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This study is devoted to reveal a simple self-healing, diffusive–dissolu-
tion-like mechanism of transient pore’s closing in a model spherical vesicle.
It is based on a novel thermodynamic mechanism invented in terms of struc-
tural flux–force relations, with Onsager’s coefficients reflecting the main-
and cross-effects of nearly one-micrometer-in-diameter pore formation (of
linear cross sectional size r) immersed within the membrane of a spherical
vesicle of at least several tens of micrometer in its radius (R). The closing
nanoscopic limit is given by r → 0. The pore’s formation is envisaged as a
kind of bending and excess-area bearing (randomly occurring) failure, con-
trasting with a homogenizing action of the surface tension, trying to recover
an even distribution of the elastic energy accumulated in the membrane.
The failure yields at random the subsequent transient pore of a certain
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characteristic length along which the solution leaks out, with some appre-
ciable speed, until the passage is ultimately closed within a suitable time
interval. Inside such a time span, the system relaxes back toward its local
equilibrium and uncompressed state until which the pore dissolves, and the
before mentioned excess area vanishes. The (slow and non-exponential)
relaxation–dissolution behavior bears a diffusion fingerprint, and it can be
related with varying osmotic-pressure conditions. Useful connotations with
a qualitatively similar biolubrication mechanism in articulating (micelles-
containing) systems, down to the nanoscale, have also been pointed out.

DOI:10.5506/APhysPolB.47.1341

1. Introduction

The vesicles are round, curvilinear and membranous systems of very
wide application in research and biotechnology [1]. Recently, there is a huge
interest in vesicular drug delivery systems enabling to control amount of
substance transported to the specific disease site [2]. Moreover, in nature,
they perform a variety of functions — vesicles are basic tools used by the cell
for organizing cellular substances. Vesicles are also involved in metabolism,
transport, and act as chemical reaction chambers, etc. They are merely
composed of a multilayer membrane-type and sphere-like envelope, enclos-
ing typically a polyelectrolyte inhomogeneous solution, capable of agitating
dynamically the membrane to succeed in creating a temporary leakage, i.e.
a transient pore [3]. (In Section 3.5, we argue that such pores can have a
positive impact on lubricating properties of natural joints.) There are many
possible mechanisms of pore opening/closure [4, 5] and these phenomena is
a very complex problem.

There are many types of vesicles: vacuoles, lysosomes, transport and
secretory (fusion) vesicles, etc., differing with respect to structure and ap-
plication. As concerns the membranous envelope’s types already mentioned,
and their roles played when forming the transient pores, occurring as a
membrane-biomatter density fluctuation, one can generally assign them to
two principal groups. The first group includes the unilamellar vesicles,
whereas the second contains multilamellar (giant) vesicles — the latter is
typically more robust and bigger, especially when accommodating to cer-
tain mechanical stress-strain and/or vigorous solution’s flow conditions [6].

This work considers a case of vesicle’s pore closure, i.e. when radius
of a pore attains the nanoscopic limit of r → 0, see Fig. 1, as conducted
by a mechanism reminiscent of the one unveiled as the nucleus’ diffusion–
dissolution phenomenon [7]. The paper is structured as follows. In Section 2,
the so-called Onsager’s structural flux-force effects on the thermodynamics
of the pore–vesicle system formation, involving linear mechanism coming
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out from respective free-energy (or, entropy production) contributions, are
considered. In Section 3, a simplified view of the pore’s collapse when its
aperture tends to zero, as argued in terms of membrane’s surface-tension
and bending cooperation, is discussed. Some comparison with an “inverse”
process, that means a diffusion-controlled nucleus formation, is provided
in the same section, in a sketchy way. The study ends with a summary,
Section 4.

Fig. 1. (Color online) Artistic depiction of the system of interest. Vesicle is com-
posed of phospholipid molecules (big circles/green) which form a curvilinear bilayer.
The opening and closing of a randomly emerging pore is associated with a release
of vesicle’s core constituents such as: water dipoles (blue) and (merely small, e.g.,
natrium- or hydrogen-) ions (small circles/red and pink).

