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Linear statistics, a random variable built out of the sum of the evalua-
tion of functions at the eigenvalues of a N X N random matrix, Zjvzl f(z)

or tr f(M), is an ubiquitous statistical characteristics in random matrix the-
ory. Hermitian random matrix ensembles, under the eigenvalue—eigenvector
decompositions give rise to the joint probability density functions of N ran-

dom variables. We show that if f(-) is a polynomial of degree K, then the
variance of trf(M) is of the form of 3% n(d,)? and d,, is related to the

expansion coefficients ¢, of the polynomial f(z) = Zf:o cnPp(2), where
P, (z) are polynomials of degree n, orthogonal with respect to the weights

b—z)(z—a) (b—z)(z—a
Tie o V- o) —a), V020 (g o < <), %

(0 < a < x<b< 1), respectively.
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1. Introduction

In the application of the theory of random matrices, we often encounter
the random variable

Q= tI’f(M),

where f(M) is a real-valued function of the N x N random matrix M. For
example, in the single user multi-input—multi-output wireless communica-
tion systems, the distribution of the mutual information of multi-antenna
Gaussian channels, characterized by the Shannon capacity and the Gallager
random coding bound, f(M), is of the form of log det(I+ M/t), where t(> 0)
is proportional to N. See, for example, [1|. The variance of this particular
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linear statistics was computed in [1] and higher order cumulants determined
through a particular Painlevé function can be found in the same paper. For
the information theoretic quantity of the multi-user system, the appropriate
background weight, e=v(®) .= (1 —2), 0<xz<1, a>0,b>0,gives
rise to a Painlevé V [1]|. See the expression below, where v(x) appears. We
mention here that if f;(z) := xs(x), where J is an interval of RT or R, then
an application of the linear statistics formula |2] shows that the expectation
of Zl]il fs(x) is of the form of e~ 081/,

In this paper, quite unlike the situations described above, we suppose
f() to be a polynomial of degree K.

The space of matrices has the probability measure [3]

Prob(M)dM := exp[—trv(M)|dM = C](\é) H |z; — ap]? H e V@ dg; .
1<j<k<N 1<I<N

Here, {z; : 1 < j < N} are the eigenvalues, § = 1,2,4 are for matrices
with orthogonal, unitary and symplectic symmetries respectively, v(-) is the

(8)

potential and C};’ is the normalization constant. In this paper, we shall
only deal with the Hermitian case, 7.e. 8§ = 2. For the purpose of this paper,
we shall assume that v(x) is convex, and therefore v”(z) is positive on a set
of positive measure.

In the limit of large IV, the collection of eigenvalues can be approximated
as a continuous fluid with a density supported in a single interval (a,b). We
find the variance of @ is [2]

b
Y f(@) P/ vo-yly=a) (1.1)

27r2 (b—2x)(x —a)

where P represents the principal value integral.

In this paper, we will consider four kinds of weight functions, all sup-
ported on [a, b], and write f(-) as the linear combination of the corresponding
orthogonal polynomials, and obtain the relation between the variance and
the coefficients, ¢,. These weights are motivated by the equilibrium densities
of the Jacobi ensembles (with parameters a = 8 = 0), Gaussian ensembles,
Laguerre ensembles and the Jacobi ensembles (with general parameters),
respectively.

In paper [4], it was shown that if f(x) = ZnK:O enTn(x), and ¢, the
expansion coefficients of f(-) in terms of the Chebyshev polynomials of the
first kind, then an equivalent of (1.1) holds for a = —2,b = 2. Turning

the table around, we show that starting from f(x) = ZnK:O cn Py (), where
P, (x) are polynomials of degree n, orthogonal with respect to the weights
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vV (b—z)(z—a b—z)(z—a
m, \/(b—:n)(m—a), %,(0 <a<z< b), %,

(0 < a <z < b < 1), respectively, then the variance from (1.1) is the
quadratic form, 25:1 fo:l c¢menR(m,n), and when diagonalized becomes
Zf:l n(dn)?.

