
Vol. 47 (2016) ACTA PHYSICA POLONICA B No 5

PHOTOELECTRIC EFFECT FOR
TWIST-DEFORMED SPACE-TIME∗

Marcin Daszkiewicz

Institute of Theoretical Physics, University of Wrocław
Pl. Maxa Borna 9, 50-206 Wrocław, Poland

marcin@ift.uni.wroc.pl

(Received January 5, 2016; revised version received February 18, 2016;
final version received March 7, 2016)

In this article, we investigate the impact of twisted space-time on the
photoelectric effect, i.e., we derive the θ-deformed threshold frequency. In
such a way, we indicate that the space-time noncommutativity strongly
enhances the photoelectric process.
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The suggestion to use noncommutative coordinates goes back to Heisen-
berg and was firstly formalized by Snyder in [1]. Recently, there were also
found formal arguments based mainly on the Quantum Gravity [2, 3] and
the String Theory models [4, 5], indicating that space-time at the Planck
scale should be noncommutative, i.e. it should have a quantum nature. Con-
sequently, there appeared a lot of papers dealing with noncommutative clas-
sical and quantum mechanics (see e.g. [6, 7]) as well as with field theoretical
models (see e.g. [8, 9]), in which the quantum space-time is employed.

In accordance with the Hopf-algebraic classification of all deformations
of relativistic [10] and nonrelativistic [11] symmetries, one can distinguish
three basic types of space-time noncommutativity (see also [12] for details):

(1) Canonical (θµν-deformed) type of quantum space [13–15]

[ xµ, xν ] = iθµν , (1)

(2) Lie-algebraic modification of classical space-time [15–18]

[ xµ, xν ] = iθρµνxρ , (2)
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(3) Quadratic deformation of Minkowski and Galilei spaces [15, 18–20]

[ xµ, xν ] = iθρτµνxρxτ , (3)

with coefficients θµν , θ
ρ
µν and θρτµν being constants.

Moreover, it has been demonstrated in [12] that in the case of the
so-called N -enlarged Newton–Hooke Hopf algebras U (N)

0 (NH±), the
twist deformation provides the new space-time noncommutativity of
the form1,2

(4)

[ t, xi ] = 0 , [ xi, xj ] = if±

(
t

τ

)
θij(x) , (4)

with time-dependent functions

f+

(
t

τ

)
= f

(
sinh

(
t

τ

)
, cosh

(
t

τ

))
,

f−

(
t

τ

)
= f

(
sin

(
t

τ

)
, cos

(
t

τ

))
,

θij(x) ∼ θij = const or θij(x) ∼ θkijxk and τ denoting the time scale
parameter — the cosmological constant.

Besides, it should be noted that the above mentioned quantum spaces (1), (2)
and (3) can be obtained by the proper contraction limit of the commutation
relations (4)3.

In this article, we investigate the impact of quantum space-times (4) on
the photoelectric process described by the following equation [21]

K = ~ω −W , (5)

where K, ~ω and W denote the kinematic energy of electron, energy quanta
of light and work function, respectively. To this end, we assume that photons
emitted by transplanckian (noncommutative) source are described by the
nonrelativistic oscillator model [22] defined on the following twist-deformed
N -enlarged Newton–Hooke phase space

[ x̂1, x̂2 ] = 2ifκ(t) , [ p̂1, p̂2 ] = 2igκ(t) , (6)
[ x̂i, p̂j ] = i~δij

[
1 + fκ(t)gκ(t)/~2

]
(7)

1 x0 = ct.
2 The discussed space-times have been defined as the quantum representation spaces,
so-called Hopf modules (see e.g. [13, 14]), for the quantum N -enlarged Newton–Hooke
Hopf algebras.

3 Such a result indicates that the twistedN -enlarged Newton–Hooke Hopf algebra plays
a role of the most general type of quantum group deformation at nonrelativistic level.
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with an arbitrary function gκ(t)
4. Then, the corresponding Hamiltonian

operator is given by

Ĥ =
1

2m

(
p̂21 + p̂22

)
+

1

2
mω2

(
x̂21 + x̂22

)
(8)

with m and ω denoting the mass and frequency of a particle, respectively. In
terms of commutative variables (xi, pi), which correspond to the low-energy
observer, it takes the form of 5

Ĥ = Ĥ(t) =
1

2M(t)

(
p21 + p22

)
+

1

2
M(t)Ω2(t)

(
x21 + x22

)
− S(t)L , (9)

where

L = x1p2 − x2p1 , (10)
1/M(t) = 1/m+mω2f2κ(t)/~2 , (11)

Ω(t) = Ωf (ω)=
√

(1/m+mω2f2κ(t)/~2) (mω2+g2κ(t)/(~2m)) , (12)

and
S(t) = mω2fκ(t)/~+ gκ(t)/(~m) . (13)

The corresponding energy spectrum can be find with the use of time-depen-
dent creation/annihilation operator procedure and it looks as follows:

En+,n−(t) = ~Ω+(t)
[
n+ + 1

2

]
+~Ω−(t)

[
n− + 1

2

]
; n± = 0, 1, 2, . . . (14)

with frequencies

Ω±(t) = Ω(t)∓ S(t) . (15)

Besides, one can observe that for functions fκ(t) and gκ(t) such that

fκ(t) = −gκ(t)/
(
ω2m2

)
, (16)

we have
En+,n−(t) = ~Ω(t)

[
n+ + 1

2

]
+ ~Ω(t)

[
n− + 1

2

]
. (17)

4 Essentially, we should consider Maxwell Field Theory defined on quantum space (4).
However, its construction seems to be quite difficult and for this reason, here, we
consider only toy model in which oscillations of emitted light are described by the
nonrelativistic and first quantized noncommutative oscillator model [22].

