the total canonical momentum of the uRūR system being(

+ x̄R1 − xR1 , xR2 − x̄R2 , pR3 + p̄R3

)
, (31)

which is a translationally invariant expression. Thus, if confinement is iden-
tified with the lack of translational invariance, the quark–antiquark system
is not confined. On the other hand, for the uR1uR2 system, the additivity
principle leads to the total canonical momentum being (−xR1

1 − xR2
1 , xR1

2 +
xR2

2 , pR1
3 + pR2

3 ), which is still a translationally noninvariant expression.
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If we replace one of the two uR quarks with a quark of another color,
e.g. uG, we should combine the r.h.s. of the first line of Eq. (30) and the
r.h.s. of the corresponding expression for a green quark, i.e.

uG ↔
(

+ xG1 , p
G
2 ,−xG3

)
, (32)

where the signs are determined by cyclicity. A natural way to combine the
two canonical momenta seems to be

uRuG ↔
(

+ xG1 − xR1 ,+xR2 ,−xG3 , pG2 , pR3
)
, (33)

which expression is still translationally noninvariant. We conclude that
translational invariance cannot be restored by forming a system of two
quarks. Thus, a diquark is necessarily confined. Since by cyclicity we have
for the blue quark and antiquark

uB ↔
(
pB1 ,−xB2 ,+xB3

)
,

ūB ↔
(
p̄B1 ,+x̄

B
2 ,−x̄B3

)
, (34)

we note that for the uRuG system, the position components in the second and
third direction, i.e. xR2 and xG3 , enter with same signs (respectively (+,−))
as for the blue antiquark (x̄B2 , x̄B3 ) and with the opposite signs as for the
blue quark. Thus, as far as the translationally noninvariant components are
concerned, the uRuG system behaves like the ūB antiquark.

Under translations, therefore, the uRuGuB system should behave just like
the ūBuB system, for which a translationally invariant expression similar to
(31) may be written. In fact, for the uRuGuB system, our combination
prescription suggests the form(

pB1 , p
G
2 , p

R
3 , x

G
1 − xR1 , xR2 − xB2 , xB3 − xG3

)
, (35)

which is explicitly translationally invariant. Hence, apart from the noncon-
fined uū quark–antiquark states (mesons), there should exist nonconfined
three-quark uuu states (baryons). Thus, the proposed prescription for com-
bining the canonical momenta of quarks leads to the conclusion similar to
that following from the standard group-theoretical argument according to
which only SU(3)color singlet states (qq̄, qqq, . . . ) are observable as free sep-
arable particles, while q, qq, and other color nonsinglet states are confined.
Our conjecture on how to combine the canonical momenta may be therefore
viewed as corroborated by quark confinement and the existence of uncon-
fined mesons and baryons. Although the above arguments may be regarded
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as highly simplistic, we believe that they reflect the appearance of confine-
ment fairly well and provide a glimpse of conditions that a future better
formulation of such ideas should fulfill.

While the phase-space scheme naturally leads to the appearance of the
SU(3) color group, which is definitely superior to the case of the HSM, the
standard QCD gauge structure would still have to be imposed ad hoc. On
the other hand, if we interpret position differences xG1 −xR1 etc. as describing
components of interquark strings, the phase-space scheme naturally connects
the internal color structure of hadrons with their string-like properties, a
result that in QCD requires the solution of the confinement problem.

4.2. Rotational covariance and the concept of a point

The expressions suggested by the prescription for combining the canon-
ical momenta of quarks exhibit peculiar features as far as their rotational
properties are concerned. Indeed, the total canonical momentum of the
uRūR state is not rotationally invariant. In order to construct a rotationally
covariant description of meson momenta, one has to consider both uRūR as
well as uGūG and uBūB states. While one may easily write the formal expres-
sion (pB1 + p̄B1 , p

G
2 + p̄G

2 , p
R
3 + p̄R3 ), its rotational covariance clearly requires

quarks of different colors to conspire. Since in the baryon case the total
baryon momentum suggested by the combination prescription is described
by (pB1 , p

G
2 , p

R
3 ), a somewhat similar conspiration between the uR, uG, uB

quarks is needed also for baryons.
Note that we are talking here about the rotational properties of the

macroscopic concepts of positions and momenta for quarks and the systems
of quarks, not about the properties of the quantum concept of spin for
quarks and the system of quarks (we accept that quark spins are adequately
described by the standard Pauli matrices). The weird nature of spatial
conspiracy that is here suggested to exist between quarks of a given hadron
should not discourage us. After all, the proposed prescription for combining
the canonical momenta of quarks leads to a novel view on confinement.
Thus, the encountered oddity should not be taken as an argument against
the proposed scheme. To the contrary, we think that the required spatial
conspiracy of quarks does shed light on the very nature of macroscopic space,
a question that lies totally outside of the standard field-theoretical approach.