2. Small system irreversible thermodynamics
of the relaxation of transient pores

Biological vesicles are always surrounded by a fluid in physiological condi-
tions. Also in experiments, the behavior of different parameters and aspects
of vesicles can be only observed when the system is in close relation with
the heat bath, imposing on it the temperature, pressure and, in general,
chemical conditions through the chemical potential. Due to this fact, the
dynamics of transient pore, for instance, should be described by a theory
able to cope with the coupling of the system with the surroundings.

Having in mind the increasing interest on vesicles as drug delivery sys-
tems, it is worth to examine how the dynamics of transient pores in the
membrane of the vesicle can be controlled, as it may constitute a mecha-
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nism for the capture or delivery of drugs. In this section, we will review
the main aspects of irreversible thermodynamics of small systems recently
proposed for the description of these phenomena [8].

The main question to consider is that the opening of a pore in the mem-
brane of a vesicle introduces a new thermodynamic variable for describing
the state of the vesicle, named, the radius of the pore, r(t). Once formed the
pore in a random fashion, experimental observations show that the radius
of the vesicle, R(t), decreases irrespective of the growth and collapse dy-
namics of the pore. Therefore, since the area, A(r,R), and volume, V (r,R),
of the pore may be described in terms of the radius of the vesicle and of
the radius of the pore for spherical-like vesicles, then, at constant tempera-
ture and total volume of the total system (vesicle plus bath), the dynamics
of the variables r(t) and R(t) can be adequately described in terms of the
Helmholtz free energy F (r,R), that in the present case will be a function of
both radii considered.

From equilibrium thermodynamics we know that, in the state of equilib-
rium, the total differential of the Helmholtz free energy F (r,R) should van-
ish: dF = 0. In contrast, for a nonequilibrium, relaxation process, the total
differential of the Helmholtz free energy should be negative dF (r,R) < 0.
This condition is a consequence of the second law of thermodynamics for
systems in constant volume, and it can be shown that dF (r,R) = −TdiS,
see Ref. [9], where diS is entropy produced during the infinitesimal trans-
formations dr and dR. Explicitly, these considerations lead to the general
expression for the entropy production per unit time [8]

T
diS

dt
= −dF

dt
= −∂F

∂r

dr

dt
− ∂F

∂R

dR

dt
. (1)

Assuming now that the thermodynamic fluxes dr/dt and dR/dt are propor-
tional to the thermodynamic forces ∂F/∂r and ∂F/∂R, the most general
linear relationships that can be established are [10]

dr

dt
= −Lrr

∂F

∂r
− LrR

∂F

∂R
, (2)

dR

dt
= −LRR

∂F

∂R
− LRr

∂F

∂r
, (3)

where the Lijs are the so-called Onsager’s phenomenological coefficients.
Additionally, these coefficients also obey the Onsager’s symmetry (tensorial)
relations Lij = Lji. These relations are associated with both main- and
cross-thermodynamic effects.

Choosing this coefficients as constants and neglecting cross effects leads
to a previous model proposed in the literature, see Ref. [11]. In Ref. [8], it
was shown by dimensional analysis that these coefficients should be inversely
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proportional to a product of dynamical viscosity (taken from Newtons’ law
for the laminar flow) and certain specific lengths. Respectively, the lengths
lis, being included in the Lijs, correspond formally to: (1) formation of
the pore (i → r or j → r); (2) formation of the vesicle (i→ R or j → R);
(3) some modus-vivendi compromise of creating a pore of diameter 2r within
the vesicle of radius R (i→ rR or i→ Rr; or, mutatis mutandis the j sub-
script follows the latter rule); the scalar (and, constant) value of solution’s
viscosity complement the aforementioned product; for details, see [8].

