
Vol. 47 (2016) ACTA PHYSICA POLONICA B No 5

EXTENSIVE AND NON-EXTENSIVE
THERMODYNAMICS

Asmaa G. Shalaby

Physics Department, Faculty of Science, Benha University
13815 Benha, Egypt

asmaa.shalaby@fsc.bu.edu.eg

(Received February 11, 2016; revised version received March 10, 2016)

This research addresses extensive and non-extensive thermodynamics.
A comparison between the entropy for both different statistics are pre-
sented. The non-extensive parameter, entropic index q, is discussed. We
attempt to explore the limit of the non-extensive parameter by comparing
the theoretical results with lattice and the available experimental results.
The two thermal parameters T , µB are calculated with the freeze-out con-
dition S/T 3 = 7 for different q. The motivation of this research comes
from recent non-extensive statistics studies which showed that this stan-
dard thermodynamics failed to reproduce the freeze-out parameters. As an
application, the black-hole entropy is calculated in the quantum General-
ized Uncertainty Principle (GUP) modification form. Black-hole entropy
may reveal information about the thermodynamics it belongs. This dis-
crimination is essential to quantify the entropy in the hadron production
evolution stage and in the black-hole thermodynamics. It is concluded that
lattice QCD reproduces the extensive thermodynamics very well. Also, the
black hole appears as an extensive system.
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1. Introduction

The nature of entropy cannot be interpreted and known exactly. In a
common, entropy is a measure of disorder. The information of the system
is represented by entropy. In this special case, entropy represents the uncer-
tainty in the system. As the information about the system increases, entropy
increases [1]. A century ago, a wonderful summary of thermodynamics was
presented by Clausius [2]:

— The energy of the Universe is constant.

— The entropy of the Universe strives toward a maximum.

(1301)
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The number of particles states in a system can be represented statis-
tically in coordinate–momentum space as 6N -dimensional (phase space).
The entropy is expressed as a logarithm of the number of states W times
the Boltzmann constant

S = kB lnW , (1)

whereW = Ω/(∆Ω)N , Ω is the phase-space volume, and ∆Ω is the elemen-
tary cell volume. Shannon [3], Renyi [4], and Tsallis [5] have their statistical
framework to describe the entropy. Shannon entropy reads

S = −kB
∑
i

Pi lnPi . (2)

In 1988, Tsallis [5] postulated a generalization of Boltzmann–Gibbs (BG)
statistics. Tsallis entropy reads

Sq ≡ k
1−

∑W
i P qi

q − 1
, (q ∈ <) , (3)

where k is a constant, q is the new parameter known as the entropic index
and it should be greater than 1 [5], W is the total number of possible con-
figurations and Pi are the probabilities associated with the configurations.

The deformed form of the exponential function, q-exponential, and the
q-logarithmic have been applied in Tsallis statistics [6] recently to get the
non-extensive partition function [7, 8].

The BG entropy is an additive quantity for any system and subsystems,
for example, if one has a system A composed of two subsystems A1, A2,
so that the total entropy S(A) = S(A1) + S(A2). The latter is true in
BG statistics. On the other hand, Tsallis statistics leads to non-extensive
property in which (q 6= 1) [9]

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) . (4)

More properties of the q-sum as in equation (4), q-logarithmic and q-exponen-
tial can be found in [9].

This work is organized as follows. Section 2 describes briefly the thermal
model and the calculation of entropy from the partition function (exten-
sive thermodynamics). Section 3 discusses Tsallis (non-extensive) thermo-
dynamics and the non-extensive parameter q (entropic index). Results and
discussion are represented in Section 4. Finally, a conclusion is presented
Section 5.
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2. The thermal model

The thermal model is one of the most powerful tools to describe the
system thermodynamics and the particle number measured in heavy-ion
collision experiments. After the heavy-ion collision, the hot matter created
begins to expand forming a hadron gas. This leads to the freezing out of the
hadronic matter. Then, the particle produced moves freely to the detector.
The thermal model or Hadron Resonance Gas (HRG) describes the hadron
gas stage at which the hadrons are a free gas of resonances. The chemical
and thermal freeze-out stages and freeze-out conditions can be extracted and
described by the thermal model. Generally, the freeze-out process can be
categorized into two stages:

— Chemical freeze-out stage at which the inelastic collisions between
hadrons cease.

