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The stochastic transport in a medium containing traps is described in
terms of a subordination technique in which the physical time is regarded
as a random quantity given by a density distribution. The traps are as-
sumed to be nonhomogeneously distributed and the subordination method
is modified by introducing a position-dependent intensity of a random time
distribution. The problem resolves itself to a Langevin equation with a
multiplicative noise which defines a process subsequently subordinated to
the random time. Moreover, the random stimulation in a form of the Lévy
stable distribution is assumed. In the absence of an external potential, the
diffusion process is described by the variance which can be finite because
an additional multiplicative noise is introduced at some position and ef-
fectively makes the system bounded. The diffusion exponent is evaluated
and it is demonstrated that it varies with the stability index only if traps
are nonhomogeneously distributed. The density distribution converges to
a stationary state when a potential is introduced and the relaxation pro-
cess is analysed for the linear case. The relaxation pattern for the long
time always corresponds to the asymptotics of the Mittag–Leffler function
but the effective relaxation time strongly depends on the nonhomogeneity
parameter.
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1. Introduction

The traditional approach assumes that stochastic quantities possess a fi-
nite variance and the processes are Markovian which corresponds to a local-
ity in time of the corresponding Fokker–Planck equation. Then, the central
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limit theorem is satisfied: the variables are normally distributed and the
variance for the diffusion processes rises linearly with time. In contrast to
that simple picture, the central limit theorem is violated in the presence of
the memory effects which results in a nonlinear variance growth (anomalous
transport). The jumping processes with memory are described by a contin-
uous time random walk theory (CTRW) where the waiting time distribution
has long tails and we observe a subdiffusion [1].

However, in the nonhomogeneous media, the time properties of the sys-
tem may depend on the environment structure. This may be the case, for
example, in disordered systems [2] where heterogeneously distributed traps
and defects are present. In particular, for a simple version of CTRW when
the waiting time distribution is Poissonian, w(t) = ν(x)e−ν(x)t, the rate
ν(x) is position-dependent because of the medium nonuniformity [3]. Then,
CTRW predicts the anomalous transport, in a form of both the subdiffusion
and the enhanced diffusion, even in the absence of any memory effects.

In nature, not only phenomena characterised by the normal distribution
are present, also distributions with long, power-law tails are observed [4] and
the variance diverges. Such processes can still be characterised by the stable
distributions but in a generalised form. They are defined, for a symmetric
case, by a characteristic function e−Kα|k|α (0 < α ≤ 2), where α is a stability
index and K = const; the asymptotics is algebraic, ∝ |x|−1−α. The folded
polymers constitute an example of a complex system where both long jumps
and a nonhomogeneous medium structure must be taken into account [5].

In this paper, we consider the stochastic processes characterised by the
memory effects, long distribution tails and a nonhomogeneous medium struc-
ture. We demonstrate that those spacial dependences, related to the trap
distribution, essentially influence the time characteristics of the system: time
dependence of the variance in the diffusion case, as well as that of the relax-
ation function when an external potential is included.

2. Stochastic equations

The convenient method to describe dynamics of a system characterised
by strong memory effects is a subordination technique [6]. Two times are
introduced. The dynamics, given by a Langevin equation, is determined in
terms of an operational, auxiliary time τ . During that evolution, the particle
is brought — from time to time — to a standstill due to the traps. The
resting time is random and the relation of τ to a physical time t is defined
by an adjoint Langevin equation. Therefore, the problem is formulated by
a set of two Langevin equations

dx(τ) = Fd(x)dτ + η(dτ) ,

dt(τ) = ξ(dτ) . (1)
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In the first equation, the random driving η(dτ) has a symmetric Lévy stable
distribution and Fd(x) stands for a deterministic force. The random time
generator also involves a Lévy distributed quantity: ξ(dτ) means a one-
sided, completely asymmetric process with the infinite mean; it is defined
by a subordinator h̄(t, τ) which has a Laplace transform Lu[h̄(t, τ)] = e−τu

β

(0 < β < 1). Then, h̄(t, τ) has long tails h̄(t, τ) ∝ t−β−1.
We would like to generalise the above formalism to the case when, in

some complex medium, traps are nonuniformly distributed [7]. We introduce
a function g(x) which serves as a variable intensity of the random time
generator. For this generalised case, Eq. (1) takes the form of

dx(τ) = Fd(x)dτ + η(dτ) ,

dt(τ) = g(x)ξ(dτ) , (2)

and g(x) ≥ 0. g(x) estimates a density of traps: the particle remains longer
in the area where this density is large. Since g(x) does not affect the dy-
namics in the first equation and is responsible only for the rests, there is no
correlation between the trapping time properties and the trajectory x(τ), in
contrast to the Lévy walk approach. In the latter case, the medium hetero-
geneity may be taken into account by introducing a variable β(x) [8]. Two
limiting cases can be distinguished. If g(x) is very small, t rises very slowly
with τ and, as a result, the particle instantly (in a sense of the physical
time t) leaves the region near x. On the other hand, a large g(x) means a
long trapping time.

