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FROM “DIRAC COMBS” TO FOURIER-POSITIVITY
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Motivated by various problems in physics and applied mathematics, we
look for constraints and properties of real Fourier-positive functions, i.e.
with positive Fourier transforms. Properties of the “Dirac comb” distribu-
tion and of its tensor products in higher dimensions lead to Poisson resum-
mation, allowing for a useful approximation formula of a Fourier transform
in terms of a limited number of terms. A connection with the Bochner
theorem on positive definiteness of Fourier-positive functions is discussed.
As a practical application, we find simple and rapid analytic algorithms for
checking Fourier-positivity in 1- and (radial) 2-dimensions among a large
variety of real positive functions. This may provide a step towards a clas-
sification of positive positive-definite functions.
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1. Introduction

We call “Fourier-positivity” a property of a real positive function whose
Fourier transform is itself positive. Besides of a purely mathematical inter-
est [1], the study of such pairs of functions is motivated by applications in
physics and applied mathematics [2, 3]. In physics, typically, both functions
correspond to observables, i.e. measurable a priori positive quantities. Well-
known examples exist in one- and especially two-dimensional cases. Let us
quote, for instance, the Fourier–Bessel transform, i.e. radial version of the
2-dimensional Fourier transform, relating the gluon and dipole distribu-
tion [4] inside a hadron in the framework of Quantum Chromodynamics
of strong particle interactions.

There exists a fundamental property characterizing Fourier positivity
which uses the Bochner theorem [5]: “Fourier-positivity” of a real function
ψ(~r ) is equivalent to the statement that ψ is not only positive but also
† bertrand.giraud@cea.fr
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positive-definite. “Positive-definiteness” means that for any set of positions,
{~ri, i = 1, ..., n}, the n × n matrix M with elements ψ(~ri− ~rj) is positive-
definite, i.e.

n∑
i,j=1

ui ψ(~ri− ~rj)uj ≥ 0 , ∀~u , ∀n ∈ N . (1)

In other terms, the lowest eigenvalue of the matrix M remains positive for
all ~u and all values of n.

The Bochner theorem, with its applications, appears to be still the major
tool in the domain. However, to our knowledge, there does not yet exist a
mathematical classification of Fourier-positive functions which, for instance,
could allow for an appropriate parametrization for model building. Testing
positive-definiteness (1) cannot be done concretely, due to the generality of
the constraints. Conversely, numerically computing Fourier transforms for
checking Fourier-positivity is obviously possible, but it does not give general
or analytical easy means to select a priori appropriate Fourier-positive sets
of functions.

Our approach is to find new constraints of Fourier-positivity allowing
for simple and efficient selection rules of functions with positive Fourier
transform ϕ, given the positive input ψ. We thus consider a pair of real
even functions on d-dimensional real vector spaces, ψ(~r ) and ϕ(~s ), which
are taken to be d-dimensional Fourier transforms one from the other

ϕ(~s ) ≡ 1

(2π)d/2

∫
Rd

d~r ei~s·~r ψ(~r ) ,

ψ(~r ) ≡ 1

(2π)d/2

∫
Rd

d~s e−i~s·~r ϕ(~s ) . (2)

We have already performed preliminary studies on this problem. In our
initial paper [6], we examined the distribution of Fourier-positive functions
among arbitrary combinations of a finite basis of Fourier eigenfunctions using
the algebra of Hermite polynomials (in one dimension) and the algebra of
Laguerre polynomials (in radial two dimensions). The main outcome of
this first study, using the Sturm algorithm on the number of polynomial
zeros, is to reveal the rather intricate geometry of the manifold of solutions.
In a second study [7], we derived generalized sufficient properties, based
on an extension of convexity conditions by analytic continuation of ψ into
the complex plane and Jensen inequalities. However, the set of obtained
constraints proved to be too weak to reliably check Fourier-positivity in the
testing domain.
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In the present work, we propose a method providing a satisfactory detec-
tion of Fourier positivity violation, thoroughly tested for large sets of func-
tions in one- and radial two-dimensions. It is based on a different approach
from aforementioned studies, using remarkable properties of “Dirac comb”
mathematical distributions through Fourier transforms in any dimension.

The plan of this paper is the following. In Section 2, we recall the def-
inition and properties of the “Dirac comb” distribution and of its tensor
products, leading to the well-known Poisson resummation formula. In Sec-
tion 3, we then derive a useful approximation formula of a Fourier transform
in term of a finite (and limited) sum of data on the candidate Fourier-positive
function. This is shown, in Section 4, to be equivalent to the application
of the Bochner theorem in a finite regular lattice of points of varying size.
In Section 5, we apply these results to large random sets of functions, ei-
ther Fourier-positive or not and show the relevance of our method to select
Fourier-positivity with an analytic evaluation of the Poisson summation.
The final Section 6 is devoted to a summary of results and prospects for a
deeper understanding of Fourier-positivity.

2. Dirac combs and the Poisson resummation formula

As we shall see, a key ingredient of our approach is to take advantage
of the Poisson resummation formulas, which can be easily derived from the
so-called “Dirac comb” mathematical distribution,∑

k∈Z
δ(r − k) =

∑
k∈Z

e2iπkr ,

∑
~k∈Zd

δ(d)
(
~r − ~k

)
=
∑
~k∈Zd

e2iπ
∑d
j=1 kjrj , (3)

where the second line is its d-dimensional tensor product.
“Dirac combs” are formally invariant under Fourier transform, and also

Fourier-positive. Indeed, as easily derived from the definition (2) inserted
into the second line of (3), one writes∫

d~r ei~s·~r
∑
~k∈Zd

δ(d)
(
~r

2π
− ~k
)

= (2π)d
∑
~k∈Zd

e2iπ
~k·~s =

∑
~k∈Zd

δ(d)
(
~s

2π
− ~k
)
.

