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Stochastic resonance is a prominent effect consisting in enhancement of
a response of a physical system to deterministic driving in the presence of
noise. It demonstrates a constructive role the noise may play in increas-
ing the sensitivity of the system to weak signals, and emerges in different
theoretical models and experimental situations. We consider this effect
in a periodically modulated two-dimensional double-well potential under
the influence of an isotropic α-stable noise, and discuss the performance of
various measures used to describe the stochastic resonance in other setups.
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1. Introduction

Stochastic resonance [1–4], next to resonant activation [5], noise en-
hanced stability [6] and stochastic synchronization [7] is the most prominent
noise induced effect. Theory of the stochastic resonance intuitively explains
how noise can be used to enhance weak signals. In particular, it has been
suggested that occurrence of ice ages can be justified by this celebrated phe-
nomenon [8, 9]. Stochastic resonance has far-reaching biological implications
[10–12] and medical applications [13–16].

Stochastic resonance (SR) is an effect in which an optimal amount of
noise synchronizes and amplifies system’s response. Minimal SR setup con-
sists of a Brownian particle moving in a periodically modulated double-well
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potential. Noise present in the system, originating due to large number of
collisions of a test particle with its thermal bath, is an important model
component. Noise-induced barrier crossing events are crucial for occurrence
of SR. Typically, it is assumed that noise is white and Gaussian, meaning
that noise pulses are independent and they follow normal distribution. More
general situation occurs when noise pulses follow α-stable law [17, 18]. The
α-stable white noise is a generalization of the Gaussian white noise including
the former as a special limiting case. α-stable noises are capable to describe
out-of-equilibrium systems displaying heavy tailed fluctuations [17, 19–23].
Growing number of observations [24–30] demonstrates abundance of systems
displaying more general fluctuations, i.e. the so-called Lévy flights. Con-
sequently, noise-induced effects including stochastic resonance [31–34] and
resonant activation [34–43] have been also explored in systems perturbed by
Lévy noises.

Up to now, examination of the stochastic resonance focused on 1D sys-
tems mainly including Markovian and non-Markovian regimes [44] and their
entropic extensions [45, 46]. Here, we make a next step, i.e. we extend
the system spatial dimension to two. Consequently, after exploration of 2D
problems: resonant activation [47], stationary states [48] and escape kinetics
from bounded domains [49, 50], we explore properties of the stochastic res-
onance in a 2D system. The studied model not only advances examination
of the stochastic resonance but also extends our understanding of stochastic
dynamics of multidimensional systems. The studied setup, required theory
and main results are presented in Model and results (Sec. 2). The paper is
closed with Summary and discussion (Sec. 3).

2. Model and results

Let us consider a 2D motion of a particle subjected to the bi-variate
α-stable Lévy-type noise

dx

dt
= −∇V (x) +A0 sin(Ωt)x̂+ σζα(t) . (1)

Equation (1) can be rewritten as

dx = −∇V (x)dt+A0 sin(Ωt)dtx̂+ σdLα(t) , (2)

where V (x) is a static, 2D double-well potential

V (x, y) =
b

4
x4 − a

2
x2 +

b

4
y4 . (3)

In Eq. (2), dLα(t) represents stochastic integration with respect to the
α-stable motion Lα(t) [17] and x̂ is a unit vector along x-axis. In order
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to maintain double-well type of the potential (3) parameters a and b need to
be positive. Within the simulation, they have been set to a = 128, b = 512
and A0 = 8. As in 1D, the bi-variate α-stable noise ζα(t) is a formal time
derivative of the bi-variate α-stable motion Lα(t). Therefore, increments
∆Lα(t) = Lα(t+ ∆t)−Lα(t) of the α-stable motion Lα(t) are independent
and distributed according to the bi-variate α-stable density, which has the
characteristic function

φ(k) =



exp

{
−
∫
Sd

|〈k, s〉|α
[
1−isign(〈k, s〉) tan πα

2

]
Λ(ds) + i

〈
k,µ0

〉}
for α 6= 1 ,

exp

{
−
∫
Sd

|〈k, s〉|
[
1+i 2π sign(〈k, s〉) ln(〈k, s〉)

]
Λ(ds) + i

〈
k,µ0

〉}
for α = 1 ,

(4)
where 〈k, s〉 represents the scalar product, Λ(·) stands for the spectral mea-
sure on the unit circle S2 of R2 and µ0 is a vector in R2, see [17]. The spectral
measure Λ(·) replaces skewness and scale parameters which characterize 1D
α-stable densities [17, 18]. Bi-variate α-stable density is said to be sym-
metric if the spectral measure is symmetric, see [17, 51, 52]. The bi-variate
α-stable motion Lα(t) can be generated by general methods described in
[17, 53, 54].