The dynamics given by Eq. (2) can be expressed by an alternative system
of equations which involves a multiplicative noise in the Itô interpretation.
It reads

dx(τ) = Fd(x)ν(x)dτ + ν(x)1/αη(dτ) ,

dt(τ) = ξ(dτ) , (3)

where ν(x) is a positive function. Connection of the above sets of equations,
(2) and (3), can be demonstrated in the following way [7]. Let us assume
for a moment that there is no memory, i.e. the distribution of increments
dξ(τ) = ξ(dτ) does not have long tails and the mean value 〈ξ〉 exists. The
approximation of ξ by this mean allows us to evaluate the operational time
increment from the second equation (2). Inserting this result into the first
equation produces the first equation (3), where ν(x) = (〈ξ〉g(x))−1 and τ
is substituted by the physical time t. That equation includes the informa-
tion about the (nonuniform) trap distribution but neglects memory effects
which, in turn, can be approximately taken into account by a subsequent
subordination, according to the procedure (3). Equations (2) and (3) are,
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in fact, equivalent when one takes

ν(x) = g(x)−β , (4)

which has been recently proved for the Gaussian case [9]. The above re-
sult can be easily generalised to the general stable distributions and, in the
following, we will use the relation between g(x) and ν(x) in the form (4).

3. Diffusion

In the absence of any external potential, the memory in stochastic sys-
tems invokes the anomalous transport: the variance, if exists, rises nonlin-
early with time. On the other hand, if the random driving has long tails,
the variance is divergent (the accelerated diffusion). In this section, we dis-
cuss the diffusion properties of such a system for the case when the medium
is characterised, in addition, by a heterogeneous trap structure. We put
Fd = 0 in Eq. (3) and restrict our considerations to a power-law form of the
trap density

g(x) = |x|θ . (5)

The scaling dependence is natural in complex systems; it corresponds to
fractal structures [10] and is frequently observed in nature, e.g. in geology
where it describes the distribution of fracture lengths responsible for the
transport of a liquid in a rock [11].

The first equation (3) corresponds, in the diffusion case, to the fractional
Fokker–Planck equation with a variable diffusion coefficient [12],

∂p0(x, τ)

∂τ
=
∂α[ν(x)p0(x, τ)]

∂|x|α
. (6)

On the other hand, Eq. (6) directly follows from CTRW [13], mentioned in
Introduction, which is defined by the Poissonian waiting time and a jump-
size distribution Q(x) in a form of the Lévy α-stable symmetric distribution;
the process corresponds to an infinitesimal transition probability

ptr(x,∆τ |x′, 0) =
[
1−ν(x′)

]
∆τδ(x−x′)+Q(x−x′)ν(x′)∆τ (∆τ � 1) .

(7)
The density as a function of the physical time can be obtained from

p0(x, τ) by the integration over τ

p(x, t) =

∞∫
0

p0(x, τ)h(τ, t)dτ , (8)
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where h(τ, t) is an inverse subordinator. It determines a distribution of τ
(t serves as a distribution width) and is given by a Laplace transform
h(τ, u) = uβ−1 exp(−τuβ). The evaluation of p0(x, τ) requires a different
procedure for α = 2 and α < 2. In the former case, it can be exactly derived
and the direct calculation of the integral (8) yields [14]

p(x, t) = − 2

βt

(1 + θβ/2)νc+2c/β

Γ (−νc)
|x|(2+θβ)/β−1

× H2,0
1,2

 |x|(2+θβ)/β
(2 + θβ)2/βt

∣∣∣∣∣∣
(0, 1)

(c/β − νc/2, 1/β), (c/β + νc/2, 1/β)