— Thermal freeze-out stage at which the elastic collisions cease and the
momenta of the final state particles (hadrons) are fixed. In other
words, it is the moment at which the hadrons cease to interact and
begin to escape freely to the detector.

Furthermore, it satisfactorily describes different experimental measure-
ments such as AGS, SPS, and RHIC [10]. In addition, the thermal model
agrees with lattice QCD in the hadronic phase very well.

Different thermodynamic quantities (e.g. pressure, energy density, en-
tropy, etc.) can be measured and studied by the thermal model. The cal-
culation based on the grand canonical partition function in the Boltzmann–
Gibbs statistics, in which all thermodynamics can be derived

lnZ = Tr
(

expβ(µb̂−Ĥ)
)
, (5)

where β = 1/T , and b̂, Ĥ are the baryon number and the Hamiltonian of the
system, respectively. The partition function is additive, which suggests that
it is an extensive quantity. In the HRG model, thermodynamic quantities
can be directly derived from the logarithm of the partition function and
summed over all resonances i

lnZ =
∑
i

V gi
(2π)3

∫
±d3p ln [1± exp(−(εi − µi)/T )] , (6)

where ± refers to fermions and bosons, respectively. The chemical poten-
tial is given by µi = µsS + µqQ + µbB , with µs, µq, µb the strange, quark
and baryon chemical potentials, respectively, multiplied by the correspond-
ing quantum numbers S,Q,B, εi =

√
p2 +m2

i , gi is the degeneracy of the
particles where masses mi are taken up to 10 GeV in this work.
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For canonical system, the entropy can be defined by the derivative of the
partition function with respect to the temperature T . Then, the entropy
reads

si =
1

V

(
∂ (T lnZi)

∂T

)
V,µ

= ± gi

(2π)3

∫
d3p

[
ln

(
1± exp

(
−(εi − µi)

T

))

± (εi − µi)
T (exp((εi − µi)/T )± 1)

]
. (7)

3. Non-extensive thermodynamics

The non-extensive thermodynamics emerged from experimental results
of spectra that showed deviations from the Boltzmann exponential behav-
ior. This was the motivation of Tsallis [5] who suggested a new statistics to
describe non-equilibrium systems with a new parameter known as the en-
tropic index q. A good fit for the transverse momentum distribution can be
obtained using the parameter q [11]. The entropic index q is claimed to be
limited in the range of q ≥ 1 [5], while others [12, 13] have assumed that q
should be q ∼ 1.12−1.14. The values of the Tsallis entropic index q, Fig. 1,
are found experimentally to lie between 1.11 and 1.15, they increase with
the center-of-mass energy.
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Fig. 1. The Tsallis parameter q obtained from fits to the pT spectrum. Results
from the ALICE Collaboration are indicated with square points, CMS by triangles
and ATLAS by circles. The beam energy is given on the x axis. The figure is taken
from Ref. [14].



Extensive and Non-extensive Thermodynamics 1305

In the present work, the entropic index q is increased up to q = 1.2.
However, the Tsallis freeze-out temperature lies in the thermal model at
smaller q. We discuss this result in Section 4. For an ideal quantum gas, it
is argued that the grand-canonical partition function represented by [7]

logΞq(V, T, µ) = −ξV
∫

d3p

(2π)3

∑
r=±

Θ(rx) log(−r)q

(
e
(r)
q (x)− ξ
e
(r)
q (x)

)
(8)

and
logΞq(V, T, {µ}) =

∑
i

logΞq(V, T, µi) , (9)

where x = β(ε − µ), the dispersion relation represents the particle energy
as ε =

√
p2 +m2, with the hadron mass m, and the chemical potential µ.