We would like to point out, the first two kinds of weights above cor-
respond to the translated Chebyshev polynomials of the first kind and the
second kind, respectively. The last two kinds of weights correspond to the
orthogonal polynomials which can be represented as the combination of the
translated Chebyshev polynomials. Moreover, the last two kinds of weights
play an important role in the information theory of MIMO systems, which
are just the eigenvalue densities of the single-user MIMO mutual information
and multiuser MIMO mutual information, respectively [1].

Now, we recall the Chebyshev polynomials, which are crucial for our
discussion throughout this paper. The Chebyshev polynomials of the first
kind are defined by the recurrence relation

To(x) =22 Th—1(x) — Th—o(x), n=23,...

with
To(z) =1, T\(z) ==z,

and satisfy the orthogonality condition

1 0, m#£n;
dz s

Tn(2)Th(2) ———= =1 =, m=n#0;
V1 — 22 2

-1 m, m=n=0~0.

Similarly, the Chebyshev polynomials of the second kind are defined by
the relation

Un(z) =22z Up—1(x) — Up—2(x), n=23,...

with
Uo(x) =1, Ui(z) = 2z,

and satisfy the orthogonality condition

! 0, m#n;
/Um(ﬂs)Un(x)\/l —22dx = { T
4 g M

More information on Chebyshev polynomials can be found in [5-10].
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Now, we introduce the translated Chebyshev polynomials. Let us define

~ 2 b+a
To(z) =T, <ba:— b—a> ,

—Qa

Un(w) :Un< 2 x_b+a> )

b—a b—a
then we have the relation

~ 2 b+a\ =~
To(x) =2 <b—ax_ b—a> Th-1(x) — Th—2(x), n=23,...

with the first two terms

~ ~ 2 b+a
T =1 = -
O(l’) ) 1('17) b_a b_a7
and
~ 2 b+a\ ~ ~
n :2 - n— - n— 5 :2, g e
Un(x) <b— 2 b—a) 1(z) = Up—2(x) n 3

with the first two terms
~ ~ 2 b+a
Up(z) =1, Ul(:c)—2<b_ax—b_a).

The orthogonality conditions can be written respectively as

b 0, m#n;
~ ~ dz s
Tr(z)T (x =< =, m=n#0;
[ Tt nta) L 4
a T, m=n=20,

and

2. On the variance of linear statistics

Now, we suppose f(z) is a polynomial of degree K and write it as the

~

linear combination of the translated Chebyshev polynomials T,,(x), i.e.,

K o~
f(z) = Z cnTn(x) .
n=0
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Since T (x) = nUp—1(x), n = 1,2,..., see [10] (page 995, 8.949(1)), we

find
2 i .
= nepUn—1(2)
b—a —

It follows from (1.1) that

b—a ,/b—x (x —a)
(2.1)
Let
a:—b_a7+b+a _b—at+b+a
~ 2 2 YT 9

then (2.1) becomes

K

1
1 S o emTml \/1—t2
V = 27r2/dT Vi chnP/ Up—1(t)dt

I A 1Tm(7)Tn(T
_%Zzncm%/l i ar

m=0n=1 L—7

o

K
> nlen), (2.2)

n=1

I

where we have used the formula [11]

1
\/1—t2
P/ ; _1(t)dt = 7 T, (1), —-l1<7<1, n=12,... (23)
T —
-1

in the first step.
Remark 1. The result (2.2) coincides with [4] for the special case a=—2,
b=2.

2.2. On the weight \/(b — x)(x — a)

Now, we consider another case and represent f(z) as the linear combi-
nation of the translated Chebyshev polynomials U, (), i.e.,

K
= Z cnﬁn(:r)
n=0
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Since U}, (2) = 725 [(n + 1)Up—1(x) — nz Un(z)],n = 1,2,.. ., see [10] (page
995, 8.949(6)), we obtain

b—a
- Z IL‘—(L)

n:l

|,_|
\_/
|
3
P
fwpl
RS
S
S oS
||+
ele
~_
S)
8
=

2
x[n+

It follows from (1.1) that

B b—a dx Uy, (z)
- ;Zf’“ ) Vo—a)—a)

