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We derive a generalization of the virial theorem in terms of the canoni-
cally conjugate pair of variables. Then, we apply it to the Salpeter equation
and to the reductions of the Salpeter equation. It is shown that the linear
mass form and the quadratic mass form of the reductions of the Salpeter
equation will be the same in the nonrelativistic limit but different in the
ultrarelativistic limit. Therefore, different reductions are appropriate for
different bound systems.
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1. Introduction

The well-known virial theorem provides us with a very useful tool in
studying nonrelativistic quantum-mechanical systems, which relates the ki-
netic energy of a system to the expectation value of the directional derivative
of potential and can allow us to calculate the kinetic energy in complex situ-
ations. Many versions of the virial theorem with different forms for both the
nonrelativistic and the relativistic systems have come forth [1–15]. In this
paper, one generalized virial theorem which comprises some versions of the
virial theorem as special cases is presented and then applied to the Salpeter
equation and its reductions.

The Bethe–Salpeter equation [16] is the appropriate tool to deal with
bound-state problems within the framework of relativistic quantum field
theory. However, the Salpeter equation [17], one of the three-dimensional
reductions of the Bethe–Salpeter equation, is frequently used in practice
due to various practical reasons. Different from the linear mass term in
the Salpeter equation, there exists the quadratic mass operator form of the
reduction of the Bethe–Salpeter equation [18–20]. The reductions of the
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Salpeter equation also have both linear and quadratic mass form. The for-
mer is the familiar spinless Salpeter equation [21], and the latter is the
quadratic mass operator equation. In this paper, we apply the generalized
virial theorem not only to the Salpeter equation but also to the two kinds
of reductions of the Salpeter equation, and show that these two kinds of
reductions are the same in the nonrelativistic limit but different in the ul-
trarelativistic limit.

This paper is organized as follows. In Sec. 2, we derive a general form
of the virial theorem, which comprises some versions of the virial theorem
as special cases. Then, we apply the obtained generalized virial theorem to
the Salpeter equation and the reductions of the Salpeter equation in Sec. 3.
The conclusion is in Sec. 4.

2. Generalized virial theorem

Consider a nonrelativistic or relativistic wave equation of the form

F (q, p, E)|ψ(q)〉 = 0 , (1)

where q and p are the generalized coordinates and the canonically conjugate
momenta, respectively. They satisfy the commutation relation (in natural
units ~ = c = 1)

[q, p] = qp− pq = i . (2)

E is the energy of the system, and |ψ(q)〉 is the normalized eigenfunction.
In many cases, the Hamiltonian H is shown explicitly in the function F ,
whereas sometimesH has no explicit form, for example, in the Klein–Gordon
equation case. Generally speaking, |ψ(q)〉 can be the normalized eigenfunc-
tion of any operator G with the eigenvalue g. Let us assume there is a scale
transformation of the variables by some arbitrary scale factor λ,

q = λq′, p =
p′

λ
. (3)

Equation (3) is also a simple canonical transformation of the canonically
conjugate pair of variables which preserves the Dirac bracket[

q′, p′
]
= i . (4)

Equation (4) assures that the transformed system is also a quantum system
related to the system described by Eq. (1). Substituting Eq. (3) into Eq. (1),
then differentiating it with respect to λ, and noticing that ∂E/∂λ = 0
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because E is independent of q and p, which is true whether the considered
theory is dilatation invariant or not, we obtain〈

∂q

∂λ

∂F

∂q
+
∂p

∂λ

∂F

∂p

〉
+

〈
ψ

∣∣∣∣F ∣∣∣∣∂ψ∂λ
〉
+

〈
∂ψ

∂λ

∣∣∣∣F ∣∣∣∣ψ〉 = 0 , (5)

where 〈· · · 〉 denotes the expectation value which is understood to be taken
with respect to the normalized eigenstates. Using Eqs. (1), (3) and (5), we
have the generalized virial theorem〈

q
∂F

∂q

〉
=

〈
p
∂F

∂p

〉
−
〈
ψ

∣∣∣∣F ∣∣∣∣q∂ψ∂q
〉
. (6)