2.1. Free energy contribution and the linear form
of elementary vesicle’s area change

The general laws given by Eqs. (2) and (3) can be written explicitly after
considering that the free energy change of the system has four contributions:
dF = dFV + dFσ + dFB + dFl coming from volume (FV ), surface tension
(Fσ), bending curvature (FB) and edge tension (Fl),

dF = −∆PdVin + σ̃dA+ γdl , (4)

where σ̃ = σ + κB
R2 is total effective surface tension, κB is bending free

energy (σ — surface tension), γ is pore’s edge tension, and l = 2πr is the
pore contour length, Vin is a volume inside the vesicle (see Fig. 1), ∆P is
a difference between inside and outside pressure of the vesicle caused by
curvature of the membranous envelope. For the case of small pore’s radius
r/R� 1, the free energy differential can be expressed as a function of r and
R as follows

dF = 4πR (2σ̃ −R∆P ) dR+ 2π (γ − σ̃r) dr . (5)

From [8], after employing a Maxwell’s relation, one provides σ =
(
∂Fσ
∂A

)
T,V

=

σc

(
A
Aeq
− 1
)
; σc stands for the characteristic (and, constant) surface tension

of the vesicle. After making use of A ≡ A(R, r) = A(r,R) = 4πR2 − πr2,
one can obtain

σ = σc

[
R2

R2
eq

− r2

4R2
eq

− 1

]
. (6)

In this study, we confront ourselves to the case in which a nearly constant
surface tension of the vesicle’s surface is to be approached, deciphering this
way a close-to-equilibrium state (at R ≈ Req) prone to a small excess area
to be assigned to the vesicle’s envelope. Therefore, we take in Eq. (6) and
just for its right-hand side parenthesis involved there that the expression in
it is going to approach unity. It immediately results in the following

R2

R2
eq

− r2

4R2
eq

= 2⇒ R2 =
(r

2

)2
+ 2R2

eq , (7)
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which also expresses the late-stage vesicle formation; note that R > Req

even though the pore’s aperture r → 0. In addition, notice that the elemen-
tary change in vesicle’s area is a linear differential form of both R and r,
namely dA(R, r) ≡ dA(r,R) = 8πRdR − 2πrdr. This mathematical ob-
servation suits very well to the linear Onsager thermodynamic framework,
Eqs. (2)–(3).

In order to see how the global late stage dynamics of the vesicle with
the effect of inclusion of its transient pore in a collapsing state of interest
are developed, we will further base on hydrodynamic stationary Navier–
Stokes-type approach, which results in specifying the corresponding osmotic
pressure difference as ∆P = −3ηsR2

r3
Ṙ, see [8].

Using these results in equations (2) and (3) for the thermodynamic fluxes
one obtains the final coupled non-linear evolution equations for the pore and
vesicle radii

dr

dt
= 2πLrr (σ̃r − γ)− 4πRLrR (2σ̃ −R∆P ) , (8)

dR

dt
= −4πR (2σ̃ +R∆P ) + 2π (σ̃r − γ) . (9)

These equations, derived on the basis of a combination of Onsager–Prigogine
non-equilibrium thermodynamics constitute an adequate working version for
describing the kinetics of the collapse of transient pores in giant vesicles. In
figure 2, we show the numerical solution of Eqs. (8) and (9). In particular,
figures 2 (a) and (b) show the time evolution of both, the pore r(t) and the
vesicle R(t) radii. Several curves are represented showing the dependence
of the relaxation time on the viscosity of the solvent in which the vesicle is
immersed and, as a consequence, how the shape of the corresponding kinetics
become affected. As observed by Dimova and collaborators [12], vesicles in
low viscosity fluids present relaxation times lower than a second. Here, we
compared the predictions for the viscosities shown in figure 2. A viscosity
corresponding to η = 32 cP, cf. Table I, is similar to the one used in the
experiments of reference [11]. Figures 2 (c) and (d) show the evolution in
time of the surface tension and the pressure difference. Once again, the
evolution is slower for a larger viscosity of the medium. These results are
relevant because they show one of the possible forms in which the small
system, the vesicle, is coupled to the heat bath, that is, the characteristic
relaxation times of the variables involved for describing the state of the
system depend, in turn, on the characteristic dissipation mechanism — in
the present case, the one based on viscosity of the solvent.
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Fig. 2. Time evolution of the different parameters used to characterize the state of
the vesicle during the collapse of a transient pore. (a) The radius of the pore for
different values of the viscosity of the solvent. (b) The radius of the vesicle for the
same set of viscosity values as in (a). (c) Time evolution of the effective surface
energy (bending energy and surface tension) and (d) time evolution of the pressure
difference between the inner and outer fluid.