(4)
The connection between Dirac combs and Fourier-positive functions is ob-
tained by considering the “characteristic function” defined by

F
(
~θ, ~r
)
≡
∑
~k∈Zd

ψ(k1r1, . . . , kdrd) ei
∑d
j=1 kjθj . (5)



1078 B.G. Giraud, R. Peschanski

As we shall discuss in further sections, the condition for ψ to be Fourier-
positive transfers the condition to a positivity of F (~θ, ~r ), namely,

F
(
~θ, ~r
)
> 0 , ∀~r, ~θ ∈ Rd ⊗ [0, 2π[d . (6)

In fact, noting from the second line of (2) that,

ψ(k1r1, . . . , kdrd) =
1

(2π)d/2

∫
Rd

d~s e−i
∑d
j=1 kjrjsjϕ(~s ) , (7)

we are able to use the d-dimensional “Dirac comb” relation (3) in order to
rewrite the positivity condition (6) as

F
(
~θ, ~r
)

=
1

(2π)d/2

∫
Rd

d~sϕ(~s )
∑
~k∈Zd

e−i
∑d
j=1 kj(rjsj−θj)

=
1

(2π)d/2

∫
Rd

d~sϕ(~s )

∑
~k∈Zd

Πd
j=1δ

(
rjsj − θj

2π
− kj

)
=

(2π)d/2

Πd
j=1|rj |

∑
~k∈Zd

ϕ

(
2πk1 + θ1

r1
, . . . ,

2πkd + θd
rd

)
> 0 ,

∀~r, ~θ ∈ Rd ⊗ [0, 2π[d . (8)

The equality of the two expressions (5) and (8) of F (~θ, ~r ) is nothing but a
version of the d-dimensional Poisson resummation formula [8].

An interesting insight on the properties of (8) is obtained by a change of
variables (θj , rj)⇔ (sj , rj) with

sj ≡
θj
rj
, j = 1, . . . , d ; F

(
~θ, ~r
)
⇔ F (~s, ~r ) . (9)

The positivity condition (6) may thus be rewritten and renormalized in such
a way as to read,

F (~s, ~r ) ≡
∑
~h∈Zd

ϕ

(
s1 +

2πh1
r1

, . . . , sd +
2πhd
rd

)

=
|r1 . . . rd|
(2π)d/2

∑
~k∈Zd

ψ(k1r1, . . . , kdrd) e
i
∑d
j=1 kjrjsj > 0 . (10)

Under this form, the Poisson resummation formula (10) allows for an in-
teresting Fourier transform relation which can be qualitatively (and made
quantitative in the next section) outlined as follows:
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— Approximation of the right-hand side of Eq. (10). Assume that the
function ψ(r1, . . . , rd) has a finite range R for each of its arguments,
namely that it is negligible1 if any |rj | > R. Then, one can choose a
positive integer K so that the right-hand summation can be truncated
into a finite number of terms. Indeed, define a parameter, rmin = R/K,
and consider only situations where |rj | > rmin, ∀j = 1, . . . , d. Clearly,
every |kj | becomes bounded by K, hence,

F (~s, ~r ) ' |r1 . . . rd|
(2π)d/2

∑
~k∈Zd ; |kj |<K,∀j

ψ(k1r1, . . . , kdrd) e
i
∑d
j=1 kjrjsj .

(11)
Given K, there appears a minimal value of each rj for practical cal-
culations if K remains fixed.

— Approximation of the left-hand side of Eq. (10). Assume also that the
function ϕ(~s ) has a finite range for each of its arguments, |sj | < S,
∀j, beyond which it is negligible. Then, one finds that the left-hand
summation can be limited to its first term hj = 0, j = 1, . . . , d. This
only remaining significant term is just the Fourier transform of ψ,
hence, ∑

~h∈Zd
ϕ

(
s1+

2πh1
r1

, . . . , sd +
2πhd
rd

)
' ϕ (s1, . . . , sd) . (12)

This holds for some maximal value of each |rj |, depending on S. This
maximum, rmax, will be derived in the next section.

Let us comment these two approximations. Equation (11) is meant to
obtain a good approximation of the characteristic function itself. Obviously,
this expression exhibits an approximation formula for a Fourier transform,
and, usually, a convergent result at the limit, K →∞, or, as well, rmin → 0.
This requires a priori K to be large enough. However, our aim is to look for
a good enough approximation for a limited number of terms in (11). In this
case, the variable rmin plays the role of a “resolution” parameter, ∆r = R/K,
on the function ψ allowing to test its Fourier-positivity. The approximation
described by Eq. (12) is of different nature and is directly related to the
properties of the Poisson resummation. Indeed, the trade of products kiri
into si + 2πhi

ri
, typical of the Poisson resummation formula (10), allows for a

rapid decrease rate in the left-hand series, for small enough values of ri.
By combining both approximations (11), (12), one has the interesting

approximation property, valid in a restricted domain for ~r, of a Fourier
transform by a finite sum,

1 It is assumed to be small enough even in a summation like in (10).
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ϕ(s1, . . . , sd) '
|r1 . . . rd|
(2π)d/2

K∑
kj=1

ψ(k1r1, . . . , kdrd) e
i
∑d
j=1 kjrjsj (13)

allowing to check the positivity and other properties of ϕ from a finite num-
ber of values of ψ for the variables rj in a given range, rmin < |rj | < rmax,
delimited by both a lower bound (related to the right-hand side approxi-
mation) and an upper bound (related to the left-hand side approximation)
induced from the Poisson resummation (10).

3. Fourier transform via Poisson resummation

3.1. The one-dimensional Fourier case

Here, we consider a conjugate pair of real even functions ψ(r), ϕ(s) of real
variables which are Fourier-conjugated one with the other, see formulas (2)
when d = 1. We look for the application of the characteristic function
F (s, r) and the corresponding Poisson resummation formula (10) to the one-
dimensional problem of Fourier positivity, using the approximation scheme
(13) outlined in the previous section.

Let us first write the Poisson resummation formula (10) in the one-dimen-
sional case

F (s, r) =
∑
h∈Z

ϕ

(
s+

2πh

r

)
=
|r|√
2π

∑
k∈Z

ψ(kr) eikrs . (14)

Under this form, the approximation properties leading to (13) can be made
quantitative as follows:

— Approximation of the right-hand side summation in Eq. (14). Let
us consider a fixed value, moderately large, of the positive integer
parameter K. Consider a function ψ(r) with a finite and non-zero
range R, define the parameter, rmin = R/K, and restrict r to be
larger than rmin. This gives

F (s, r) ' |r|√
2π

∑
|k|≤K

ψ(kr) eikrs . (15)

This summation in (14) is thus limited2 to just terms with |k| ≤ K
and looks like a discretized approximation, with step r, of the Fourier
integral.

2 We assume that the cut-off R is strong enough to ensure a fast convergence of the
series (15).
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— Approximation of the left-hand side summation in Eq. (14). Let us
assume a finite range S of the function ϕ(s), Fourier partner of ψ,
namely ϕ(s) is negligible if |s| > S.