Let us assume that the operator function F is defined over a domain D(F ).
ψ necessarily belongs to D(F ). If q(∂ψ/∂q) also belongs to D(F ), that is,
if the operator function F has the property [1–3] that〈

ψ

∣∣∣∣F ∣∣∣∣q∂ψ∂q
〉

=

〈
Fψ

∣∣∣∣q∂ψ∂q
〉

= 0 , (7)

we can immediately obtain from Eq. (6)〈
q
∂F

∂q

〉
=

〈
p
∂F

∂p

〉
. (8)

Equation (6) is the general form of the generalized virial theorem, while
Eq. (8) is the special form. The second term on the right-hand side in
Eq. (6) is an additional contribution to Eq. (8) due to q(∂ψ/∂q) /∈ D(F ).

The generalized virial theorems (6) and (8) are expected to be more
general than many versions of the virial theorem. The generalized virial
theorem can be applicable not only to the nonrelativistic case [4] but also
to the relativistic case [1, 5–11], and not only to F with explicit form of the
Hamiltonian H as variable [1, 4–9] but also to F with implicit form of H
[10, 11]. To our knowledge, there is not any study on it in the literature,
although it is inspired from and related to ideas in papers by Lichtenberg [1]
and by Papp [10].

If q is chosen as the radial coordinate r, Eq. (8) becomes〈
r
∂F

∂r

〉
=

〈
pr
∂F

∂pr

〉
, (9)

where pr = −i (∂/∂r + 1/r). As expressed in coordinates x and momenta p,
Eq. (8) becomes 〈

x · ∂F
∂x

〉
=

〈
p · ∂F

∂p

〉
, (10)
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which is obtained in Ref. [12] by means of the generalized Feynman–Hellmann
theorem [1]. Using Eqs. (6), (7) and (8), it is found that Eq. (10) also holds
in one or two directions 〈

xi
∂F

∂xi

〉
=

〈
pi
∂F

∂pi

〉
,〈

xi
∂F

∂xi
+ xj

∂F

∂xj

〉
=

〈
pi
∂F

∂pi
+ pj

∂F

∂pj

〉
,

xi, xj = x, y, z, pi, pj = px, py, pz . (11)

Equations (9) and (11) are not obvious or cannot be obtained by applying
the approach adopted in Ref. [12], while they are the direct results of Eq. (8)
in this paper although Eq. (10) can be derived both in Ref. [12] and in this
paper.

In the nonrelativistic case, F will be of the form of

F = H − ε = p2

2µ
+ V − ε , (12)

where ε is the binding energy and µ is the reduced mass. Employing Eq. (10)
reproduces the well-known virial theorem

〈T 〉 =
〈
p2

2µ

〉
=

1

2
〈x · ∇∇∇V 〉 . (13)

Then, from Eqs. (12) and (13), it is found that

ε = 〈T 〉+ 〈V 〉 = 1

2
〈x · ∇∇∇V 〉+ 〈V 〉 . (14)

The particular forms of the virial theorem for the spinless Salpeter equa-
tion, the Dirac equation and the Klein–Gordon equation can be obtained by
employing Eq. (10), which are consistent with Refs. [1, 6–12].

3. Application of the generalized virial theorem

Now, we apply the generalized virial theorem to the Salpeter equation.
For simplicity, we consider the Salpeter equation [17, 22] for the bound states
composed of two scalar constituents assumed to interact through a massless
scalar field which has an especially simple form. In the center-of-momentum
frame of the bound state, the Salpeter equation reads [17, 22, 23][

M2 − (ω1 + ω2)
2
]
Ψ(p) =

ω1 + ω2

2ω1ω2
η(p) , (15)
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where M is the bound-state mass, ωi =
√

p2 +m2
i ,

η(p) =

∫
d3p′

(2π)3
V (p,p′)Ψ(p′) . (16)

Taking a Fourier transformation, the Salpeter equation (15) can be writ-
ten as [

