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A well-defined spatial orientation of atomic basis functions is essential
for the correct analysis of quantum-mechanical calculations in terms of
chemical (bonding) concepts. Here, we present the implementation of a
straightforward, convenient algorithm to rotate basis functions using real
spherical harmonics within a linear combination of atomic orbitals (LCAO)
framework. The highly efficient technique only relies on overlap integrals of
the basis functions and Wigner’s rotation matrices. To do so, a previously
known and simple way to calculate the latter (defined by a rotation axis and
angle) for real spherical harmonics is modified to enable chemical-bonding
interpretation. The method’s usefulness is illustrated by an application to
carbon crystallizing in the diamond structure.
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1. Introduction

Probably the most common quantum-chemical Ansatz to represent wave
functions Ψ(~r ) of molecules and also crystals is given by a linear combination
of atomic orbitals (LCAO)

Ψ(~r ) =
∑
µ

Cµψµ(~r ) . (1)

By doing so, the wave function is expressed as a sum of certain atomic ba-
sis functions ψµ(~r ) which may adopt any form as long as the basis formed
remains complete and covers the entire Hilbert space. In computational
practice, however, a complete basis can hardly ever be achieved. Hence,
a reasonable, yet flexible form of the basis functions is necessary. There is
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a rich atomic-orbital history, and atomic orbitals have shown to be enor-
mously helpful in the quantum mechanics of molecules and crystals [1]. In
addition, they provide a perfect starting point for chemical-bonding analy-
sis [2].

With the exception of spherical s functions, atomic orbitals are not in-
variant to rotations, however. While the ability of a basis to represent a
molecular or crystal wave function does not depend on the orientation of its
underlying atomic orbitals, the chemical interpretation does. Let us assume
the basis functions to be aligned with the axes of the global coordinate sys-
tem in which a diatomic molecule is described. The coefficients Cµ of Eq. (1)
then adopt different values relative to each other whenever the alignment of
the bond axis changes, and these coefficients form the core of most bond-
analytic tools. It is, therefore, of utmost importance to correctly align the
basis functions such as to make chemical-bonding analysis possible.

As will be shown later, a customized basis-function alignment may gen-
erally proceed by rotationally transforming spherical harmonics. An excep-
tionally rigorous and comprehensive review on how to rotate such quantum-
mechanical functions was presented by Morrison and Parker [3] based on
Euler angles dealing with complex spherical harmonics but the use of real
spherical harmonics is more convenient from a chemical perspective. In 1996,
a recursive algorithm to construct rotation matrices for spherical harmonics
without detouring via Euler angles was given by Ivanic and Ruedenberg [4].
Twelve years later, in this very journal, Romanowski, Krukowski and Jal-
bout proposed an algorithm yielding rotation matrices for real spherical
harmonics determined only by a single rotation axis and a single rotation
angle [5]. This approach not only fits our needs perfectly well but it also
offers a simple and computationally efficient way for implementation into
existing computer programs.

The aforementioned 2008 contribution deals with the general treatment
of real spherical harmonics. To apply their rotation scheme to our represen-
tation of atomic orbitals — which is chemical in nature — we must re-define
one of their normalization factors [5] for m = 0 such that the spherical har-
monic is normalized to unity. This is a necessary step for a solid quantum-
chemical analysis. Because that very change in normalization carries over
to other parts of the theory, we also rigorously re-define all employed math-
ematical functions, show how the rotation algorithm is implemented in our
LCAO framework and present all modified quantities to the community.
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2. Definitions

Atomic orbitals or basis functions ψµ(~r ) are often defined as a product
between a radial part R(r) and a real spherical harmonic Ylm(ϑ, ϕ)

ψµ(~r ) = R(r)Ylm(ϑ, ϕ) . (2)

Because the radial part is invariant to rotation, one only needs to transform
the spherical harmonic upon re-alignment of the entire basis function. The
real spherical harmonics Ylm(ϑ, ϕ) are linear combinations of the complex
spherical harmonics Y m

l (ϑ, ϕ) such as to make the imaginary parts disap-
pear. That may easily be expressed via

Ylm(ϑ, ϕ) =


−
√
2 =

(
Y l
m(ϑ, ϕ)

)
: m < 0 ,

Y l
m(ϑ, ϕ) : m = 0 ,

(−1)m
√
2 <

(
Y l
m(ϑ, ϕ)

)
: m > 0 .

(3)

Intended as a real instead of complex replacement, however, those linear
combinations are required to exhibit the very same mathematical properties
as their complex counterparts, given by

Y l
m(ϑ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
P lm(cosϑ)e

imϕ , (4)

using the associated Legendre polynomials

P lm(x) =
(−1)m

2ll!