XP/b (n+1)0 b) (b%y—bﬂ)ﬁn@)dy_ o

Let

then (2.4) becomes

K K 1 1
1 dr U, DVUp—1(t) — nt Uy(t
ZZCan/ T m(T)P/(n+ WUn-1(t) =t Un(t) .
2 m=0n=1 1 V1—712 1 Vl*tQ(Tit)
(2.5)
To proceed further, we need to calculate two integrals, the first being

and the second
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We see
1
P/ Up—1(t)dt /\/1—152 Un1(t) (1 P
VI—2(r—t) 2 T—t 1—t 1+t
~1
1 2 —t2U,_
1 P/\/l 2 U, 1(t)dt_ 1
201—72 T—t 1—7
“1
1 1
x/,/ Un—1(t)dt + / e (nt
w1 e
-1
™ Tn(7) m (=D)"m
_ B _ 2.6
-2 20-7 20+7)’ (2:6)
where we have used (2.3) and
1
/\/ Up—1(t)dt = 7, n=12,..., (2.7)
~1
1
/,/ U (t)dt = (-1)" 7,  n=12,... (2.8)
-1
Next, we compute
t U, (t)dt
: V1—t3(1 —1t)
1 1
_TP/ Unl(t /Un(t)dt
VI=2r-n ) VI-P
_ T Thu(r) (=)' ’ (2.9)
1—172 20—-7) 2(147)
where use has been made of (2.6) and
1
R(t)dt 1 -1"
Un(?) D o (2.10)

1\/1—t2: 2

Remark 2. The above integrals involving U, (t), (2.7), (2.8) and (2.10),
can be easily obtained with the substituting ¢t = cosf, 0 < 0 < 7.
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It follows from (2.6) and (2.9) that

1
(n+ 1)Uy 1(t) —ntUy(t) ,, 7
rf Vi—Per—ty  Tiop

y {(n DT (r) — i Ty (r) — b7 (D= 7)

2 2

Hence, by (2.5),

m=1n=1

where
1

R(m’n)ZQ/Um(m
LEATRESE
X [(n + V)T (1) — nt Thyr (1) — ! ;LT — (1)”51 —7) dr
(0, m=2,4,6,..., n=135...;
n? +2n, m=24,6,..., n=24,...,m;
m2+2m, m=2,4,6,..., n=m+2,m+4,...;

“ o, m=1,3,5..., n=246,...:

(n+1)2, m=1,3,5,..., n=13,...,m;
(m+1)%, m=1,35,..., n=m+2,m+4,...

Note that R(m,n) is symmetric in m and n. To bring the above quadratic
form to a diagonal form, we use the rotation

c1 1 0 -1 0 0 0 0 dy

c2 01 0 -1 0 0 0 da

c3 0 0 1 0 0 0 0 ds

cy4 0 0 O 1 0 0 O dy
CK—2 0 0 1 0 -1 dK_Q
CK—1 0 0 0 1 dK—l

CK 0 0 O 0 0 0 1 dg

and obtain
K
V=> n(d,)’
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2.8. On the weight W
Now, we consider the weight function
b— _
w(z) = : 2 a)’ O<a<xz<hb.
T
Let
_b-a n b+a Lo
v = 2 T 9 ’ T s

then we have

Vv1—72

i) ==
where .
Mﬂ:T+ij>0. (2.11)

We introduce here a theorem of Szegd [5], which is essential to construct the
orthogonal polynomials we need in this and the next sections.

Theorem 2.1 Let p(7) be a polynomial of degree | and positive in [—1,1].
Let p(cos@) = |h(e)|?, where h(z) is a polynomial of degree | with real
coefficients, and h(z) # 0 in |z| < 1, h(0) > 0. Writing h(e?) = ¢(0)+is(0),
c(0) and s(0) real, we have the orthonormal polynomials with respect to the

weight function ¥ ;(;;2

]2 sin(n + 1)6 cos(n +1)6 l
Pn(COSQ)— ; |:c(9)su’10_8(6)51n€ y n > 5_1
From (2.11),
b+a
) = cos b .

p(cos ) = cosf + T

Let us write p(cosf) in the following form
N |12

p(cos ) = ‘h (ew)‘ ,

where 4 '
h@ﬂ:Aﬁ+B (2.12)

such that h(z) # 0 in |2| < 1, A is real and B > 0.
With the above equalities, we have the equation
, —_— b
(Aew + B) (Ae? + B) = cosf + b+a ,

—a
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which is equivalent to equations

2AB =1,
A2y g2 btte
b—a

A simple computation shows that

A:M

V2(0b—a)’
B_ Vb + \/a
2(b—a)

It follows from (2.12) that

where

c(0) = Acosf+ B,
s(f) = Asinf.