Besides an obvious condition, |s| < S, the condition for retaining the
first term, h = 0, as the only significant term in the left-hand side
summation (14), is ∣∣∣∣s± 2π

r

∣∣∣∣ > S , (16)

since all other terms, with |h| > 1, can then be neglected (provided
one has good convergence properties). A bound on |r| is obtained as
follows. Clearly, whatever the signs of r and s, the condition (16)
reduces to ∣∣∣∣|s| − 2π

|r|

∣∣∣∣ > S , (17)

with two branches, depending on the relative values of |s| and 2π/|r|

|s| − 2π

|r|
> S , −|s|+ 2π

|r|
> S . (18)

Since |s| < S, the first branch is useless. The second one gives 2π/|r| >
2S, because |s| may reach S. Accordingly, one finds the bound, |r| <
rmax ≡ π/S.
By combining both approximations, one obtains the approximation
property of a Fourier transform by a finite sum, namely,

ϕ(s) ' |r|√
2π

K∑
k=1

ψ(kr) eikrs . (19)

For (19) to be valid, one has to choose an appropriate range for |r|,
namely,

R

K
< |r| < π

S
. (20)

This, in turn, requires the following condition on the truncation pa-
rameter, K,

K >
RS

π
, (21)

the value of which is not too large for a pair of Fourier partners whose
cut-offs are such that the product, RS, is a finite number.
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3.2. The radial two-dimensional Fourier case

The radial two-dimensional problem considers ψ(r) and ϕ(s), a pair of
radial conjugate functions on R+, namely

ϕ(s) =
1

2π

∫
R2

d~r ei~s·~rψ(r) =

+∞∫
0

rdr J0(sr)ψ(r) , (22)

ψ(r) =
1

2π

∫
R2

d~s e−i~s·~rϕ(s) =

+∞∫
0

sds J0(rs)ϕ(s) , (23)

where r = |~r | and s = |~s | denote here the radial variables of vectors in both
conjugated 2-dimensional spaces.

Following the general formalism of Section 2, the two-dimensional Pois-
son resummation ensures the positivity of the 2-dimensional characteristic
function for a positive Fourier transform ϕ(s), namely,

F (s1, s2, r) ≡
r2

2π

∑
m,n∈Z

ψ
(
r
√
m2 + n2

)
ei(ms1+ns2)r ≥ 0 ,

∀r ∈ [0,∞[ , ∀s1, s2 . (24)

As we discuss now, the condition (24) happens to furnish also a condition
for Fourier-positivity of the function ψ(r) in the range where F (s1, s2; r)
gives a direct link to its Fourier transform similar to the one-dimensional
case. This comes again from a 2-dimensional Poisson summation formula
relating ψ(r) to ϕ(s), namely,

F (s1, s2, r) =
∑

h1,h2∈Z
ϕ

√(2π

r
h1 + s1

)2

+

(
2π

r
h2 + s2

)2
 ≥ 0 . (25)

— Approximation of the summation in Eq. (24). Let us consider a fixed
value of the variable r. Then, we consider functions ψ with a finite
range R. It is easy to see that the summation (24) can be limited3 to
just terms with |m|, |n| ≤ K ≡ [R/r] + 1, where [R/r] is the integer
part of R/r

F (s1, s2, r) '
r2

2π

∑
m,n∈Z ; |m|,|n|<K

ψ
(
r
√
m2 + n2

)
ei(ms1+ns2)r

with Kr ≥ R . (26)
3 We assume that the cut-off R is strong enough to ensure a fast convergence of the
series (24).
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— Approximation of the summation in Eq. (25). Consider the case of
a finite range S of the function ϕ, Fourier transform of ψ. Namely,
assume that ϕ(s) is negligible for s =

√
s21 + s22 > S. Then, consider

the set of points, {s1, s2}, inside the circle with radius S, namely,
s21 + s2 < S. The conditions for retaining only the term with, h1 =
h2 = 0, in (25) read(

±2π

r
+ s1

)2

+ (s2)
2 > S2 (for h1 = ±1 , h2 = 0)

and

(s1)
2 +

(
±2π

r
+ s2

)2

> S2 (for h2 = ±1 , h1 = 0) . (27)

This is obtained if 2π/r > 2S. Indeed, under such a condition for
2π/r, the points, {±2π/r+ s1, s2}, are pushed out of the circle which
confines {s1, s2}. The same holds for the points {s1,±2π/r + s2}.
Accordingly, the summation (25) can be reduced4 to its simplest term,
~h = 0, i.e., the only remaining significant term. It is just the Fourier
transform ϕ(s) of ψ.

By combining both approximations, one obtains the approximation
property of a Fourier transform by a finite sum, namely,

ϕ(s) ' r2

2π

∑
m,n∈Z ; |m|,|n|<K

ψ
(
r
√
m2 + n2

)
ei(ms1+ns2)r . (28)

For (28) to be valid, one has to choose appropriate bounds for r, which
are similar to those of the 1d case, namely,

R

K
< r <

π

S
⇒ K >

RS

π
. (29)

4. From Poisson formula to Bochner positive-definiteness

Our aim in this section is to exhibit the connection of the positivity con-
dition (6) of the characteristic function F (~θ, ~r ) with the positive-definiteness
of certain matrices [9] related to the Bochner theorem [5]. This, in turn, im-
plies the positivity of the lowest eigenvalue of these matrices (and thus also
of the corresponding matrix determinants). For practical reasons, we shall
focus the discussion on the one- and radial two-dimensional cases, but the
method is general.

4 We assume again that the cut-off S is strong enough to ensure a fast convergence.
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4.1. The one-dimensional case

Let us recall the one-dimensional Poisson formula (14) and its positivity
condition under the form

F (θ, r) ≡
∑
k∈Z

ψ(kr) exp (ikθ) =

√
2π

|r|
∑
k∈Z

ϕ

(
2πk + θ

r

)
≥ 0 ,

∀ (r, θ) ∈ ( ]−∞,∞[⊗ [0, 2π[ ) . (30)

As discussed in the preceding section, the positivity condition (30) happens
to be an equivalent formulation of the Fourier-positivity of the input func-
tion ψ(r). In the following, we show that this positivity condition can be
rephrased in terms of a specific application of the Bochner theorem [5].