(
1− x2

)m
2

dl+m

dxl+m
(
x2 − 1

)l
. (5)

Upon following the same route to obtain the Cartesian representation of
the real spherical harmonics as before [5, 6], we now arrive at

Y1,−1 =
√
3/(4π)y/r , (6a)

Y1,0 =
√
3/(4π)z/r , (6b)

Y1,1 =
√
3/(4π)x/r (6c)

with r =
√
x2 + y2 + z2. It is compulsory that real spherical harmonics

must be normalized to unity, a necessary feature which ensures a reliable
probability density of the described electron, and the last set of equations
fulfills that criterion. We refrain from showing additional Cartesian repre-
sentations since these can be looked up in standard textbooks [7, 8]. While
the Cartesian representations are not used explicitly in the original algo-
rithm, these non-unity normalizations propagate into the Al matrices which
have not yet been introduced (see Section 4) but must also be changed ac-
cordingly.
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3. Rotation of LCAO basis functions

Within the Lobster computational framework [9] for chemical-bonding
analysis, any crystal wave function |Ψj〉 describing the band j as computed
through the projector-augmented wave method [10] is described by local
basis functions |χµ〉 such as to represent the projected LCAO wave function
|Xj〉. Those basis functions, by their very nature, are aligned to the global
coordinate system.

As has been alluded to in Section 1, there will be cases when the projected
wave function should be constructed in terms of rotated basis functions
|χrot
µ 〉, however. As a rotation does not affect the completeness of a basis,
|Xj〉 is equal to the wave function represented within the rotated basis |Xrot

j 〉

|Xj〉 =
∣∣Xrot

j

〉
=
∑
ν

Crot
νj

∣∣χrot
ν

〉
. (7)

We now yield the corresponding set of coefficients Crot
νj by a projec-

tion technique which is similar to the one used to obtain the original (non-
rotated) coefficients Cνj [9]. To do so, we start with the representation of
the non-rotated LCAO wave function and multiply a rotated basis function
from the left

|Xj〉 =
∑
ν

Cνj |χν〉 , (8)〈
χrot
µ

∣∣Xj

〉︸ ︷︷ ︸
T rot
µj

=
∑
ν

〈
χrot
µ

∣∣χν〉︸ ︷︷ ︸
Shyb
µν

Cνj , (9)

T rot = ShybC . (10)

A different way to describe T rot is found by applying the same technique
to Eq. (7)

〈
χrot
µ

∣∣Xj

〉︸ ︷︷ ︸
T rot
µj

=
∑
ν

〈
χrot
µ

∣∣χrot
ν

〉︸ ︷︷ ︸
Srot
µν

Crot
νj , (11)

T rot = SrotCrot . (12)

By combining Eqs. (10) and (12), we arrive at a matrix equation in which
Crot contains the desired linear-combination cofficients for the rotated basis
set

ShybC = SrotCrot . (13)
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3.1. Hybrid overlap matrix

To solve matrix Eq. (13), one must find expressions defining the matrix
elements for Shyb and Srot. Let us begin with the somewhat simpler (hybrid)
overlap matrix between a rotated and a non-rotated basis function. By
resolving the short-hand notations µ = nlm and ν = n′l′m′, the hybrid
overlap integrals are given by

Shyb
nlm,n′l′m′ =

∫
χ∗nl(r)χn′l′(r −R)Y ∗lm

(
ϑ′, ϕ′

)
Yl′m′(ϑ, ϕ)d3(r, ϑ, ϕ) . (14)

To compute the integral, we first have to transform the rotated spherical
harmonic function from the rotated coordinate system — denoted by ϑ′ and
ϕ′ — to the other (non-rotated) coordinate system. Here, we apply the
previously mentioned algorithm [5] which utilizes the spherical harmonics’
property of being representable by an expansion over all well-defined but
rotated spherical harmonics with the same angular momentum l

Ylm
(
ϑ′, ϕ′

)
=

l∑
M=−l

YlM (ϑ, ϕ)Dl
M,m . (15)

Let us now assume that the elements of Wigner’s rotation matrix Dl

are known and postpone their computation to Section 4. Insertion of the
expansion into Eq. (14) yields

Shyb
nlm,n′l′m′ =

∫
χ∗nl(r)χn′l′(r −R)Yl′m′(ϑ, ϕ)

l∑
M=−l

Y ∗lM (ϑ, ϕ)Dl∗
M,md

3(r, ϑ, ϕ)

=

l∑
M=−l

Dl∗
M,m

∫
χ∗nl(r)χn′l′(r −R)Y ∗lm(ϑ, ϕ)Yl′M (ϑ, ϕ)d3(r, ϑ, ϕ)

=
l∑

M=−l
Dl∗
M,m 〈χnlM |χn′l′m′〉 . (16)

This final expression yields the hybrid overlap integrals as a short ex-
pansion over the original overlap matrix elements Sµν = 〈χµ|χν〉. In most
quantum-chemical cases, these elements will be known (almost) from the
very beginning.