Finally, Θ is taken as the step function [7], while ξ = ±1 for bosons and
fermions, respectively. It is also essential that the partition function is a
sum over all resonances. The q-exponential e(r)q and the q-logarithim log

(r)
q

are defined as

e(+)
q (x) = [1 + (q − 1)x]1/(q−1) , x ≥ 0 ,

e(−)q (x) = [1 + (1− q)x]1/(1−q) , x < 0 ,

log(+)
q (x) =

xq−1 − 1

q − 1
,

log(−)q (x) =
x1−q − 1

1− q
. (10)

In Fig. 1, the values of the entropic index (Tsallis parameter) q are shown.
It can be seen that they increase with the beam energy [14]. However, the
highest value is approximately q = 1.15.

4. Results and discussion

4.1. Extensive and non-extensive entropy

In the present work, we have compared the entropy calculated exten-
sively and non-extensively at vanishing chemical potential (µB = 0), and
at non-zero chemical potential (µB = 0.3, 0.8 GeV). Figure 2 shows the en-
tropy calculated by HRG and non-extensive thermodynamics. The latter is
calculated at different values of q = 1.0001, 1.05, 1.14, 1.2.

It is argued that at q = 1, Boltzmann statistics is recovered [7]. From
Fig. 2, where q is roughly very close to q = 1, the entropies from HRG
and non-extensive are comparable. Also, it appears, by increasing q up to
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Fig. 2. The online colored line and symbols are the calculated entropy by HRG
(extensive), non-extensive entropy for different entropic index, q = 1.0001, 1.05,
1.14, 1.2, and vanishing baryon chemical potential compared with lattice results
[15].

1.2 that the non-extensive entropy needs to be scaled. In order to compare
with the lattice results [15], the non-extensive entropy at q = 1.2 is scaled
(divided) by 50. The different lines match all together till T ' 100 MeV and
diverge after that point.

It seems that, at the non-vanishing chemical potential (µB 6= 0), the ex-
tensive and non-extensive calculated entropy are comparable without scal-
ing. Figure 3 shows the entropy calculated by HRG and non-extensive ther-
modynamics at µB = 0.3 GeV and at q = 1.14. It is noticed that the
different lines begin to grow apart at T ≈ 100 MeV.
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Fig. 3. The solid colored line and symbols are the calculated entropy by HRG
compared with non-extensive entropy calculated for q = 1.14 and at µB = 0.3 GeV.
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4.2. Black-hole thermodynamics (BH)

The black-hole entropy is merely an application to the black-hole ther-
modynamics. The early study of Benkenstein and Hawking [16, 17] showed
that the black-hole entropy is given by

SBH =
A

4~
, (11)

where A is the area of the black-hole horizon. It is argued that the horizon
increases with the entropy. This was the kick-off of what has become black-
hole thermodynamics [18]. The modified black-hole thermodynamics due to
modified gravity has been studied in [19, 20].

In Ref. [19], the specific heat of the black hole is studied. It is shown
that a black hole is thermodynamically unstable. For this reason, we have
compared the black-hole entropy within the different statistics mentioned
above. One point of particular interest is the calculation of the modified
black-hole entropy due to a generalized uncertainty principle and quantum
correction (QGUP), see details [20, 21]

S

kB
= 1 +

β2E2
P

16π
− ln

(√
3

2π
βEP

)
− 15mPα

2

β
+O(α4) , (12)

where the Planck energy EP =
√

~c5
G , β = 1/T and Planck mass mP =

√
~c
G

and α is a free parameter.
It is known that black hole is a logarithm of a number of independent

states [22, 23]. In Ref. [24], ’t Hooft stated that the quantum states in a
finite region must have finite dimensions. It is supposed that those states
are associated with the two-dimensional boundaries of that region. Other
arguments of black-hole entropy have been suggested, such as the thermal
radiation with Unuruh effect in which the black-hole entropy arises from the
quantum field outside the event horizon [25]. Entanglement entropy can also
be considered as a part of the black-hole entropy [26] in which