TABLE I

The physical quantities used correspond to fittings of the experimental data re-
ported in [1]. The viscosity η0 takes the values η0 = 5, 12, 22, 32, 42 and 52 cP
to illustrate how the kinetics of the pore becomes retarded when increasing the
friction with the host fluid. Req is the initial equilibrium value of the non-stressed
vesicle and R0 is the initial radius of the vesicle in the stressed condition, that is,
just before the initiation of the pore rupture.

ηs [cP] Req [µm] κB [10−20J] σc [10−5N·m] γ [pN] r0 [µm] R0 [µm]

η0 19.6 29 2.9 0.92 1.10 20.5

3. Simplified picture of the pore’s closing when its aperture tends
to zero as viewed in terms of membrane’s surface-tension

and bending cooperation

Let us rewrite Eq. (9) to the form, after using previously defined param-
eters as

dR

dt
= −4πRLRR

[
2
(
σc+

κB
R2

)
+ 3Rηs

r2

R3

dR

dt

]
+ 2πLRr

[
r
(
σc+

κB
R2

)
− γ
]
.

(10)
Let us then assume the case of pore closure, namely that a nanoscopic limit
of r ≈ 0 applies, then from Eq. (7), we can obtain that R2 ' 2Req and thus
from the equation

dR

dt
= −8πLRR

σcR
2
eq + κB

R
(11)
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after integration, one obtains

1

2
R2(t) =

1

2
R2

eq −
8π

ηsλ̃R

(
σcR

2
eq + κB

)
(t− teq) . (12)

In order to avoid a singularity in the effective surface tension conditions, the
line-tension term, involved in the right-hand side of Eq. (10), has to vanish
at the limit of r → 0 too. In other words, at the limit, the energy ascribed to
the pore’s line tension has to be absorbed completely by the effective surface
tension of the vesicle.

After multiplying both sides of Eq. (12) by 8π, we obtain an excess
surface term ∆A provided in the course of a time span ∆t = t − teq. Note
that ∆EσκB = σcR

2
eq + κB which provides that

∆A

∆EσκB
≈ ∆t

ηsλ̃R
(13)

applies. It is equivalent to claim that

4πR2(t) ' 4πR2
eq − 64π2∆A (14)

with a certain ∆A to be specified with an aid of Eq. (13) in the following
subsection.

3.1. Excess vesicle-membrane local area as an unveiling factor
of transient pore’s formation

After suitably rearranging Eq. (13), with the help of the so-defined ve-
locity of solution’s outflow through the narrow transient pore, namely

ṽR =
λ̃R
∆t

, (15)

with λ̃R — pore’s length, one defines ∆A, within a certain accuracy range,
by means of a simple energy-flow formula

∆A ≈ ∆EσκB
ηsṽR

. (16)

From Eq. (16), it follows that the local excess area ∆A is inversely propor-
tional to the product of solution’s dynamic viscosity (ηs) and the velocity
(ṽR) of solution’s outflow through the narrowing transient pore, and its
creation, as stated above, is provided thanks to the energy contribution
∆EσκB = σcR

2
eq +κB, being a sum of equilibrium surface tension and bend-

ing energetic contributions. It is due to the bending contribution that the
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pore is formed, what qualitatively explains its local curvilinear character,
going in parallel with the notion of the Gaussian curvature, attributable
to the surface tension modification here, the latter staying, according to
Kelvin–Laplace law, in close relation with the mean vesicle’s curvature, cf.
[13, 14].

3.2. Effect of liaison between membrane’s surface tension
and bending as causing the bending structural failure viewed

as the pore’s hydrodynamic formation

Thus, after accepting the rationale provided by the preceding subsection,
a definite pore’s closing appears to be effective if the nanoscale-geometric
condition of r → 0 goes in parallel with the diffusion–dissolution process of
the vesicle, as clearly suggested either by Eq. (14) or, more apparently, by
the analytical solution of R(t) presented by Eq. (12).