The noise-driven dynamics of 2D systems perturbed by bi-variate α-stable
noises is determined by the spectral measure Λ(·). Various choices of spec-
tral measures result in different bi-variate α-stable noises and, consequently,
in different (fractional) diffusion equations. Here, we use the uniform contin-
uous spectral measure only. The uniform continuous spectral measure Λ(·)
corresponds to the situation when α-stable densities are spherically symmet-
ric, i.e. they depend on |x| only. In such a case, the Langevin equation (1)
is associated with the following fractional diffusion equation [55–57]

∂p(x, t|x0, t)

∂t
= ∇ · [∇V (x, t)p(x, t|x0, t))]− σα(−∆)α/2p(x, t|x0, t) , (5)

where −(−∆)α/2 is the fractional Riesz–Weil derivative (Laplacian) defined
via its Fourier transform [57]

F [−(−∆)α/2p(x, t|x0, t)] = −|k|αF [p(x, t|x0, t)]

and V (x, t) is a time-dependent potential V (x, y, t) = b
4x

4 − a
2x

2 + b
4y

4 −
A0x sin(Ωt)x̂. Consequently, the studied system is determined by a 2D
potential and 2D noise with not independent components.
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In order to measure the strength of stochastic resonance, one needs to rely
on various measures. Most common are quantifiers based on power-spectra:
signal-to-noise ratio or spectral power amplification [2]. Nevertheless, there
are other measures which can be calculated without using Fourier methods,
e.g. periodic response [2], area under the “first peak” of the residence time
distribution [58] and probability of given number of transitions per period
of the external modulation [59, 60]. Here, we verify applicability of these
methods to systems perturbed by bi-variate α-stable noises. All mentioned
measures are defined for 1D systems. Consequently, in order to use them,
a bi-variate trajectory x(t) needs to be transformed into 1D signal. For
example, instead of a full trajectory x(t) = (x(t), y(t))), one can use x(t)
only, i.e. the component of the full 2D trajectory which is parallel to the
direction of the external periodic perturbation A0 sin(ωt).

The stochastic resonance is studied numerically by means of Monte Carlo
methods. Main simulations were performed with the integration time step
∆t = 10−3 and averaged over N = 104 repetitions. Initially, a random
walker was located in the x(0) = (−

√
b/a, 0) with a = 128 and b = 512,

i.e. in the left potential well. The period, TΩ, of the external modulation is
TΩ = 1, i.e. Ω = 2π and its amplitude A0 = 8.

Figures 1 and 2 present sample trajectories of the process x along with
respective x-components, i.e. x(t). With increasing value of the stability
index α, long jumps become less probable and trajectories are more localized
in the vicinity of minima of the 2D potential.

In the long time limit, the process x(t) looses the memory about its
initial condition and 〈x(t)〉 becomes a periodic function of time

〈x(t)〉 = Amax sin(Ωt+ φ) . (6)

Therefore, the average position 〈x(t)〉 follows the periodicity TΩ of the ex-
ternal periodic modulation A0 sin(Ωt). Figure 3 presents sample average po-
sition 〈x(t)〉 for various values of the stability index α (various panels) and
different values of the scale parameter σ (various curves). For low values of
the stability index α, larger fluctuations of average position are visible. Fig-
ure 3 demonstrates that, like in the classical stochastic resonance, changes
in the scale parameter modify strength of the periodic response. This fact is
further confirmed in Fig. 4 which presents amplitude of the periodic response
Amax, see Eq. (6), as a function of the scale parameter σ. The amplitude
Amax depends in the non-monotonous way on the scale parameter, i.e. there
exists an optimal value of the scale parameter σ for which the periodic re-
sponse is the strongest. For low values of the stability index α, the optimal
scale parameter can be very large. The location of the maximum of the
periodic response Amax does not need to coincide with the point for which
〈τ〉 = TΩ/2, compare Figs. 4 and 5.
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Fig. 1. Sample 2D trajectories for various values of the stability index α: α = 0.5

(left top), α = 1.0 (right top), α = 1.5 (left bottom) and α = 1.9 (right bottom).
The scale parameter σ = 3.