In the present case, starting from Eq. (30), the problem5 may be formu-
lated as finding the conditions on the set of functions

ψ(kr) =
〈
e−ikθ

〉
F
≡ 1

2π

2π∫
0

e−ikθ F (θ, r) dθ , k = 0,±1,±2, . . . (32)

such that the function F (θ, r) be positive.
Let us recall6 a simple derivation of these conditions. Consider a real

positive polynomial P (z, z̄), with z being a complex variable, this polyno-
mial being obtained as the squared modulus of an arbitrary complex poly-

5 In the mathematics literature, one may refer to the problem of moments [9, 10], and
more specifically, in our case, to the trigonometric moment problem [9, 11, 12]. The
trigonometric moment problem can be expressed as follows: Find a bounded, positive
function F (θ) ≥ 0, θ ∈ [0, 2π] such that its trigonometric moments

µn ≡
1

2π

2π∫
0

einθF (θ) dθ , n = 0,±1,±2, . . . , µ−n = µn ∀n (31)

have a prescribed set of values.
6 We are here using the polynomial method due to Riesz [9, 10]. On a more general
footing, it comes from the application of a known theorem (see [10], Theorem 1.4): a
necessary and sufficient condition that the trigonometric moment problem (31) has
a generic (i.e. a solution whose spectrum is not reducible to a finite set of points)
solution is that all Toeplitz quadratic forms

k∑
j,l=0

µj−l cj c̄l > 0 , k = 0, 1, 2, . . . , ∀ complex vector ~c (33)

be positive. This means that the 2k × 2k matrices of moments {µj−l} are positive-
definite, i.e. with smallest eigenvalue positive.
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nomial Q(z),

P (z, z̄) ≡ |Q(z)|2 =

k∑
j,l

cj z
j z̄ l c̄l > 0 , ∀ complex vector ~c . (34)

Then, choosing z = e−iθ in Eq. (34) and integrating over F (θ, r) as in
Eq. (32), one finds

〈
P
(
e−iθ, eiθ

)〉
F

=
1

2π

2π∫
0

dθ
k∑
j,l

cj P
(
eiθ, e−iθ

)
c̄l F (θ, r)

=
k∑
j,l

cj ψ[(j − l)r] c̄l > 0 , ∀~c . (35)

Then, the Toeplitz matrix {Mjl} ≡ {ψ[(j− l)r]} associated to the quadratic
form (34) with arbitrary coefficients cj has to be positive-definite. More
explicitly, for even functions ψ, the Toeplitz matrix of the order of k,

ψ(0) ψ(r) ψ(2r) ... ψ[(k−1)r]
ψ(r) ψ(0) ... ... ψ[(k−2)r]
... ... ... ... ...

ψ[(k−1)r] ψ[(k−2)r] ... ψ(r) ψ(0)

 , (36)

is positive-definite, with an eigenvalue spectrum bounded from below by
zero7.

As an instructive example of conditions resulting from the positive-
definiteness of the matrices (36), let us consider the case of an even function
ψ(r) and its corresponding 3× 3 Toeplitz matrix ψ(0) ψ(r) ψ(2r)

ψ(r) ψ(0) ψ(r)
ψ(2r) ψ(r) ψ(0)

 . (37)

Positive-definiteness implies positivity of the matrix determinant and of its
minors along its diagonal. This gives the following set of inequalities

ψ(0) > ψ(r) , (38)

ψ(0) > ψ(2r) >
2ψ2(r)

ψ(0)
− ψ(0) , (39)

7 The property (36) appears to be as a necessary consequence to the Bochner the-
orem [5] applied to the function ψ(r) with a choice of points rj = j · r, j ∈
{1, . . . , k} ∀k ∈ N. Note that thanks to the r-dependence, the condition (36) on
the Toeplitz matrices ensures the positivity of the Fourier transform, as discussed in
the previous section.
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where the last inequality comes from the determinant of (37)

∆ = [ψ(0)− ψ(2r)]
[
ψ2(0)− 2ψ2(r) + ψ(2r)ψ(0)

]
> 0 . (40)

A practical method for positivity tests, coming from the straightforward
generalization to higher order matrices, will be used in the following sections.

4.2. The radial two-dimensional case

Following an approach similar to the one-dimensional case, we want to
relate the positivity (24) of the characteristic function to positive-definiteness
properties of sets of matrices generalizing (but, actually, not of Toeplitz
form) the matrices (36).

Let us start with the coefficients of the Fourier series,

ψ
(
r
√
m2 + n2

)
=

1

(2π)2

2π∫
0

2π∫
0

dα dβ e−i(mα+nβ) F (α, β; r) , (41)

recasting the characteristic function (24) with appropriate variables. For
this sake, in analogy with the one-dimensional case, we consider real pos-
itive polynomials built from two complex variables z, z′ and their complex
conjugates, namely

P
(
z, z′, z̄, z̄ ′

)
≡
∣∣Q (z, z′)∣∣2 =

∣∣∣∣∣∣
N∑
j,k

cj,kz
jz′k

∣∣∣∣∣∣
2

=
∑

j,k,j′,k′

cj,k z
jz′kz̄j

′
z̄ ′
k′
c̄j′,k′ > 0 . (42)

Choosing (z, z′) = (e−iα, e−iβ) and integrating (42) over F (α, β; r), one finds〈
P
(
e−iα, e−iβ, eiα, eiβ

)〉
F

=
1

(2π)2

∑
j,k,j′,k′

cj,k

2π∫
0

2π∫
0

dα dβ e−i(j−j
′)α−i(k−k′)β F (α, β; r) c̄j′,k′ (43)

=
∑

j,k,j′,k′

cj,k ψ
(
r
√

(j−j′)2 + (k−k′)2
)
c̄j′,k′ > 0 . (44)

Formula (44) implies the positive-definiteness of the tensorial form (44).
A positive-definite matrix form can be obtained by noting that the poly-
nomial Q(z, z′) in (42) can be expanded [13] over the basis of monomials
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ordered by their degree

1, z, z′, z2, zz′, z′2, z3, z2z′, zz′2, z′3, . . . (45)

The positivity condition (44) reads as a positive, quadratic8 form and
thus as the definite-positiveness of an ordered hierarchy of matrices whose
sizes depend on the chosen maximal orders of the corresponding polyno-
mial (42).