 , (9)
where νc = 1/(2 + θβ) and c = β − β/(4 + 2θβ) − 1; the normalization
condition requires θ > −1/β. Equation (9) involves a Fox H-function and
is not transparent but p(x, t) has a simple stretched-Gaussian asymptotics,

p(x, t) ∼ |x|θt−
β(1+θβ)

(2+θβ)(2−β) exp
[
−A|x|(2+θβ)/(2−β)/t

β
2−β
]
, (10)

where A = (2/β − 1)/[β3/(2−β)(2 + θβ)2/(2−β)]. The variance, 〈x2〉(t) ∝
t2β/(2+θβ), may rise with time not only linearly but also slower and faster
than linearly, implying all kinds of the diffusion: we observe the normal
diffusion, subdiffusion and enhanced diffusion if θ is equal, larger or smaller
than −2(1− β)/β, respectively. For small (negative) θ and β close to unity,
diffusion approaches a ballistic limit. If β = 1, the above expression for
the variance does not apply; for θ = 0 a logarithmic correction emerges:
〈x2〉(t) ∝ t/ ln t [2].

In the case of α < 2, the exact evaluation of p0(x, τ) is not possible and
we will restrict our considerations to the asymptotic limit of large |x|. Due
to the long tails of the distributions for Lévy flights, the variance is infinite
for any time which property leads to unphysical consequences when we are
dealing with a massive particle moving in the ordinary space. This difficulty
can be avoided when we introduce a truncation: the far tail of the distri-
bution is removed or substituted by some fast falling function [15]. Then,
the features of the Lévy flights — such as a power-law shape of the distri-
bution — can still be preserved though the distributions actually converge
(typically very slowly) to the normal distribution, according to the central
limit theorem. This convergence does not take place when, instead of the
truncation procedure, a multiplicative noise is introduced. Let us consider
a set of equations

dx(τ) = f(x)η(dτ) ,

dt(τ) = g(x)ξ(dτ) , (11)
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where f(x) is a decreasing function. Then, the finiteness of variance fol-
lows from the suppressing of the random driving by a variable intensity and
the statistics remains intact. However, the distribution shape qualitatively
depends on the interpretation of the stochastic integral corresponding to
the multiplicative noise f(x) and, in fact, Eq. (11) is meaningless as long
as we do not determine this interpretation. The question is whether f(x)
should be evaluated at a time before the random force acts (Itô), after that
or somewhere in-between, e.g. in the middle point (Stratonovich). The in-
terpretation dilemma is well-known for the Gaussian processes. Then, the
Stratonovich interpretation constitutes a white noise limit of the coloured
noises and the standard calculus is applicable: in one dimension, the Lange-
vin equation can be transformed to an equation with the additive noise.
Those properties are not obvious for the Lévy flights, and in this case, em-
ploying a Marcus interpretation has been suggested [16]. However, in prac-
tice, applying the standard calculus seems to work well and comparison of
the density distributions obtained by a variable change with the numeri-
cal simulations by means of the Stratonovich prescription exhibits a perfect
agreement [17]. On the other hand, the ordinary rules of the calculus are
valid if one regards the white noise η as the limit of a coloured noise [18].

To demonstrate the influence of the multiplicative noise in the Stratono-
vich interpretation on the density slope, first, we assume f(x) = |x|−γm .
Then, the transformation x→ y = 1

1+γm
|x|1+γmsignx results in a Langevin

equation (for y(τ)) with the multiplicative noise in the Itô interpretation
and the corresponding Fokker–Planck equation can be solved in a limit of
small wave numbers [14]. The integrating over τ and transforming back to
the variable x yields the final density p(x, t) and the asymptotics reads

p(x, t) ∝ tβcθ |x|−1−α−αγm , (12)

where cθ = 1/(α + θβ/(1 + γm)). Then, the variance is finite if γm >
2/α− 1 and its direct evaluation yields 〈x2〉(t) ∝ t2βcθ/(1+γm) which implies
subdiffusion. That behaviour is possible due to a nonlocal character of
the multiplicative term for the Stratonovich interpretation: the diminishing
of the noise intensity with the distance is then taken into account in the
evaluation of the stochastic integral, making the variance finite and slowing
down the transport. This is not the case for the Itô interpretation when
the slope of the distribution tail is the same as that for the driving noise:
p(x, t) ∝ |x|−1−α for any γm. The comparison of the above expression with
Eq. (12) discloses the essential difference between both interpretations which
cannot be removed by the addition of a drift to the stochastic equation since
then, the density would converge to a stationary state.
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Next, let us assume f(x) in the form of