The domain of motion and probability of visiting points in space are
determined by the combined action of the deterministic force (potential) and
random force (noise), see Fig. 1. The deterministic double-well bi-variate
potential has two minima which define two states of the processes x(t). It
can be assumed that the border between states is defined by the x = 0 line,
i.e. when x > 0, the process is in the “right” state, while for x < 0, it is in
the “left” state. Such definition introduces possibility of multiple recrossing
events when x ≈ 0. Therefore, in order to discriminate states in a robust
way, it is necessary to introduce additional constraints. For example, it is
possible to assume that a couple, let say two or four, consecutive values of
x(t) are at the same side of x = 0 line in order to assure transition between
states. Here, we have used alternative approach. A transition between
states takes place when a particle crosses x = 0 and reaches the vicinity of
the another potential minimum. Such an approach produces results which
are coherent with the former approach, see [35], due to the fact that motion
to a minimum of the potential is significantly faster than surmounting the
potential barrier.
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Fig. 2. x-components of sample 2D trajectories for various values of the stability
index α: α = 0.5 (left top), α = 1.0 (right top), α = 1.5 (left bottom) and α = 1.9

(right bottom) corresponding to 2D trajectories from Fig. 1.
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Fig. 3. Average position 〈x〉 for various values of the stability index α: α = 0.5

(left top), α = 1.0 (right top), α = 1.5 (left bottom) and α = 1.9 (right bottom).
Various curves correspond to various values of the scale parameter σ.
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Fig. 4. Amplitude of the periodic response Amax as a function of the scale parameter
σ. Various curves correspond to various values of the stability index α: 0.5, 1.0,
1.5 and 1.9.
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Fig. 5. The mean residence time in any of states for the escape from the periodically
modulated potential (3), i.e. V (x) − A0x sin(Ωt)x̂. Various curves correspond to
various values of the stability index α.

Figure 5 presents the average residence time for both (left and right)
states, i.e. it is the average of time intervals τ between transitions from a
state to the other state. The mean residence time is a decreasing function
of the scale parameter σ. This is the direct consequence of the fact that if
the noise pulses are distributed according to a distribution with larger scale
parameter σ, transitions between states occur more often. More intriguing
is the role of the stability index α. For low values of the scale, parameter σ
decrease of the stability index α accelerates escape kinetics (lowers the mean
residence time). In the opposite limit of large values of the scale parameter,
the mean residence time is an decreasing function of the stability index α.
This indicates non-trivial interplay between the scale parameter (width of
the distribution) and the stability index (tails of the distribution). The solid
line in Fig. 5 shows 〈τ〉 = TΩ/2 = 1/2 condition. This line demonstrates
where a simple condition of the stochastic resonance 〈τ〉 = TΩ/2 is fulfilled,
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i.e. when, on average, a particle can switch between states during a half
of the modulation period [2]. Putting it differently, it shows when there
is the best synchronization between the external driving and the particle
position x(t).

Next possibility to quantify the stochastic resonance is to use the res-
idence time distributions [2, 58]. Residence time distribution is sensitive
to the barrier modulation process because escape events are most likely to
take place when the relative height of the barrier separating minima is the
lowest. Therefore, one can expect that the particle jumps from the left to
the right state when the relative barrier height is minimal. Then, it waits
half a driving period in the right state for the optimal returning possibility.
Consequently, after a whole driving period, the well-synchronized particle re-
turns to the initial potential well, while jumps are performed over the lowest
possible relative barrier heights. In cases of worse synchronizations, particle
waits for optimal opportunities which occur every period of the driving force.
Therefore, in the Gaussian stochastic resonance, residence time distributions
show clear peaks at (n+1/2)TΩ, where n = 0, 1, 2, . . . The n = 0 peak is the
one fulfilling the condition 〈τ〉 = TΩ/2. Sample residence time distributions
are plotted in Fig. 6. The multi-modality of the residence time distribution
disappears with decrease of the stability index α. The reminiscence of this
tendency is visible for α = 1.9. For smaller values of the stability index α,
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Fig. 6. Residence time distributions, i.e. P (t/TΩ) for various values of the stability
index α: α = 0.5 (left top), α = 1.0 (right top), α = 1.5 (left bottom) and
α = 1.9 (right bottom). Various curves correspond to various values of the scale
parameter σ.
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noise induced fluctuations of x(t) are large enough to destroy multi-peaked
dependence of the residence time distribution. Nevertheless, the area S1
under the “first peak”

S1 =

0.75∫
0.25

P (t/TΩ)dt (7)

displays typical, non-monotonous dependence on the scale parameter σ. Fig-
ure 7 presents the area S1 calculated according to Eq. (7). Integration limits
in Eq. (7) are shifted in comparison to [0, TΩ/2] in order to remove the bias
introduced by the exponential background of the residence time distribution.
Optimal values of the scale parameter σ are coherent with results presented
in Fig. 5 because the mean residence time 〈τ〉 is related to the residence time
distribution.
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Fig. 7. Area under the “first peak” of the residence time distribution, i.e.∫ 0.75

0.25
P (t/TΩ)dt, as a function of the scale parameter σ. Various curves correspond

to various values of the stability index α: 0.5, 1.0, 1.5 and 1.9.