Let us illustrate this property by a low degree case, namely the positive
definiteness of the 3× 3 matrix ψ(0) ψ(r) ψ

(
r
√

2
)

ψ(r) ψ(0) ψ(r)

ψ
(
r
√

2
)

ψ(r) ψ(0)

 . (46)

Positive-definiteness implies positivity of the matrix determinant and of its
minors along its diagonal, hence,

ψ(0) > ψ(r) , (47)

ψ(0) > ψ
(
r
√

2
)
>

2ψ2(r)

ψ(0)
− ψ(0) , (48)

where the last inequality comes from the determinant of (46)

∆ =
[
ψ(0)− ψ

(
r
√

2
)] [

ψ
(
r
√

2
)
ψ(0)− 2ψ2(r) + ψ2(0)

]
> 0 . (49)

Comparing with the similar one-dimensional case (40), it is worth noting
that the diagona minors’ inequalities from the matrix minors are the same
as the one-dimensional ones (43), up to a rescaling of r. Such is not the case
for the last inequality of (48), coming from the determinant (49). Indeed,
differences obviously occur because the new matrices, starting with (46) and
beyond, are not any more of a Toeplitz type. Such differences will be the
common rule at higher orders.

The structure of the set of inequalities (47), (48) can be elucidated by
remarking that it stems from the application of the Bochner theorem to the
set of positions,

~xj = {0, 0}, {0, r}, {r, 0} , (50)

in a 2-dimensional square lattice. Indeed, using the 2-dimensional Bochner
theorem [5], one finds the related necessary condition of positive-definiteness
on the matrices (here a 3× 3 matrix) of 2-vectors

{Mj,l} ≡ {ψ ( ~xj − ~xl)} . (51)
8 It is interesting to note that polynomials of two variables are not necessarily sums of
squares but can always be expressed as a ratio of sum of squares [13]. Hence, it is
enough to ask for an arbitrary squared polynomial (42).
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It is easy to recognize the identity of (51) with the matrix (46). More-
over, typical minors’ inequalities correspond to the Bochner theorem for the
pairs of points ({0, 0}, {1, 0}) and ({0, 0}, {1, 1}), respectively. This explains
their relation with the one-dimensional properties. Putting together the
three points {0, 0}, {1, 0}, {1, 1}, which are not aligned, gives rise to the ma-
trix (46) which is not of Toeplitz form characteristic of the one-dimensional
problem.

The same arguments easily extend to higher orders. For instance, at the
next level, d = 2, one comes to a 6× 6 positive-definite matrix of 2-vectors
{ψ( ~xj − ~xl)} corresponding to the basis (45) with six 2-vectors

~xj = {0, 0}, {0, r}, {r, 0}, {0, 2r}, {r, r}, {2r, 0} . (52)

As in the one-dimensional case, the generalization to higher degrees is rela-
tively straightforward and will lead to a subsequent application to Fourier-
positivity in the radial two-dimensional case.

5. Applications to Fourier-positivity

As theoretically motivated and developed in the preceding sections,
Fourier-positivity of a real and even, positive function ψ(r) can be tried
and checked using in a finite set of rescalings of ψ, namely S ≡ {ψ(kr)},
k = 1, . . . ,K. In a first way that we call in short “Bochner method”, we make
use of the positive-definiteness of r-dependent matrices whose components
are given by S, as discussed in Section 4, see (36) for the one-dimensional
case and (51) for the radial two-dimensional case.

The second way to test Fourier-positivity using the tools of Section 4
makes a direct use of the characteristic functions stemming from the Pois-
son resummation formulas, see respectively (10) for one-dimensional cases
and (25) for the radial two-dimensional cases. The idea is to look for the
appropriate range of the variable r, see respectively (20) and (29), for which
the reconstruction of the characteristic functions from a finite set S satisfies
the selection of the Fourier transform ϕ(s) with sufficient accuracy to detect
possible violations of positivity in some range of s.

We shall test the capacity of the two different methods to thoroughly
check Fourier-positivity or its violation. For this sake, we introduce a large
testing set of real, even and positive functions ψ(r), Fourier-positive or not,
made of random combinations of a finite basis with well-known analytic
Fourier transforms. To be more precise, we are using, in the one-dimensional
case, the orthogonal basis of Hermite–Fourier functions, i.e. the quantum os-
cillator eigenstates which are eigenstates of the Fourier transform with eigen-
values 1 and−1. In the radial two-dimensional case, we opt for an orthogonal
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basis of Laguerre polynomials multiplied by a simple exponential; these, un-
der Fourier–Bessel transform, return combinations of rational functions fast
decreasing at infinity. The random nature of the chosen combinations allow
us to start with a large corpus of Fourier-positive and non-Fourier-positive
functions ψ, allowing us to test our methods with a good accuracy and for
quite different sets of Fourier partners.

5.1. Fourier-positivity in one dimension

Starting with a large set of real even test functions, we examine the
performance of the Fourier-positivity tests corresponding successively to the
“Bochner method” and the “Poisson method”.

5.1.1. A one-dimensional basis of Hermite–Fourier test functions

Consider the Hermite–Fourier functions

up(r) = π−
1
4 e−

1
2
r2Hp(r) . (53)

Here, we set Hp to be a square normalized Hermite polynomial, with a
positive coefficient for its highest power term. For the sake of clarity, we
list the first polynomials as, H0 = 1, H1 =

√
2 r, H2 = (2r2 − 1)/

√
2, H3 =

(2r3 − 3r)/
√

3, and their recursion relation,

ap+1Hp+1 = 2 r apHp − 2nap−1Hp−1 , (54)

where ap =
√

2pp!. It is known that the Fourier transform of such states
brings only a phase

1√
2π

∞∫
−∞

dr eisr up(r) = ip up(s) , (55)

and thus such states give generalized self-dual functions with phase ip. If one
expands ψ in the oscillator basis, ψ(r) =

∑N
p=0 cp up(r), with a truncation at

some degree N , then all odd order components c2p+1 must vanish if ϕ must
be real, and the even rest splits, under Fourier transform, into an invariant
part and a part with its sign reversed, namely,

ψ(r) =

[N/4]∑
p=0

c4p u4p(r) +

[N/4]∑
p=1

c4p−2 u4p−2(r) ,

ϕ(s) =

[N/4]∑
p=0

c4p u4p(s)−
[N/4]∑
p=1

c4p−2 u4p−2(s) , (56)
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where the usual symbol [N/4] means the integer part of N/4. This poly-
nomial parametrization makes it trivial to generate fully positive ψs, with
both cases of partners ϕs fully positive or ϕs showing both signs.