The spatial arguments of the fields (i.e. positions or momenta) are not
of a microscopic nature [10]. They provide a classical macroscopic refer-
ence frame for the quantum particles. Thus, as argued by Finkelstein [11],
the field-theoretical description of elementary particles is a hybrid one: it
involves both the macroscopic classical continuous variables (positions or
momenta), and the strictly quantum variables such as spins and other dis-
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crete quantum numbers. In line with the idea of emergent spacetime, particle
positions (and momenta) are supposed to constitute the concepts that ap-
pear only when a vast number of strictly quantum systems interact [12].
Recall now that hadronic positions or momenta can be measured but those
of individual colored quarks cannot be. Consequently, one may argue that
the whole standard and familiar structure of the 3D space (together with
its rotational and Minkowskian aspects9) becomes operationally sufficiently
well-defined only at the colorless (hadronic) level. As a result, an ade-
quate description of the quark-level structure may deviate from the currently
dominant macroscopically-driven geometrical ideas and require some kind of
‘pregeometry’ [14]. We think that the condition of rotational covariance of
a quark-level description of macroscopic hadronic variables provides us with
a glimpse on how such pregeometry might look like.

All this does not mean that quarks cannot be associated and described
at some higher level of the phase-space scheme with the standard bispinor
fields q(x) defined on the ordinary spacetime manifold, as it is customarily
done in the Standard Model. Indeed, the colorless aspects of quark behav-
ior (e.g. couplings of color-singlet quark currents to photons or weak gauge
bosons) have to be describable in terms of such macroscopically-covariant
fields. However, as in the phase-space scheme the Hamiltonian of an individ-
ual colored quark appears to be a translationally noninvariant object, the
relevant bispinor quark fields cannot satisfy standard Dirac on-mass-shell
equations. Therefore, the orthodox approach that uses Dirac quarks must
constitute an approximation.

We stress that the introduction of the concept of position as an argu-
ment of quark field q(x) finds its experimental justification via the hadronic
level observables only. The translation of hadron-level observations to the
standard quark-level picture requires additional assumptions. In the QCD
description of deep inelastic scattering, the necessary translation is achieved
with the help of the phenomenological interface of ‘structure functions’.
With x being satisfactorily defined at hadronic and higher levels only, such
additional assumptions which extrapolate the concept of point to the ‘in-
terior’ of hadrons may be unjustified. In particular, imagining quarks as
located at specific points of an underlying 3D background space and con-
fined to a region of this space may (and — in our opinion — should) be
regarded as a simplifying and approximate description of nature10.

9 A way to introduce special relativity is discussed in Ref. [13].
10 In fact, there are strong indications from the phenomenology of baryon spec-

troscopy [15] (see also Ref. [13]) that the standard quark model/lattice QCD de-
scription of excited baryonic states is an idealization that misses a crucial aspect of
their internal spatial structure.
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5. Concluding remarks

No preons

In this paper, we argued in some detail that the Harari–Shupe obser-
vation should and may be explained without the introduction of preons.
We also pointed out that the phase-space approach provides precisely such
an explanation. The continuing attempts to subdivide elementary parti-
cles again and again (and to treat space as infinitely divisible) do show the
strength of our hundred thousands years old evolutionary inheritance, but
are against the spirit of the proper resolution of the problem, as started by
Democritus and elaborated later by Heisenberg [16] (see below). The exis-
tence of a philosophically sound, very economic, and successful explanation
of the HSO in terms of phase-space symmetries strongly suggests that the
level of quarks and leptons constitutes the lowest level of the divisibility of
matter.