Finally, Fig. 8 presents a probability of given number of transitions per
period of the external modulation which can be also used to detect the
stochastic resonance. According to this measure, the stochastic resonance
is observed when a probability of two transitions, P (2), per period of the
external driving is maximal. Such a definition is coherent with the intuitive
criterion of the stochastic resonance, i.e. 〈τ〉 = TΩ/2 because two transi-
tions means that average residence time in any of potential wells is TΩ/2,
compare top panel of Fig. 8 with Figs. 5 and 7. Subsequent (middle and
bottom) panels of Fig. 8 present probability of three (P (3)) and four (P (4))
transitions per period of the external modulation. Maxima of P (3) and P (4)
are observed for larger values of the scale parameter σ than the maximum of
P (2) due to the fact that larger scale parameter facilitates escape kinetics.
This is further manifested by the decay of the mean residence time with the
increase of σ, see Fig. 5.
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Fig. 8. Probability of given number of transitions per period TΩ = 2π/Ω of the
external driving force as a function of the scale parameter σ. Various panels cor-
respond to different number of transitions from 2 to 4 (from top left to bottom).
Various curves correspond to various values of the stability index α: 0.5, 1.0, 1.5
and 1.9.

Table I summarizes main information about quantifiers of the stochastic
resonance. In particular, it shows values of the scale parameter σ for which
the condition 〈τ〉 = TΩ/2 is fulfilled. Moreover, it presents optimal values
of the scale parameter resulting in maximal values of the periodic response
(Amax), area under the “first peak” of the residence time distribution (S1) and
probability of given number of transitions per period of the external driving

TABLE I

Values of the scale parameters optimizing (maximizing) various criteria of the
stochastic resonance: periodic response (Amax), area under the “first peak” of the
residence time distribution (S1) and probability of a given number of transitions
(P (2), P (3), P (4)).

α 〈τ〉 = TΩ/2 Amax S1 P (2) P (3) P (4)

1.9 2.6 3.0 2.6 2.6 3 3.3
1.5 3 5.0 3.1 3 4.1 4.5
1.0 4.5 10.0 4.7 4.4 7 9.5
0.5 20 8.5 20 20 30 30
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TΩ (P (2), P (3) and P (4)). Among applied stochastic resonance quantifiers,
only the periodic response does not use the information about the state of
the processes. Remaining measures (including 〈τ〉 = TΩ/2 condition) rely
on the discrimination between states. As it can be deducted from Table I,
the condition 〈τ〉 = TΩ/2 and quantifiers S1 and P (2) give quantitatively
similar values of the optimal scale parameter. The periodic response Amax

gives significantly different results than other measures used.

3. Summary and conclusions

Using extensive computer simulations, it has been shown that in a two-
dimensional system driven by bi-variate α-stable noise stochastic resonance
can be successfully detected. As a model, we have used the 2D analog of 1D
double-well potential, V (x, y) = b

4x
4 − a

2x
2 + b

4y
4 which is subjected to the

additional external periodic modulation A0x sin(Ωt)x̂. Due to the form of
the potential, the deterministic force acting on a particle separates into in-
dependent parts acting along both axes. This, however, does not reduce the
problem to a one-dimensional one for the x-direction, since the projections
of bi-variate isotropic α-stable noises on the axes result in one-dimensional
α-stable noises, which are not independent. Consequently, the dimensional-
ity of the system cannot be reduced, although the dependence between the
components of particle position x(t) and y(t) is introduced by a bi-variate
α-stable noise only. For this system, we demonstrated that periodic re-
sponse, area under the “first peak” of the residence time distribution and
probability of given number of transitions per period of the external driving
are perfectly applicable for detection of the stochastic resonance driven by
α-stable noises. These quantifiers provide robust measures of the stochastic
resonance which can be used in systems displaying heavy-tailed fluctuations.
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Science Center (2014/13/B/ST2/02014) and by the DFG grant SO 307/4-1.
Computer simulations have been performed at the Academic Computer Cen-
ter Cyfronet, Akademia Górniczo-Hutnicza (Kraków, Poland) under CPU
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