M2 − (ω1 + ω2)
2 − V

]
ψ(x) = 0 , (17)

where ψ(x) is the Fourier transform of Ψ(p), ωi is the nonlocal operator√
−∇∇∇2 +m2

i obtained as the formal Fourier transform of ωi, and V(x) is
the Fourier transform of (ω1 + ω2)/(2ω1ω2)V (p,p′), which is taken as an
effective potential [23, 24]. In this case, function F takes the form

F = (ω1 + ω2)
2 + V −M2 . (18)

Applying Eq. (10) to (18), we obtain

〈x · ∇∇∇V〉 =
〈
(ω1 + ω2)

2

ω1ω2
2
(
−∇∇∇2

)〉
. (19)

This is the virial theorem for the Salpeter equation for the bound state with
two scalar constituents. In the nonrelativistic case, Eq. (19) reduces to

〈x · ∇∇∇V〉 =
〈
(m1 +m2)

2

m1m2
2
(
−∇∇∇2

)〉
. (20)

In the nonrelativistic limit, the factor (ω1 + ω2)/(2ω1ω2) in V reduces to
(m1 +m2)/(2m1m2). The denominator 2m1m2 is part of the coupling con-
stant λ = g1g2 /(4m1m2). m1m2/(m1+m2) in Eq. (20) is the reduced mass.
Therefore, Eq. (20) is, in fact, the nonrelativistic virial theorem.

It is straightforward to obtain the mass of the bound state from Eq. (18)

M2 =
〈
(ω1 + ω2)

2
〉
+ 〈V〉 . (21)

In the nonrelativistic limit, Eq. (21) reduces to

M2 = (m1 +m2)
2 +

(m1 +m2)
2

m1m2

〈
p2
〉
+ 〈V〉 . (22)

Letting M = m1 + m2 + ε, where ε is the binding energy, neglecting the
higher order term ε2, we obtain from Eq. (22)

ε = 1
2

〈
x · ∇∇∇V ′

〉
+ 〈V ′〉 , (23)
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where V ′ = V/ [2(m1 +m2)]. From the definitions of V and V ′, one can find
easily that Eq. (23) gives the binding energy of the nonrelativistic binding
system, see Eq. (14).

In the following part, we use the generalized virial theorem to discuss
the semirelativistic reduction of the Salpeter equation and take the fermion–
antifermion system as an example. In the center-of-momentum frame of the
bound state, the Salpeter equation for a fermion–antifermion system reads
[17, 22, 23]

Ψ(p) =
Λ+
1 (p)γ

0η(p)γ0Λ−2 (−p)
M − ω1 − ω2

− Λ−1 (p)γ
0η(p)γ0Λ+

2 (−p)
M + ω1 + ω2

, (24)

where

η(p) =

∫
d3p′

(2π)3
V (p,p′)ψ(p′) . (25)

The generalized virial theorem can be applied easily to the Salpeter equation
for the fermion–antifermion system if Eq. (24) is rewritten in another form,
see Eqs. (10)–(93) in Ref. [22], and we will not give it in this paper.

Assuming that

M − ω1 − ω2 �M + ω1 + ω2 (26)

holds [21], which may be justified for semirelativistic and weakly-bound
heavy constituents, we argue that by neglecting the small term and then
neglecting all the spin degrees of freedom of constituents, one can obtain
two (semi-)relativistic equations. One is the spinless Salpeter equation [21]
which is familiar to us

(M − ω1 − ω2 − V1)ψ(x) = 0 , (27)

where V1 arises as the Fourier transform of V (p,p′). Another form of the
reduction of the Salpeter equation (24) reads[

M2 − (ω1 + ω2)
2 − V2

]
ψ(x) = 0 , (28)

where V2 = 2(m1 + m2)V1 in the nonrelativistic limit. Equation (28) is a
quadratic mass operator equation just like Eq. (17), which was also obtained
in Ref. [19] from the first principle.