In our numerical illustration, we consider the basis with N = 8, i.e.
random combinations of the first five real eigenstates of the harmonic os-
cillator9 whose coefficients, {c0, c2, c4, c6, c8}, are random real numbers with
a normalization constraint, c20 + c22 + c24 + c26 + c28 = 1, and the condition
that ψ(r) > 0, ∀r. We retained a randomly generated set of 15456 positive
functions ψ(r) among which 4388 cases where ϕ is also always positive and
11068 cases where ϕ has a range of negative values.

5.1.2. One-dimensional Bochner method

For further discussions, let us denote ψpp(r), the “positive–positive” (re-
spectively “positive–negative” ψpn) test functions which lead to ϕ positive
(respectively not everywhere positive). Figure 1 shows a typical example in
each category.

Following the results of Section 4, all Toeplitz matrices (36) built from
ψpp(r) are positive-definite, for all dimensions and for all values of the pa-
rameter r. None of our numerical tests based on positive-definiteness with
our sample of 4388 functions ψpp(r) contradicted this fact.

According to the same properties, the lack of positive definiteness of the
Toeplitz matrix corresponding to the functions ψpn(r) will show off, sooner
or later, for some dimension and some range of r. The sign of the Toeplitz
determinant, however, may be misleading if an even number of negative
eigenvalues occurs10. It is safer to track the lowest eigenvalue of a high
enough dimensional matrix of the hierarchy (36).

9 Our explicit parametrization is

ψ(r) = π−
1
4 e−

1
2
r2
[
c0 + c2 2−

1
2
(
2r2 − 1

)
+ c4 6−

1
2
(
4r4 − 12r2 + 3

)
/2

+c6 5−
1
2
(
8r6 − 60r4 + 90r2 − 15

)
/12

+c8 70−
1
2
(
16r8 − 224r6 + 840r4 − 840r2 + 105

)
/24
]
, (57)

and with Fourier transform

ϕ(s) = π−
1
4 e−

1
2
s2
[
c0 − c2 2−

1
2
(
2s2 − 1

)
+ c4 6−

1
2
(
4s4 − 12s2 + 3

)
/2

−c6 5−
1
2
(
8s6 − 60s4 + 90s2 − 15

)
/12

+c8 70−
1
2
(
16s8 − 224s6 + 840s4 − 840s2 + 105

)
/24
]
. (58)

10 A way to evade this difficulty would be to increase the dimension by one, but this is
costing computation time.



From “Dirac Combs” to Fourier-positivity 1091

1 2 3 4 5
r ,s

0.2

0.4

0.6

0.8

1.0

Ψ,j

1 2 3 4 5
r ,s

0.2

0.4

0.6

0.8

1.0

Ψ,j

Fig. 1. Examples of “positive–positive” and “positive–negative” test functions. Left:
both ψpp (full line), with components, {.901, .276, .259, .006, .214}, and ϕ (dashed
line) are positive. Right: ψpn, with components, {.772, .304, .386, .171, .366}, re-
mains > 0 but ϕ takes both signs.

Figure 2 shows, for dimensions 5 and 10, how this lowest eigenvalue,
λ5, λ10, respectively, behaves when r varies when choosing the example func-
tions of Fig. 1. Obviously, λ10 ≤ λ5, since the 5-dimensional Toeplitz matrix
is embedded in any higher-dimensional matrix of the hierarchy (36). The
left part of Fig. 2 considers again the case described by the left part of Fig. 1.
As should be, no negativity is observed, and a confirmation is expected for
any matrix dimension. In turn, the right part of Fig. 2 describes the case
that was illustrated by the right part of Fig. 1. No detection occurs if the
Toeplitz matrix has only dimension 5, while dimension 10 provides a clear
detection.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
r
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0.4

0.5

Λ

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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0.1
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Λ

Fig. 2. Lowest eigenvalue λ as a function of the “grid” parameter r of the Toeplitz
matrices, see (36). Upper curves, matrix dimension 5. Lower curves, matrix di-
mension 10. Left: the ψpp case, as described by left part of Fig. 1. Right: the ψpn

case shown in right part of Fig. 1, non-positivity of ϕ undetected by dimension 5,
detected by dimension 10.
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Across our sample of 11068 cases, a proportion of ∼ 69% are detected
with Toeplitz matrices of dimension 5. With dimension 10, the success rate
reaches ∼ 86%. The deeper the negative parts of ϕ, the higher the detection
probability. However, the “Bochner method” may require for some “rebel”
functions a very high dimensionality, and then becomes uneasy. The “Poisson
method” will turn out to be easier and with almost full detection success.

5.1.3. One-dimensional Poisson method

Consider the parameter r as an integration grid parameter, ∆r, and also
the ratio, θ/∆r, as a pseudo-momentum, s. Using the renormalized defi-
nition of the characteristic function (10) and approximation (19) discussed
in Subsection 3.1, the range of ψ in our samples allows a truncation into a
finite sum, namely,

F (s,∆r) ' ∆r/
√

2π
K∑

n=−K
ψ(n∆r) exp[i(n∆r)s] , (59)

with K ' R/(∆r). Here, a range of R = 10 is enough to perform a correct
coverage of the characteristic function F (s,∆r). Note that we thus keep
K∆r ' R constant and look for an integration grid parameter ∆r not too
small, bounded from below, as discussed in Subsection 3.1.

Contour lines of the values of F , in terms of ∆r and s, are shown in
figure 3. Its left and right parts correspond to the “doubly positive” and
“partly negative” cases already used for the previous figures. As expected,
no contour for a negative value of F is found for the “doubly positive” case,
while “negative contours” occur for the case when ϕ is partly negative. Note,
for instance, the “negative” contour line where F = −0.028. A few big dots
have been plotted to reinforce the visual identification of such “negative”
contours.

Such a result, namely a good approximation to a brute force Fourier
transform, is expected when ∆r is small enough to ensure a good conver-
gence, F (s,∆r) → ϕ(s), but larger values of ∆r maintain the criterion:
negative values of F occur only for non-positive ϕs.