3.2. Rotated overlap matrix

Having found Shyb, there remains only one unknown matrix needed to
finally solve Eq. (13). The elements of Srot, which represent the overlap
integrals between two rotated basis functions, are defined by
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Srot
nlm,n′l′m′ =

∫
χ∗nl(r)χn′l′(r−R)Y ∗lm

(
ϑ′, ϕ′

)
Yl′m′

(
ϑ′′, ϕ′′

)
d3(r, ϑ, ϕ) . (17)

In addition to one single spherical harmonic that does not belong to the
global coordinate system, the second spherical harmonic belongs to a third
coordinate system denoted by ϑ′′ and ϕ′′. We can essentially apply the same
technique that was used towards Eq. (16) but separately for both functions

Srot
nlm,n′l′m′ =

∫
χ∗nl(r)χn′l′(r −R)

l∑
M=−l

Y ∗lM (ϑ, ϕ)Dl∗
M,m

×
l′∑

M ′=−l′
Yl′M ′(ϑ, ϕ)Dl′

M ′,m′d3(r, ϑ, ϕ)

=
l∑

M=−l

l′∑
M ′=−l′

Dl∗
M,mD

l′
M ′,m′

×
∫
χ∗nl(r)χn′l′(r −R)Y ∗lM (ϑ, ϕ)Yl′M ′(ϑ, ϕ)d3(r, ϑ, ϕ)

=
l∑

M=−l

l′∑
M ′=−l′

Dl∗
M,mD

l′
M ′,m′ 〈χnlM |χn′l′M ′〉 . (18)

As before, the rotated overlap matrix Srot is expressed in terms of the
original overlap matrix elements. This leaves us with only one unknown
matrix in Eq. (13) to be solved using standard linear-algebra methods. As
soon as matrixCrot is used instead ofC (say, for chemical-bonding analyses),
one must also use Srot as the corresponding overlap matrix.

In conclusion, Wigner’s rotation matrices must be constructed only once
in order to re-align the local basis functions. The newly rotated overlap
matrix and a helper matrix Shyb is calculated by short summations over
already known overlap integrals. Finally, solving a matrix equation yields
the new rotated coefficient matrix such that the basis functions have been
efficiently transformed.

4. Wigner’s rotation matrices

It has been shown [5, 6] that Wigner’s rotation matrices for real spher-
ical harmonics can be split into three matrices Bl, C l and Al. While Bl

expresses the real spherical harmonics as a linear combination of canonical
polynomials, C l rotates the canonical polynomials; finally, Al re-expresses



Efficient Rotation of Local Basis Functions Using Real Spherical . . . 1171

the rotated canonical polynomials as a linear combination of real spheri-
cal harmonics. If Bl is invertible, then Bl = (Al)−1 holds and Wigner’s
rotation matrices for real spherical harmonics are given by

Dl =
(
Al
)−1

C lAl . (19)

Since the matrix elements of C l for s, p, d and f orbitals are lengthy
and already printed in Ref. [6] by Eqs. (13), (18), (32), (35) and (38), we
refrain from repeating them. As previously discussed, however, the corre-
sponding matrices Al must be modified and are rather simple in structure.
As required, all the matrices A0, A1, A2, and A3 are invertible:

A0 = 1 , (20a)

A1 =

√
4π

3

0 0 1
1 0 0
0 1 0

 , (20b)

A2 =

√
4π

15


0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 2

0 0 2
√
3 0 0

 , (20c)

A3 = 4

√
2π

21



0 0 0 0 1 0 0
0 0 1 0 0 0 0

0 0 0
√
6
2 0 0 0

0
√
10
20 0 0 0 0 0√

15
5 0 0 0 0 0 0

0 0 0 0 0 0
√
15
5

0 0 0 0 0
√
10
20 0


. (20d)

5. Application to carbon in the diamond crystal structure

To demonstrate the proficiency of the aforementioned method, we now
cover the chemical bonding of carbon in the diamond crystal structure. Its
electronic structure and chemical bonding are well-understood and have been
covered in the chemical and physical literature [9, 11–13].

The electronic-structure calculations were carried out using standard
methods, that is, plane-wave density-functional theory (DFT) in the gen-
eralized-gradient approximation (GGA) with the help of the projector-aug-
mented wave (PAW) [10] method as implemented in VASP version 5.3.5
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[14–16]. The exchange-correlation energy was approximated using the func-
tional developed by Perdew, Burke, and Ernzerhof [17]. Brillouin-zone inte-
grations were carried out by employing the tetrahedron method with Blöchl
corrections [18, 19]. The Brillouin zone was thoroughly sampled with a
Γ -centered 23 × 23 × 23 Monkhorst–Pack grid [20]. A plane-wave cutoff of
550 eV served as the convergence criterion.