The changing meaning of the word ‘to divide’

A somewhat deeper reflection regarding the concept of division consists
in the realization that the Democritean idea of indivisible atoms consists in
choosing the most crucial step — in the long chain of conceptual changes
concerning the notion of divisibility — as the only such change. Indeed, with
each subsequent step down — when going along the complexity ladder from
the macroworld to the world of elementary particle — the word ‘division’ is
stripped of some of the macroscopic attributes we usually associate with it
(this is an extension of the original idea discussed by Heisenberg in Ref. [16]).
For example, during the transition from the molecular to the atomic level,
the chemical properties largely disappear. Yet, the property of separability
in space is not modified for a long series of such consecutive steps. This
changes only when the transition from the hadronic to the quark level is
effected. At this stage, the macroscopic concept of divisibility loses its crucial
feature: the quark ‘flakes’ are no longer macroscopically separable in space11.
As a result, the standard vision supplied by our imagination, i.e. that of
individual quarks being separated by ordinary space, need not be wholly
correct: it may constitute an over-simplified idealization. Obviously, there
are many serious indications that hadrons are composed of quarks. Neither
this view nor the successes of the relevant field-theoretical description are
challenged here. Yet, at the same time, there are various hints that the
precise nature of hadron compositeneness still evades our understanding.

11 At this point, the change in the concept of divisibility is so big that one may repeat
after Heisenberg: “The word ‘dividing’ loses its meaning” [16].
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Accordingly, we think that the current views on the mechanism of quark
confinement should be regarded as an insufficient approximation to reality.

The word ‘to divide’ can be used at the lower levels of the divisibility
ladder provided we keep it being appropriately redefined at each consecu-
tive step down. The redefinition required at the hadron/quark transition is
already substantial, but — as the Standard Model demonstrates — one can
accept a theory that circumvents the loss of macroscopic spatial separabil-
ity. On the other hand, the step to the rishon level seems to require such a
drastic redefinition of the word ‘to divide’ that it is not appropriate to use
that word any longer: in particular, in the phase-space scheme, it is not just
the concept of separability that is lost — what seems to evaporate is the
very concept of the underlying space. In other words, space appears to be a
concept that emerges from some pregeometric ‘rishon’ level.

The scale of emergence

As is well-known, the idea that spacetime is an emergent macroscopic
concept constitutes a starting point in contemporary approaches to quantum
gravity. This general idea of spacetime emergence is likely to be correct. Af-
ter all, we know of many other examples of various properties which emerge
when one climbs the ladder of complexity. There seems to be no reason why
other concepts, spacetime included, should not conform to this general rule.

What is unorthodox in our view is the distance scale at which, as we
argue, the effects of spacetime emergence can be seen. In the approaches to
quantum gravity, spacetime is thought to emerge at the diminutive Planck
length scale, some 20 orders of magnitude below the hadronic length scale. If
one accepts that the HSO brings out an element of truth, then the standard
problems with its preon-based explanation suggest that an important step in
that emergence occurs at the rishon-to-quark/lepton transition. Yet, stan-
dard no-preon arguments do not really specify the distance scale relevant
for spacetime emergence. On the other hand, the phase-space scheme expla-
nation of the HSO does go further. The conjectured additive treatment of
position coordinates and its association with the idea of confinement essen-
tially suggest that important aspects of spacetime emergence are completed
only with the next step up the complexity ladder — i.e. with the quark-to-
hadron transition. Although this is a distance scale that is much larger than
the Planck scale, the idea cannot be regarded as disproved by the successes
of the current Standard Model description of elementary particles, which
constitutes a field-theoretical idealization and approximation to reality, and
must not be identified with nature [17]. Specifically, the idea advocated here
is that (1) the concept of spacetime point, an undisputed input into all field-
theoretical formalisms, is an emergent concept, and that (2) one can learn
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more about this emergence by a deeper understanding of the quark/hadron
transition. Note that we do not claim that spacetime emerges just at the
hadronic distance scale. As the alocal nature of quantum correlations sug-
gests [18, 19], we suspect that it emerges at all distance scales. We think,
however, that important hints as to the mechanism of this emergence could
be unraveled by a deeper understanding of the quark-to-hadron transition.

This paper was financially supported by the Institute of Nuclear Physics,
Kraków, Poland.
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