A comment is in thus order: It can be remarked from Fig. 3 that the
contour curves remain parallel to the abscissa axis for a rather large range
of ∆r. This, joined to the previous remark, can be explained by the fact
that the Fourier transform ϕ(s) can be quite well-reconstructed from ap-
proximation (59) independently from the value of ∆r or equivalently of the
summation number K. This is exemplified in figure 4 for the non-Fourier-
positive function of Fig. 1 (right). This is why negative values are reproduced
and the test for non-Fourier-positivity is successful.
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Fig. 3. Contour plots of the characteristic function F in terms of the discretization
parameter ∆r and the pseudo-momentum s ≡ θ/∆r. Left: Double positivity case,
already described by left part of Fig. 1. No contour line is found for negative values
of F . Right: The case already shown in right part of Fig. 1, non-positivity of ϕ
detected by contours for negative values of F .
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Fig. 4. Example of a “reconstruction” of a non-Fourier-positive test function. The
function ϕpn, depicted in the right part of Fig. 1 by a dashed line, is approximated
respectively with K = 12 (small dashes), K = 14 (large dashes) and K = 20 (full
line, indistinguishable from the true ϕpn).

We verified, for ∆r running between .1 and 1 and 0 < s < 8, that our
4388 “doubly positive” test cases did not generate any negative value of F .
In turn, we verified again, for ∆r running between .1 and 1 and 0 < s < 8,
that most partly negative ϕs are detected by negative contours. Typically,
for 11068 test cases, only 19 of them fail generating negative values of F
and thus escape detection. An inspection of such “rebel” cases gives a clear
explanation for the failure: the negative values of such ϕs are tiny.
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It can be concluded that F provides a very efficient test for the selection
of ψ without a detailed calculation of ϕ.

5.2. Fourier–Bessel-positivity
5.2.1. Basis of radial functions connected by Bessel transform

Using a similar method as in one dimension, we set a basis, for the
functions ψ, built from the exponential, e−

x
2 , multiplied by random lin-

ear combinations of nine Laguerre polynomials11. These are normalized,∫∞
0 xψ(x)2dx = 1, from the condition,

∑
i c

2
i = 1, for the random, real

number, mixture coefficients, ci, i = 0, . . . , 8. The same coefficients are also
selected so that ψ(x) be positive, ∀x ≥ 0. The partners in radial momen-
tum space, ϕ(p) =

∫∞
0 xJ0(px)ψ(x)dx, are obtained, with the same coeffi-

cients ci, from the corresponding basis of functions12, also normalized. It
is clear that ϕ(p) reads as a polynomial divided by a common denomina-
tor, (1 + 4p2)19/2. This makes it easy to sort out positive ϕs from those
which take both negative and positive values. We show in figure 5, a double
positivity case (left part) and a case with ϕ partly negative (right part).

Our test basis for double positivity contains 185 cases and that for situ-
ations where only ψ remains always positive contains 9894 cases.

5.2.2. Bochner method for radial functions

It must be kept in mind here that we are in a two-dimensional situ-
ation, namely that, given a point with coordinates {y, z}, the argument x
of ψ is x =

√
y2 + z2. Given a list of points {yi, zi}, i = 1, . . . ,K,

the matrix elements of the associated, Kth-order Bochner matrix read,
ψ
(√

(yi − yj)2 + (zi − zj)2
)
. Our numerical tests used a set of points ~ri the

coordinates of which, {yi, zi}, are random real numbers in a range, {−20, 20}.
11 The explicit form of the basis is: e−

x
2 ×{1, (−2+x)/

√
2, (6−6x+x2)/(2

√
3), (−24+

36x − 12x2 + x3)/12, (120 − 240x + 120x2 − 20x3 + x4)/(24
√

5), (−720 + 1800x −
1200x2 + 300x3− 30x4 +x5)/(120

√
6), (5040− 15120x+ 12600x2− 4200x3 + 630x4−

42x5 +x6)/(720
√

7), (−40320 + 141120x−141120x2 + 58800x3−11760x4 + 1176x5−
56x6 + x7)/(10080

√
2), (362880 − 1451520x + 1693440x2 − 846720x3 + 211680x4 −

28224x5 + 2016x6 − 72x7 + x8)/120960)}.
12 The basis in Fourier transformed space reads: {4/(1+4p2)3/2, (−4

√
2(−1+8p2))/(1+

4p2)5/2, (4
√

3(1− 24p2 + 48p4))/(1 + 4p2)7/2, (−8(−1 + 48p2 − 288p4 + 256p6))/(1 +

4p2)9/2, (4
√

5(1 − 80p2 + 960p4 − 2560p6 + 1280p8))/(1 + 4p2)11/2, (−4
√

6(−1 +

120p2 − 2400p4 + 12800p6 − 19200p8 + 6144p10))/(1 + 4p2)13/2, (4
√

7(1 − 168p2 +

5040p4 − 44800p6 + 134400p8 − 129024p10 + 28672p12))/(1 + 4p2)15/2, (−8
√

2(−1 +
224p2 − 9408p4 + 125440p6 − 627200p8 + 1204224p10 − 802816p12 + 131072p14))/(1 +

4p2)17/2, (12(1−288p2+16128p4−301056p6+2257920p8−7225344p10+9633792p12−
4718592p14 + 589824p16))/(1 + 4p2)19/2}.
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Fig. 5. Radial partners under Bessel transform. ψ (full lines) and ϕ (dashes).
Left: Fourier-positive case ψ = e−

x
2 (3.6096 − 6.7462x + 4.8826x2 − 1.6141x3 +

0.28086x4 − 0.027009x5 + 0.00145x6 − 0.000042169x7 + 5.63539 10−7x8). Right:
non-Fourier-positive case ψ = e−

x
2 (2.49362− 6.84573x+ 6.76697x2 − 3.04127x3 +

0.723816x4− 0.0959944x5 + 0.00705616x6− 0.000265057x7 + 3.93896 10−6x8). For
graphical reasons, the figure actually shows ϕ(p/7)/7.

A scale parameter, β, is then introduced to adjust such points to any range
{−20β, 20β}. Typically, we considered the first 20 points, {βyi, βzi}, with,
for instance β = .5, but we also used β = .1, β = .4, β = .8, β = 1. When
20 points gave too few detections, we used as many as 80 or even 100 points.

As expected, the Bochner matrices are found positive-definite when we
investigate the 185 “doubly positive” cases. In turn, our set of 9884 test
functions for partly negative ϕs returned a detection rate of ∼ 20% when
Bochner matrices of dimension 20 were used. The rate reached ∼ 40%
for matrices of dimension 80 and hardly increased if 100 points were used.
This modest detection rate with reasonable size matrices contrasts with the
good result obtained in the one-dimensional, Gaussian test function case.
Matrices of a much higher order are now needed, or a set of more efficient
points ~ri must be defined. But we tried several sets of points, different from
random ones, and failed to design a “maximum efficiency set of points”.