f(x) =

{
1 for |x| ≤ L
Lγm |x|−γm for |x| > L

(13)

which can be interpreted as a consequence of the fact that the medium has
a limited size. In the bulk (|x| < L), the dynamics is driven by the additive
noise whereas at the boundary, a multiplicative noise in the Stratonovich
interpretation is switched on; then, the external region represents a diffused
boundary. Moreover, traps are distributed according to g(x) in both regions
and γm must be sufficiently large to ensure the finite variance. f(x) in
the form of (13) has been introduced rather phenomenologically but it is
physically natural. First of all, when we think about disordered media, the
medium structure is expected to be more complex near the surface that in
the bulk — due to a possible presence of impurities, defects and fractures.
The additive noise may not be sufficient to describe such a complicated
system, and a generalisation to take into account a position dependence
of the random stimulation may be necessary. Moreover, there exists an
experimental evidence that the multiplicative noise should be introduced
near the boundary [19].

Equation (11) for f(x) in the form of (13) can be analytically solved for
θ = 0. Two cases are distinguished. For a relatively small time, the diffusion
takes place mainly in the bulk and role of the boundary resolves itself to
suppressing the long tails of the noise; then, we obtain the same result as for
the Gaussian case: 〈x2〉(t) ∝ tβ . On the other hand, in the long time limit,
the transport in the region of the diffused boundary is important and a direct
calculation yields 〈x2〉(t) ∝ t2β/α(1+γm). The motion is subdiffusive and
slower than for the diffusion in the bulk. The general case θ 6= 0 can be solved
only numerically [20], since the transformation x→ y becomes complicated
for f(x) in the form of (13). However, if |x|/L is large, the relation between
x and y assumes a scaling form, |x| = (1+γm)1/(1+γm)Lγm/(1+γm)|y|1/(1+γm).
Then, the multiplicative factor in the Langevin equation is a power law as
well and the problem is reduced to the case f(x) = |x|−γm , discussed above.
The direct calculation produces the variance〈

x2
〉

(t) ∝ t
2β

α(1+γm+θβ) , (14)

which means that the nonhomogeneity of the medium makes the diffusion
slower (θ > 0) or faster (θ < 0), compared to the homogeneous case. Equa-
tion (14) constitutes a limiting form of the variance, valid for a very long-time
evolution, and it is rather formal since corresponds to large distances which
can hardly be interpreted as the surface region. We present this result for
the sake of comparison with the numerical simulations which are presented
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in Fig. 1. They were obtained from a time evolution of Eq. (11) and the
multiplicative noise f(x) was evaluated from the definition of the stochastic
integral in the Stratonovich interpretation. Slope of the variance (14) agrees
with the numerical result if time is sufficiently large.
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Fig. 1. Variance as a function of time evaluated from numerical simulations for
γm = 2, L = 0.1, β = 0.5, θ = 0.5 and α = 1.5 (points). Slope of the straight line
follows from Eq. (14).

For the case of the general, nonscaling dependence y(x), the numeri-
cal analysis shows that the variance always has the form 〈x2〉(t) ∝ tµ and
µ depends on β, θ and α, whereas it is independent of L and γm. Figure 2
illustrates that power-law dependence and demonstrates that, in contrast
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Fig. 2. Left part: Variance as a function of time for γm = 2, L = 10, β = 0.5, θ = 2

and the following values of α: 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7 and 1.9 (dots, from top
to bottom). Straight lines represent fits to the data. Right part: Corresponding
slope of the time dependence of the variance tµ. Straight line µ(α) = 0.146+0.097α

is a fit to the data.
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to the homogeneous case, µ varies with α. This finding is presented in the
right part of Fig. 2; µ(α) exhibits a linear growth. As regards the depen-
dence on the other parameters [14], µ rises with β and the growth is faster
for smaller θ. Finally, µ diminishes with θ since for a large θ the trapping is
stronger (g(x) is larger).