According to Theorem 2.1, we obtain the orthonormal polynomials with

respect to the weight function ;(7;;2

Pn(cose):\/i [(ACOSG+B)W—|_01)0—ACOS(TL+1)9] , n=0,1,2,...
T sin

Substituting 7 for cos 6, we have

Pu(r) = \/Z (AT + B)Un(7) = AT 41(7)]

(Vo= va) 7+ Vb4 va| Un(r) = (Vo= Va) Tusa(r)
m(b—a) .

It is easy to see that

(n+1) (Vo= v/a) 7+ Vb+va| Up-1(7)=n|(Vb+va) 7+vb—/a] Un(7)

Falr)= b —a)(l—72)
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Let

=)

b—aw b—a

w(z) = /m(b—a)P, <

2 (2 + Vab .
- sgiﬁ) Oa(@) = (Vb= va) T (@),

2 b+a>

then we have the orthogonality condition

b
/ﬁm(w)ﬁn(w) (b—2z)(x—a) dp — (b — a)25

since

1137

Now, let f(x) be the linear combination of the orthogonal polynomials

P, (z), i.e.,
K —~
flz) = chpn(l“) )
n=0
then we find

K N 2/ K 2 b+ a
fl(x) =) enPr(z) = faZCnPé (b_ax_bira)

n=1 n=1

Let

b—a +b—|—a _b—a +b—i—a
2 Ty YT 9
then it follows from (1.1) that

xr =

1 X 1 K
Y = b-a dr Lom=0 Cum(T)P/ Lot Z e, Pl (t)dt
27 V1= 72

1 1 n=1

—a) PanT
YU ZZCan Pu(Dgn(r)

m=0n=1
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where

gn(T) 1 = P/\/l—it;(T—t){(ndl—l) K\/B—\/a)t—l—\[b—l-\/a] Un—1(t)
%1

—n [(\/5+ \/5) t+vb— \/&] Un(t)}dt
Using (2.6) and (2.9), we readily obtain
gn(T) = 1_7T7_2{(n +1) [(x/B— \/5) T+ Vb+ \/5} T, (7)
(VB + va) 7+ VB - va] Tupa(n
VB4 ) - (1)L =)
It follows that

K K
=3 2. > emeaR(m

m=1n=1

l\')\»—l

where if m = 2,4,6,...,

2
r(b—l—a)nz+(\/E—F\/@ n, n=24,...,m;
2
R(m,n) = (b—l—a)mQ—l—(\/B—i—\/ﬁ) m, n=m-+2m+4,...;
(b—a)(n2+n), n=13,....,m—1;
\(b—a)(mQ—i—m), n=m-+1m+3,...,
ifm=1,35,...,
(b—a)(n2+n), n=24,....,m-—1;
(bfa)(m2+m), n=m+1,m+3,...;
R(m,n) = (b+ a)n? —}—(\[—}—f) n+2vab, n=13,...,m;
(b+a)m2+<\/l;+\/a) m+2vVab, n=m+2,m+4,...

Note that R(m,n) is symmetric in m and n. Let
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then we obtain

n(d

b
M=

n=1

2.4. On the weight \/m

Now, we consider another weight functlon

(b—2)(z —a)
= b<1.
w(z) w1 - 1) , 0<a<z<b<
et b b+
—a a
= -1 1
T 5 5 <7r<1,
then we have
V1—r712
’LU(:L’): )
n(r)
where
a—>b , (a+b)(a+b—2)
— 1_q—
n(T) 5T +(1—a—-bT+ 2a—0) >0,

and hence we have

n(cosf) = — b cos® 0 4 (1 —a — b) cos 6§ + (atblatb=2) . (2.13)
2(a —b)
Write n(cos ) in the form
N2
1(cos ) = ’h (ew)‘ , (2.14)
where 4 ‘ ‘
h <€19> = Ae? 4 Be + C, (2.15)

such that h(z) #0in |z| < 1, A and B are real and C' > 0.
From (2.13), (2.14) and (2.15), we have the equation