Sent = Trρext ln ρext , (13)

where ρext is the reduced density matrix. For different reasons beside the
listed above, we elaborated a comparison between extensive and non-exten-
sive thermodynamics for a real thermodynamical system with temperature
T and entropy S (black-hole). To the authors’ best knowledge this is the
first time to classify the black-hole entropy between the different statistics
(extensive and non-extensive thermodynamics).
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Figure 4 shows the calculated black-hole entropy (dashed line) compared
with the non-extensive entropy calculated at q = 1.0001, 1.05, 1.14, respec-
tively. Again, the entropy at q = 1.2 has to be scaled to be compared with
the corresponding entropies at different q, lattice results and QGUP. The
modified black-hole entropy is calculated from Eq. (12) at α = 0.01. The
QGUP entropy are elaborated in units where (~ = C = G = kB = 1).
QGUP entropy is a good matching with the lattice and the non-extensive
entropy at q = 1.0001.
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Fig. 4. The online colored lines and symbols are the calculated black-hole entropy
compared with extensive and non-extensive entropy for different q = 1.0001, 1.05,
1.14, 1.2, and lattice results [15].

4.3. Freeze-out condition (S/T 3)

The temperature versus the baryon chemical potential, (T–µB), has been
studied at different freeze-out conditions such as 〈E〉〈N〉 ≈ 1 [27, 28] , and
for (S/T 3 = 7) [29, 30]. In the present work, T–µB for the freeze-out
condition from non-extensive entropy (S/T 3 = 7) is studied at different
values of q = 1.05, 1.14, 1.2. Figure 5 represents the temperature T versus
the baryon chemical potential µB at the freeze-out condition S/T 3 = 7.
These calculations are estimated for non-extensive entropy for different q at
the mentioned values. It shows very slight change in the temperature within
the chemical potential up to µB = 0.8 GeV.

It is clear that at q = 1.05, 1.14, 1.2, Tsallis temperature must be scaled
by 2 to be comparable with the experimental data [31, 32, 34] and [33].
The scaled temperature at q = 1.05 is well comparable with RHIC [34] and
SPS [31].
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Fig. 5. The symbols (colored on-line) are temperature versus the baryon chem-
ical potential, at different q = 1.05, 1.14, 1.2 calculated for freeze-out condition
S/T 3 = 7 compared with different experiments.

A parameterization of the temperature depending on the chemical po-
tential in Fig. 5 at q = 1.05, 1.14, 1.2 is done. This parameterization can be
written as a function of µB as follows:

Ts =
(
−11.1 µ2B − 38.1 µB + 177.4

)
, q = 1.05 , (14)

Ts =
(
−8.1 µ2B − 21.6 µB + 139.1

)
, q = 1.14 , (15)

Ts =
(
−5.6 µ2B − 13.5 µB + 115.1

)
, q = 1.2 . (16)

By substituting µB = 0 in Eqs. (14)–(16), the freeze-out temperatures
are obtained as 177.4, 139.1, and 115.1 MeV, respectively. At q = 1.14, the
scaled freeze-out temperature lies in the range of the thermal model freeze-
out temperature. In addition, it is remarkable that at q = 1.05, there is
better agreement at RHIC and SPS. From the parameterized relations (14),
(15) and (16) at µB = 0 (say Ts).

The freeze-out temperature Ts versus the entropic index q is extracted
from Fig. 5. These extracted values are plotted in Fig. 6. From this plot,
the parameterization of the line can be written as

Ts ∼ C exp−2.88 q , (17)

where C is a parameterization constant (C = 3.66× 103 MeV). There is no
limit apparent for µB at T = 0.
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Fig. 6. The symbols are the Tsallis temperature versus q (entropic index) estimated
from Fig. 5.

5. Conclusions

We have employed the hadron resonance gas model and non-extensive
statistics to describe heavy-ion collision thermodynamics. From this study,
it is concluded that the non-extensive thermodynamics should be scaled to
be comparable with the extensive thermodynamics at certain values of q.
The freeze-out temperature tends to be compatible with the corresponding
one in the extensive thermal model at entropic index slightly larger than 1.

We also conclude that the black hole appeared as an extensive system,
this is very clear from its closely coincidence to the extensive one and the
lattice results as shown in Fig. 4. Finally, we conclude that if the entropic
index is very close to 1, the non-extensive and extensive thermodynamics
are comparable as expected.
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