4. Stationary states

Up to now, we discussed the diffusion case; the particle was subjected to
the random stimulation, without any external potential. Now, we switch on
a deterministic force in a form of a nonlinear oscillator

Fd = −λ|x|γsign(x) , (15)

where λ ≥ 0, and the system converges with time to a stationary state. Our
ultimate goal is to determine a relaxation process to that state as a function
of the physical time t, but first we must derive that state itself. Let us
consider a subordinated process which follows from Eq. (3) and is given by
the Langevin equation

dx(τ) = −λ|x|γν(x)sign(x)dτ + ν(x)1/αη(dτ) ; (16)

it corresponds to a Fokker–Planck equation

∂p0(x, τ)

∂τ
= λ

∂

∂x

[
|x|γν(x)sign(x)p0(x, τ)

]
+
∂α[ν(x)p0(x, τ)]

∂|x|α
. (17)

We will restrict our considerations to the asymptotic regime of large |x|
which means small wave numbers k. The Fourier transform from Eq. (17)
yields

0 = −λk ∂
∂k
F
[
|x|γ−1ν(x)p

(s)
0 (x)

]
− |k|αF

[
ν(x)p

(s)
0 (x)

]
, (18)

where we introduced a stationary limit p(s)0 (x) = limτ→∞ p0(x, τ). Since
ν(x) = |x|−θβ (θβ > −α) and p

(s)
0 (x) is expected in the power-law form,

the solution of the above equation requires the evaluation of the Fourier
transform from a power law. This can be performed [21] by means of a
Tauberian theorem [22] which constitutes an exact and unique relation be-
tween the density for |x| � 1 and its characteristic function for |k| � 1.
Applying this theorem in Eq. (18) and neglecting terms higher than |k|α
produces a final solution

p
(s)
0 (x) =

〈ν(x)〉
λπ

Γ (α) sin(απ/2) |x|−α−γ+θβ , (19)
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where the following conditions must be satisfied: γ > 1−α+θβ and γ > 1−α.
The slope rises with the potential parameter γ but it depends on the effective
potential: becomes stronger for a negative θ. Therefore, variance may be
finite even for relatively weak potentials. The constant coefficient in Eq. (19)
cannot be uniquely determined without additional assumptions since 〈ν(x)〉
depends on the density at small |x|. For θ = 0, 〈ν(x)〉 = 1 and we recover a
well-known result [23].

The next step is to derive a time-dependent solution, p0(x, τ). This can
be exactly accomplished for the linear case, i.e. for γ − θβ = 1, when the
transformed Fokker–Planck equation is of the form of

∂

∂τ
p̃0(k, τ) = −λk ∂

∂k
p̃0(k, τ)− |k|αF

[
|x|−θβp0(x, τ)

]
. (20)

Presence of the factor |k|α indicates a scaling form of the solution

p0(x, τ) = a(τ)p0(a(τ)x) = a(τ)−α|x|−α−1 , (21)

where a(τ) is an unknown function which can be determined by inserting
Eq. (21) into Eq. (20). By taking the Fourier transform, one can demonstrate
[21] that the equation is satisfied, provided we neglect the terms higher than
|k|α, and

a(τ) = A
[
1− e−λ(α+θβ)τ

]−1/(α+θβ)
; (22)

in the above expression

A =

(
πλ

h0Γ (α) sin(απ/2)

)1/(α+θβ)

(23)

and h0 =
∫
|x|−θβp0(x)dx.

Therefore, the problem is completely solved: both the position and time
dependence of the density is uniquely determined. However, the constant h0
has to remain unspecified unless we introduce additional assumptions about
the density form at small |x|. A natural assumption in this context could
be a stable distribution of p(x, t) which satisfies Eq. (20) in the asymptotic
limit if θβ < 1 [24]. Then, the solution of the Fokker–Plank equation can
be expressed in the form of the H-function [25]

p0(x, τ) =
1

α
a(τ)H1,1

2,2

a(τ)x

∣∣∣∣∣∣
(1− 1/α, 1/α), (1/2, 1/2)

(0, 1), (1/2, 1/2)

 . (24)

h0, which follows from the evaluation of the Mellin transform and the com-
parison with Eq. (21), reads: h0 = 2

παΓ (θβ/α)Γ (1 − θβ) sin(πθβ/2). For
θ = 0, h0 = 1 and the stable distribution (24) is exact for all values of both
arguments [26].
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5. Relaxation to the stationary state