(a+b)(a+b—2)

COs 0—'— l—(l—U ()S@—|—
( )C 2( l) I

(Aem+Be"9+0) (A% 4 B +0) =

which is equivalent to the equations

a—2b
4AC = 5

204+C)B=1—-a—0,
(a+b)(a+b—2)
2(a—0) '

(A-C0)*+B*=
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An elaborate computation shows that

(Vo-va) (WVT=b-vi=a)
21/2(b — a) ’
B \/b(l—b)—\/a(l—a)’
2(b—a)
(Vo+ va) (WT=b+vT=a)
{ 2/2(b—a)

Write h(e?) in the form

h (eie) =c(0) +is(0),
where

c(f) = Acos26+ Bcosb+ C,
s(f) = Asin20 + Bsinf.

According to Theorem 2.1, we obtain the orthonormal polynomials with

\/ﬁ

respect to the weight function R i.e.,
Py (cos0) 2 (e)sin(n +1)6 ) cos(n + 1)0 _ 19
" AT sin @ s sin 0 ’ s

Substituting 7 for cos 6, we have

Po(7) = \/z [(2A72 + BT + C — A) Uy (1) — (2A7 + B)Ty14(7))

_ \/Z [AUp—2(7) + BUyp_1(7) + C Uy (7)]

M%{ (Vo va) (VI vVI=a)Upoa(r)

2 [ VBT =b) = Va(l= )| Ups(7)
+ (VB va) (VBT )
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It follows that

Pl(r) = ! { (Vo-va) (Vi=b-vi-a)

x[(n 1) a(r) = (n— 2)7Un,2(7)}
+2

(
(

[\/b 1-0) —a(l - ] [nUn_Q(T) —(n- 1)TUn—1(T)}
+ (VB va) (VIS5 VI=a) [0+ )00a() ~ nr0)] |-
Let
Pu(z): = 2y/x(b— aP( 2 b+a>

:(\fb—f)(ﬁ—m)ﬁ ()
+2[\/b1 b) — a(l — a}/\n ()
+<x/5+f)(ﬁ+m> Un(z), n=01,2,...,

then we have the orthogonality condition

b

/ﬁm(x)ﬁn(x) C=2)@ =) 40— on(h— )26,

z(1—1z)
m=0,1,2,..., n=12,...,
since )
q/1_ 2
/ Py (1) P (7) T4 =
n(r)

-1

Let f(x) be the linear combination of the orthogonal polynomials P, (),
i.e.,

K
fla) = chﬁn@)
n=0
then we have
/ = D/ 4ﬁ = / 2 b+a
J@) =D enbilw) = 7= P <b a b—a)
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Let b b+ b b+
—Qa a —a a

= = t
TE TRy, VE b

then it follows from (1.1) that

2(b — a/ Zm ocm m( /Wicnp’(t)dt

where

w0 = | g (- )
X (\/ﬂ ~Vi-a [(n — D) Up_3(t) — (n — z)tUn,g(t)}
+2 [\/b(l "0 - Vall—a ] [nUn_g(t) (- 1)tUn_1(t)}
n (\/B+ \F) (F+ m) [<n+1) i) — ntUn(t)}}dt.

Using (2.6) and (2.9), a simple computation shows that

nr) = 7 (Vi va)

1 —_
X (m — m> [(n — 1T o(1) — (n — 2)7Tn—1(7)}

+2 [ /B = 8) ~ Va1 — )] [nTaa(r) ~ (0= )rTa(r)]
+ (vt va) (V=4 VI=a) [(n+ VTa(r) — 07Ty (7))
—2y/b(1=b)(147) —2(-1)"Va(l —a)(1 — T)} .