Figure 6 shows, for dimensions 20, 40, 60, 80 respectively, the evolution
of the lowest eigenvalue λ of a Bochner matrix as a a function of the scale
parameter β. Naturally, the matrix with dimension 20 being a submatrix
of that with dimension 40, the latter generates a lower bound. The same
reasoning applies when the dimension increases, hence the ordering of the
four shown curves. The left part of the figure describes a case where negative
values of λ are fast obtained. The right part describes a failure case (even
for dimension 100).
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Fig. 6. Evolution of the lowest eigenvalue of a Bochner matrix as a function of the
scaling parameter β for the random points which parametrize the matrix. From
top to bottom curve, dimension 20, 40, 60, 80. Left: the eigenvalue soon becomes
negative and detects a partly negative ϕ. Right: failure case, where a much larger
dimension would be needed for the detection.

5.2.3. Poisson method for radial functions

With the obvious symmetries at our disposal, the Poisson function in
this situation can be rewritten as

F (α, γ,∆r) = (∆r)2/(2π)
K∑
m=0

K∑
k=0

emenψ
(

∆r
√
m2+n2

)
cos(mα) cos(nγ) ,

(60)
where, em = 2 − δm0, and the same for en, account for edge effects. The
range R of ψ, typically R ' 40 for our test functions, provides a natural cut-
off, K ' R/∆r, for the {m,n} summations. The normalization coefficient,
(∆r)2/(2π), has been introduced to make F similar to a Fourier integral at
the limit, ∆r → 0.

A similar comment to the one-dimensional case is in order for the ra-
dial case. An approximate reconstruction of the Fourier transform function
appears to be allowed following formula (19).

Figure 7 shows that, for a finite value of ∆r, hence for finite summations
governed by the resulting K, negative values of F can be found, even for a
“rebel case” like that shown in the right part of Fig. 6. A search for negative
values of F under moderate values of ∆r returns a detection rate of ∼ 90%
through our set of 9884 functions. This is significantly better than the
result discussed in the previous subsection, where the practical tests based
on “Bochner method” appear to be only very slowly evolving with already
high matrix order.

Figure 7 calls for a comment. The plots appear to approximately satisfy
a radial symmetry in the two-dimensional (α, γ) plane, while the resumma-
tion formula (60) is not a priori symmetric. The reason is that it gives an
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Fig. 7. Contour plot of F (α, γ) when ∆r = .5. Left: the same case as the “success”
case shown in the left part of Fig. 6; contours for F = −.3, 3 are shown. Right:
the same case as the “failure” case shown in the right part of Fig. 6; but now, a
contour with a negative value, F = −.02, provides a detection.

approximate reconstruction of the radial function ϕ(s) as predicted by our
general argument of Section 2 for the radial 2-dimensional case. This re-
construction property with a finite number of terms in (60) is exemplified in
Fig. 8 with the non-Fourier-positive function depicted in Fig. 5. The negative
domain is detected already with K = 40 and reasonably fully reproduced
with K = 80.
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Fig. 8. Example of a “reconstruction” of a radial non-Fourier-positive test function.
The function ϕpn depicted in the right part of Fig. 5 by a dashed line is approxi-
mated respectively with K = 40 (large dashes, detecting one negative domain) and
with K = 80 (full line, detecting both negative domains).
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6. Summary and outlook

In any dimension d, there exists a set of real functions, partners under
Fourier transform, that are both positive. We have called them Fourier-
positive functions. If only for purely mathematical curiosity, the mapping
between these two convex, partner sets is of some interest. But this interest is
reinforced by the fact that, in theoretical physics, it happens that a “density”
in one space has a Fourier partner which is also a “density”. (By definition,
densities are positive observables.)

There is also an interesting “subproblem” that of the mapping between
subsets, for instance polynomials multiplied by Gaussians in both spaces,
or polynomials multiplied by simple exponentials in one space with rational
function partners. Such subsets are nested according to the order of the
considered polynomials. This hierarchy allows a useful set of successive
approximations.

In fact, a general, both necessary and sufficient, mathematical criterion
for ensuring Fourier-positivity seems not to be yet known. Indeed, examples
taken from physics show that Fourier-positivity is a non-trivial constraint on
density models [3], where small modifications may play a role. For a simple
illustration, compare a square well density, whose Fourier transform is the
Bessel function, with a Gaussian density, which, being invariant by Fourier
transform, is obviously Fourier positive.

Modern computers allow “fast Fourier transforms” which give an easy
answer to positivity properties in both partner spaces, but, obviously, a
pure numerical approach is not completely satisfactory. The present work
gives several mathematical, analytical arguments to complement our pre-
vious work [6], where it was shown that the topology of such interesting
“positive partner subsets” was highly non-trivial and moreover, where there
appeared an intuition that extremal elements in such convex sets are remi-
niscent of Dirac combs.

The proofs displayed in this work do take advantage of this intuition,
but indirectly. In substance, we use two kinds of criteria to test whether
a positive “object” ψ has a positive “image” ϕ, criteria that use values of
ψ only. (i) A positivy criterion for the characteristic Poisson function as-
sociated with ψ through a “Dirac comb” distribution turns out to be quite
efficient for both d = 1 and radial, d = 2 cases. (ii) A criterion taken from
Boechner’s theorem, namely the positivity of Toeplitz matrices and similar
matrices, turns out to be efficient for d = 1 cases, but disappointing for ra-
dial, d = 2 cases. In both cases, we took great care to validate our analytical
considerations by means of controlled, numerical tests, including statistical
evaluations.
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A third set of criteria [7] was, in fact, our initial approach. It consisted
in relating positivity of a function and convexity of analytical continuations
of related functions, to define bounds via the Jensen’s theorem, but we
failed in making this approach a convincing one, if only because analytical
continuation most often has to face severe singularities. It is not displayed
in the present work. We keep it on a back-burner.

On a deeper but difficult level, the question of a general criterion of
Fourier positivity and a classification of those functions still remains widely
open. We hope that the consideration of Dirac combs and Poisson resum-
mation proposed in our paper in this context may help to make some new
steps in that problem.

For a more immediate outlook, our priority will be to take advantage
of the hierarchy of mapped subspaces abovementioned and use it for actual
physical problems. Reliable error bars are essential in data analysis and we
want to use our criteria for both estimates of ψ and ϕ.

We want to thank Bertrand Eynard, Philippe Jaming, Jean-Pierre
Kahane and Cyrille Marquet for stimulating discussions.
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