In the case of Eq. (27), function F reads

F = ω1 + ω2 + V1 −M . (29)
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Applying Eq. (10) to (29), we obtain

〈x · ∇∇∇V1〉 =
〈
ω1 + ω2

ω1ω2

(
−∇∇∇2

)〉
, (30)

which is derived in Ref. [9] by means of the dilatation operator method. In
the nonrelativistic case, the virial theorem (30) reduces to the familiar form

〈x · ∇∇∇V1〉 =
〈
m1 +m2

m1m2

(
−∇∇∇2

)〉
. (31)

It is straightforward to obtain from Eq. (29) the mass of the bound state

M = 〈ω1 + ω2〉+ 〈V1〉 . (32)

In the nonrelativistic case, Eq. (32) becomes

M = m1 +m2 +
1
2 〈x · ∇∇∇V1〉+ 〈V1〉 . (33)

Letting M = m1 +m2 + ε, where ε is the binding energy, we have

ε = 1
2 〈x · ∇∇∇V1〉+ 〈V1〉 . (34)

Similarly, we have for Eq. (28)

〈x · ∇∇∇V2〉 =

〈
(ω1 + ω2)

2

ω1ω2
2
(
−∇∇∇2

)〉
, (35)

M2 =
〈
(ω1 + ω2)

2
〉
+ 〈V2〉 . (36)

In the nonrelativistic limit, Eqs. (35) and (36) reduce to

〈x · ∇∇∇V2〉 =

〈
(m1 +m2)

2

m1m2
2
(
−∇∇∇2

)〉
, (37)

ε = 1
2

〈
x · ∇∇∇V ′2

〉
+
〈
V ′2
〉
, (38)

where V ′2 = V2/ [2(m1 +m2)] .
Equations (31), (34), (37), (38) and the definitions of V1 and V2 suggest

that Eqs. (27) and (28) are equivalent in the nonrelativistic limit. From the
derivations of Eq. (27), it is clear and evident that Eq. (27) is a semirela-
tivistic equation, although in Refs. [9, 21], Eq. (27) is applied not only to
the nonrelativistic case but also to the relativistic case, even to the ultra-
relativistic case. To discriminate between these two equations, we discuss
them in the ultrarelativistic limit. In the ultrarelativistic case |p| � m1,m2,
using Eq. (30), Eq. (32) reduces to

M = 〈x · ∇∇∇V1〉+ 〈V1〉 , (39)
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and using Eq. (35), Eq. (36) reduces to

M2 = 1
2 〈x · ∇∇∇V2〉+ 〈V2〉 . (40)

When the potential is of the form of rn, the difference between Eqs. (40)
and (39) will be clear and evident. Even after the factors in V1 and V2 are
considered, Eqs. (27) and (28) are still different. This suggests that although
they are equivalent in the nonrelativistic limit, Eqs. (27) and (28) will be
different in the ultrarelativistic limit and expected to be also different in the
relativistic case.

In Refs. [19, 20], the numerical results are given for the linear mass
operator and the quadratic mass operator. The results show that for the
heavy–heavy quarkonium, the difference between the linear mass operator
and the quadratic mass operator will be very small and can be neglected
because the heavy–heavy quarkonium can be regarded as one nonrelativistic
system, while for the heavy–light and light–light quarkonia, the difference
will be significant due to the relativistic motion of the light quark. Our
results are consistent with the numerical results in Refs. [19, 20]. Therefore,
Eq. (28) will be better than Eq. (27) when the heavy–light and light–light
quarkonia are considered.

Moreover, it can be seen easily from Eqs. (30) and (35) that the ratio
of the expectation value of the kinetic energy to the expectation value of
potential varies with the ratio of the masses of the components. When
two constituents are equally massive, the ratio reaches its minimum. In
contrast to the relativistic case, the ratio will be constant and independent
of the masses of components in the nonrelativistic limit, n/2 for power-law
potential rn.

4. Conclusion

In this paper, we have derived the generalized virial theorem which will
be more general than many previous versions of the virial theorem. Then,
we apply the generalized virial theorem to the Salpeter equation for the
bound state composed of two scalar constituents and to the reductions of
the Salpeter equation for the fermion–antifermion system. The results show
that the linear mass form and the quadratic mass form of the reductions
of the Salpeter equation will be the same in the nonrelativistic limit, but
different in the ultrarelativistic limit. Therefore, one should be cautious of
applying the different versions of the reductions of the Salpeter equation in
practice.
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