The extraction of chemical-bonding information from the thus obtained
plane-wave (PAW) function was enabled by an analytical projection onto a
minimal auxiliary basis made from exponentially decaying contracted Slater-
type orbitals [21] as implemented in the Lobster program code [9]. Once the
projection has been performed, the entire plane-wave electronic structure
is re-constructed using local orbitals. This very projection technique has
proven its viability in many cases, ranging from amorphous phase-change
materials [22] and surface-chemistry problems [23] to very simple ones such
as the one at hand, diamond [9]. To extend the tool’s functionality, the
previously described rotation algorithm was implemented into Lobster in
order to get full control over the spatial orientation of the basis set. For
demonstration, we start with the reduced diamond unit cell containing two
carbon atoms. Figure 1 (a) (left) shows that unit cell in which the included
C–C bond axis is part of the yz plane and forms an angle of 45◦ with the y
and z axes of the global coordinate system.

At the beginning, the natural spatial orientation of the local basis set
reflects the axes of a Cartesian coordinate system; in other words, the pz
orbital is aligned with the z axis, the py orbital with the y axis, and so
on. This choice is also implemented in the Lobster computer program. For
the given crystal structure, however, this leads to a misalignment of the pz
orbitals in case these orbitals should serve as the only bond-constructing
ones along the direction of the bonding axis, as will be seen shortly. We will
now project the Crystal Orbital Overlap Population (COOP) between the
two neighboring carbon atoms only using the two neighboring pz orbitals,
and we note that (projected) COOP (or simply pCOOP) is a synonym for
an overlap-population weighted densities-of-states which may adopt positive
(= bonding), negative (antibonding) and zero (non-bonding) values [24, 25],
simply because of the underlying overlap integral between the two neighbor-
ing orbitals.

The left part of Fig. 1 (b) shows the chemical bonding of two neighboring
carbon atoms for which the non-rotated, non-aligned pz orbitals have been
utilized. The effect of such misalignment is profound because the interactions
lowest in energy, approximately between −20 and −10 eV, are non-bonding
while there are strongly antibonding (left) interactions just below the Fermi
level. Above the Fermi level, in the unoccupied region, we see the first
bonding levels (right). Such a scenario is totally unphysical because filled
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Fig. 1. (a) Illustration of the spatial orientation of the carbon pz orbitals inside
the reduced diamond cell. At the beginning, the pz orbitals are aligned with the
z axis while a 45◦ rotation around the x axis — pointing at the reader — lets the
orbitals align with the bonding axis. (b) pCOOP for the non-rotated (left) and the
bond-aligned (right) pz orbitals. The energy scale has been shifted such that the
Fermi level εF = 0.

bonding levels are to be expected first, possibly followed by non-bonding
levels, eventually followed by antibonding levels in the virtual region. As
alluded to already, the reason for the grossly incorrect description lies in the
improper alignment of the pz orbitals as depicted in the left part of Fig. 1 (a)
since these are geometrically unable to form such C–C bond.
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Nonetheless, Fig. 1 (a) (middle and right) also shows how to remedy the
improper alignment, namely by a 45◦ orbital rotation around the x axis such
that the pz orbitals align exactly with the C–C bonding axis. As a result,
the corresponding pCOOP given in the right part of Fig. 1 (b) correctly
displays the chemical bonding, namely filled bonding levels in the lower,
occupied part and antibonding levels in the upper, virtual part. All formerly
antibonding levels in the occupied part below the Fermi level have been
eliminated, in harmony with quantum-chemical knowledge [25, 26].

6. Summary

We have demonstrated the importance of a reasonable spatial orientation
of an atomic basis set for the proper representation of molecular or crystal
wave-functions, for example in the context of chemical-bonding analysis in
an LCAO framework. Whenever an atomic-orbital basis must be rotated,
this is most conveniently achieved by transforming the real (instead of com-
plex) spherical harmonics part of the basis functions. We have rigorously
defined all mathematical functions needed for a straightforward algorithm
enabling such rotation, and it only relies on two quantities already known
from the unrotated (original) LCAO description of the wave function: the
coefficient and overlap matrices C and S. The algorithm employs a helper
matrix Shyb and the overlap matrix of the rotated basis functions Srot, both
expressed as a short expansion over Wigner’s rotation matrices. Hence, the
coefficient matrix within the rotated basis Crot can be solved. Wigner’s ro-
tation matrices Dl for real spherical harmonics are constructed following a
slightly modified algorithm which only depends on the selection of a single
rotation axis and a single angle.
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