It follows that

K K
V= Z Z cmenR(m,n) ,

where if m = 2,4,6,...,
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T—witetr=u T+§|§|@\,|3|c€|:\; (m—q
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Note that R(m,n) is symmetric in m and n, so we can also write V in
the form of the sum of the square of new variables theoretically, but since
the transformation is very complicated, we will only give an example here,
for K = 5. Let

c1 a B v & ¢\ [d
ca2 0 a B v ¢ da
cs3|l=10 0 « B Y d3 )
ca 00 0 a 8| |d
cs 0 0 0 0 o \ds
where
o 1
(Va+ Vo) (VIi—a+vi=b)
. 2 [@(1 —a) — /b1 — b)}
(va+ Vi) (V=a+vi=p)*
4 [\/a(l —a) — /b1 — b)]2 2 [\/a(l —a)+ /b1 — b)]
- _

(Va+vh) (Vi—a+vi—b)* (va+vh) (VIi—a+vi—b)"
8 [Va(l—a) - /oI —b)]3 Ma—b)1—a—b)

T Var ) (T vTh) (vatvE) (TarvioD)
+2 [\/a(l—a) . \/b(l—b)] (\f—\/B)2
(va+vh) (Vi—a+vi—b)'
1 [\/a(lfa)f\/b(lfb)r 2 (va—v8) [Vall—a) - o1 —8)]°

C (VarvB) (VImasvizh)® (Va+vh) (vVITasvish)
4] Va(l—a) /61— )] 2[Vali= o+ a5 (vVa- vb)’
(va+vb) VT—atvi—b)'  (va+vh) (Vi—a+vi—h)'

then we obtain
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3. Conclusion

We have taken the four weights all supported on [a, b] to be the equilib-
rium eigenvalue densities of the Unitary Jacobi ensembles (parameter free),
Gaussian ensembles, Laguerre ensembles and the Jacobi ensembles (general
parameter). These are obtained by solving a singular integral equation which
arise from the original random matrix models, together with the eigenvalue
densities are supported on a single interval; also known as the one-cut solu-
tion. This is due to the convexity property of the underlying v(z). It will be
interesting to study the situation where the original weight is supported on a
union of disjoint interval, for example, in the case of Generalized Chebyshev
polynomials considered in [12, 13]. We defer this in a future investigation.

We would like to thank the Science and Technology Development Fund
of the Macau S.A.R. for generous support: FDCT 077/2012/A3, FDCT
130/2014/A3. We also thank the University of Macau for generous support:
MYRG 2014-00011 FST, MYRG 2014-00004 FST.

REFERENCES

[1] Y. Chen, M.R. Mckay, IEEE Trans. Inform. Theory 58, 4594 (2012).
[2] Y. Chen, N. Lawrence, J. Phys. A: Math. Gen. 31, 1141 (1998).

[3] M.L. Mehta, Random Matrices: Third Edition, Elsevier (Singapore) Pte
Ltd., Singapore 2006.

[4] T. Cabanal-Duvillard, Ann. Inst. H. Poincare Probab. Stat. 37, 373 (2001).

[5] G. Szegd, Orthogonal Polynomials: Fourth Edition, American Mathematical
Society, Providence, RI, 1975.

[6] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University
Press, Cambridge 1999.

[7] Z.X. Wang, D.R. Guo, Special Functions, World Scientific, Singapore 1989.

[8] N.N. Lebedev, Special Functions and Their Applications, Dover Publications,
INC., New York 1972.

[9] T.S. Chihara, An Introduction to Orthogonal Polynomials, Dover
Publications, INC., New York 1978.

[10] 1.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products:
Seventh Edition, Elsevier (Singapore) Pte Ltd., Singapore 2007.

[11] K. Johansson, Duke Math. J. 91, 151 (1998).
[12] Y. Chen, N. Lawrence, J. Phys. A: Math. Gen. 35, 4651 (2002).
[13] Y. Chen, J. Griffin, M. Ismail, Trans. Amer. Math. Soc. 359, 4787 (2007).


http://dx.doi.org/10.1109/TIT.2012.2195154
http://dx.doi.org/10.1088/0305-4470/31/4/005
http://dx.doi.org/10.1016/S0246-0203(00)01071-2
http://dx.doi.org/10.1215/S0012-7094-98-09108-6
http://dx.doi.org/10.1088/0305-4470/35/22/302
http://dx.doi.org/10.1090/S0002-9947-07-04022-6

	1 Introduction
	2 On the variance of linear statistics
	2.1 On the weight ...
	2.2 On the weight ...
	2.3 On the weight ...
	2.4 On the weight ...

	3 Conclusion