5 The operators (xi, pi) satisfy [ xi, xj ] = [ pi, pj ] = 0, [ xi, pj ] = i~δij and describe,
for example, the surface of metal in a typical laboratory room.
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It means that spectrum (14) becomes isotropic and the corresponding energy
quanta takes the form6

Equanta = En+1 − En = ~Ωf (ω) . (18)

Particularly, for the canonical deformation fκ(t) = κ = θ = const, we get

En+,n−,θ = ~Ωθ
[
n+ + 1

2

]
+ ~Ωθ

[
n− + 1

2

]
(19)

with a constant frequency

Ωθ = Ωθ(ω) = mω
(
1/m+mω2θ2/~2

)
, (20)

for which limθ→0Ωθ = ω.
As mentioned above, in the Hamiltonian function (8), the frequency ω

corresponds to the frequency of emitted light described in terms of non-
commutative variables (x̂i, p̂i) associated with the Planck scale. However,
formula (18) gives the corresponding energy quanta (obviously different than
~ω) in terms of commutative variables (xi, pi), i.e., it describes the deformed
energy of a single photon which is detected by low-energy observer. It is
simply the energy quanta which should be detected on a surface of metal
in a typical laboratory room. In other words, formula (18) gives the en-
ergy of photons emitted for example by transplanckian (noncommutative)
astrophysical sources which arrive to (commutative) Earth.

Consequently, in our further analysis, we exchange in (5) the quanta ~ω
by the deformed ones ~Ωf (ω) such that

K = ~Ωf (ω)−W = ~mω
(
1/m+mω2f2κ(t)/~2

)
−W . (21)

One can see that the main difference between (5) and (21) concerns the
shape of the function K(ω). In the first (undeformed) case, it remains linear
in the frequency ω, while for the second process, it forms the third degree
polynomial. Next, one can ask for so-called threshold quanta, i.e., for such
an energy portion for which the frequency ωtr satisfies

~ωtr −W = 0 , (22)

and
~Ωf (ωtr)−W = 0 , (23)

respectively. The solution of (22) with respect to the frequency ωtr seems to
be trivial

ωtr =
W

~
. (24)

6 Due to the isotropy of spectrum (17), we consider further excitations only in one
direction.
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In the case of equation (23), the situation is more complicated. However,
one can find its three roots — two of them are complex, while the third one
remains real; it looks as follows:

ωtr(fκ(t)) =

(√
3
√
4~6m6f6κ(t) + 27~2m8f8κ(t)W

2 + 9~m4f4κ(t)W
)1/3

(21/332/3m2f2κ(t))

−

((
2
3

)1/3 ~2)(√
3
√
4~6m6f6κ(t) + 27~2m8f8κ(t)W

2 + 9~m4f4κ(t)W
)1/3 . (25)

Solutions (24) and (25) define the threshold frequencies for processes (5) and
(21), respectively.

Let us now turn to the simplest (canonical) deformation of the phase
space (6), (7), such (as already mentioned) that

fκ(t) = θ = const . (26)

Then, in accordance with relation (16), we have

gκ(t) = −θω2m2 . (27)

Consequently, in such a case, due to formula (20), equation (21) takes the
form

K = ~Ωθ(ω)−W = ~mω
(
1/m+mω2θ2/~2

)
−W , (28)

while the corresponding threshold frequency ωtr is equal to

ωtr(θ) =

(√
3
√
4~6m6θ6 + 27~4m8θ8W 2 + 9~2m4θ4W

)1/3
(21/332/3m2θ2)

−

((
2
3

)1/3 ~2)(√
3
√
4~6m6θ6 + 27~4m8θ8W 2 + 9~2m4θ4W

)1/3 . (29)

Obviously, for the deformation parameter θ approaching zero, we should
reproduce from (29) the standard relation (24). Besides, we have (see figures
1 and 2)

lim
θ→∞

ωtr(θ) = 0 , (30)

which means that in our treatment, the canonical noncommutativity strongly
enhances the photoelectric effect.



1298 M. Daszkiewicz

Fig. 1. The shape of the threshold frequency ωtr(θ) for the three different values of
the parameter m: m = 1 (continuous line), m = 2 (dotted line) and m = 3 (dashed
line). In all three cases, we fix the work function W = 1.

Fig. 2. The shape of the threshold frequency ωtr(θ) for the three different values
of the work function: W = 1 (continuous line), W = 2 (dotted line) and W = 3

(dashed line). In all three cases, we fix the parameter m = 1.
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