Having the τ -dependent solution calculated, we are in position to deter-
mine a relaxation to the stationary state as a function of the physical time.
There are two typical relaxation patterns [1]. The ordinary Fokker–Planck
equation is characterised by single modes decaying exponentially (Debye re-
laxation). On the other hand, if the problem is nonlocal in time and the
Fokker–Planck equation contains a fractional derivative, a Mittag–Leffler
pattern is observed; asymptotically, this corresponds to a power-law decay.
In this section, we address the question how the relaxation pattern is af-
fected by the medium nonuniformity. We restrict our considerations to the
linear case and derive the density p(x, t) from p0(x, τ), Eq. (21), by applying
Eq. (8). The Fourier–Laplace transform from the density reads

p̃(k, u) =
1

u
− c|k|αuβ−1

∞∫
0

a(τ)−αe−τu
β
dτ , (25)

where c = π/Γ (α+ 1) sin(απ/2). The exponentiation and integration term-
by-term yields

p̃(k, u) =
1

u
−cA−α|k|α

1

u
+

∞∑
j=1

(−1)j

j!

uβ−1

uβ + λ(α+ θβ)j

j−1∏
i=0

(q − i)

 , (26)

where q = α/(α + θβ). The final expression follows from inverting of both
transforms

p̃(k, t) = 1− cA−α[1− χ(t)]|k|α , (27)

and contains the relaxation function

χ(t) =

∞∑
j=1

(−1)j−1

j!
Eβ

[
− λ(α+ θβ)jtβ

] j−1∏
i=0

(q − i) ; (28)

in the above formula, Eβ(x) stands for the Mittag–Leffler function. Since
χ(t) does not depend on h0, it is uniquely determined. The long-time limit of
χ(t) results from the asymptotic behaviour ofEβ(x): Eβ(−tβ) ∼ tβ/Γ (1− β).
The straightforward calculation yields χ(t) = Rt−β (t� 1), where

R =
[λ(α+ θβ)]1/β

Γ (1− β)

∞∑
j=1

(−1)j−1j1/β

j!

j−1∏
i=0

(q − i) . (29)

Therefore, the algebraic decay pattern appears independent of θ but the
actual relaxation time strongly varies with θ which is illustrated in Fig. 3.
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The particle is attracted to the origin for negative θ which hampers the
relaxation process and makes the relaxation time long. For positive θ, we
observe the opposite effect. The decline of R(θ) is especially strong for small
α and it becomes infinite when θ approaches the value −αβ.

-3 -2 -1 0 1 2 3 4 5

0.1

1

10

 

 

 =1.9
 =1.5
 =1.1
 =0.5
 =0.2R

Fig. 3. Function R(θ) calculated from Eq. (29) for β = 1/2, λ = 1 and some values
of α.

We note, finally, that the system of Langevin equations (3) for
Fd(x)ν(x) = 1−λx corresponds to a generalised Fokker–Planck equation [21]

∂p(x, t)

∂t
= 0D

1−β
t

[
λ
∂

∂x

[
xp(x, t′)

]
+

∂α

∂|x|α
(
|x|−θβp(x, t)

)]
. (30)

It contains two fractional derivatives: beside the Riesz–Weyl derivative, the
Riemann–Liouville derivative

0D
1−β
t f(t) =

1

Γ (β)

d

dt

t∫
0

dt′
f(t′)

(t− t′)1−β
. (31)

6. Summary and conclusions

We have discussed stochastic properties of the particle subjected to a
random force possessing long tails of the distribution and characterised by
a long memory. This memory results from the presence of traps which
are nonhomogeneously distributed: in the present study, algebraic with the
parameter θ. The problem has been formalized by a subordination technique
with a position-dependent random time distribution. In the absence of any
potential, the variance exists and the diffusion rate can be described by its
time dependence when one introduces a multiplicative noise near a boundary.
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The variance rises with time as a power law and the diffusion index µ can
be both smaller and larger than one indicating the anomalous transport. As
expected, it depends on θ and the memory parameter β but the observed
dependence µ(α) — µ rises linearly with the stability index — is in contrast
with the homogeneous case when µ = β. Therefore, the diffusion index can
vary with the stability index only if the trap distribution is nonhomogeneous.

In the presence of the external potential, the system converges with time
to a stationary state. The case of the nonlinear oscillator was analysed.
The asymptotics of the stationary solution is a power law and the potential
makes the tail steeper than for the force-free case which may result in finite
moments. However, also the medium heterogeneity influences the density
slope and, if θ is negative, the variance may be finite even for relatively
weak potentials. The pattern according to which the density converges to
the stationary state has been discussed for the linear case; it is always alge-
braic for a long time, corresponding to the asymptotics of the Mittag–Leffler
function, but the actual relaxation time strongly depends on θ. This depen-
dence is very strong for small α and the relaxation time becomes infinite
when θ → −αβ.
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