Since the overall pore’s (diffusive) collapsing effect goes by a nonequi-
librium thermodynamic mechanism, which yields, according to Eq. (16), a
primary energetic contribution to the area excess ∆EσκB , the pore closure
might go via an obvious limiting relation that ∆A → 0, suggesting that
∆EσκB → 0 too. It implies, as it has been already expected [8, 15], that
the energetic excess, available due to former liaison of surface tension and
bending, goes to zero. Following, in turn, relation (16), it would implicate
that the product of ηsṽR but reversed, appears to be really small in such
small-Re conditions (the Reynolds number can even be taken as Re ∼ 10−3),
and its depends upon the channel’s local curvatures viz. internal nano-
structural corrugations. After employing a definition of Re number [16], it
can be estimated that the hydrodynamic part of the quotient, involved at
the right-hand side of Eq. (16), obeys a proportionality relation

1

ηsṽR
∝ Re

r2

p̃R
, (17)

wherein p̃R is a Bernoulli-type dynamic pressure of the nano-flow, being of
the form of p̃R = (1/2)ρfluidṽ

2
R (ρfluid — (e.g., synovial or physiological [17])

fluid density), and assumed to be still of appreciable (albeit moderate) value
within the narrowing pore.

The self-healing mechanism of the pore’s closing, as anticipated here,
rests then upon a liaison of thermodynamic (energetic) and hydrodynamic
natural co-factors driving together the cessation of the pore’s dynamics. It is
self-evident when inspecting again the small-Re conditions in the context of
Eq. (17), largely assisted here by the thermodynamic-geometric precondition
of closure, i.e. r → 0.
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3.3. Temporal behavior of the vesicle radius upon restituting its local
equilibrium state — a relaxation effect with diffusion fingerprint

Here, a comparison to the diffusion-limited dissolution process, as stud-
ied in [7] is legitimate to occur. The authors [7] considered an interface-
hydrodynamic model as applied to sub-micrometer droplet’s evaporation.
They have got a solution to the problem, qualitatively of the same form as
ours, rearranged accordingly

R2(t) = R2
eq +

16π

ηsλ̃R

(
σcR

2
eq + κB

)
teq −

16π

ηsλ̃R

(
σcR

2
eq + κB

)
t , (18)

cf. Section III in [7]. The process of their interest has been the thermal con-
ductance of the vapor through the interface, for which the thermal gradient
played the role of thermodynamic driving force. In our case, the correspond-
ing pressure difference ∆P = −3ηsR2

r3
Ṙ conducts the solution through the

pore. Its solely confirmed depiction is given by the hydrodynamic quotient
of Eq. (17), being largely damped, however, at the pore-closure stage.

3.4. Helpful (reverse) analogy with structural stability analysis
of growing spherical nuclei immersed in a diffusion field

Mullins–Sekerka instability problem concerns emergence and growth of
a spherical nucleus in a diffusion regime. The evolution of the spherical nu-
cleus, given in terms of its radius, Rn(t), assumed that the surface perturba-
tion (very small) amplitudes die out in the long times’ domain [13, 14, 19, 20],
is well approximated by

dRn
dt

= D
σss

Rn
, (19)

wherein σss, being the non-dimensional supersaturation [14], approaches a
constant value; formally, it is then presented as σss = (c∞ − c0)/(C − c0)
with c∞ — a far-distant concentration of the solution, c0 stands for the
equilibrium concentration at the fairly flat (for Rn →∞) nucleus’ interface,
whereas C provides the (nearly) constant density of the diffusively growing
nucleus. D is the diffusion coefficient.

It is a matter of very simple one-quadrature inspection that Eq. (19) has
to be solved by

R2
n(t) = R2

n(t = 0) + 2Dσsst , (20)

uncovering asymptotically the well-known diffusion regime by means of
Rn(t) ∼ t1/2. Note, however, that because of the plus sign at the right-
hand side of Eq. (20), the nucleus does not dissolve but grows (by the
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incoming mass [14]) in time t — an inverse process as compared to the
diffusion–dissolution mechanism revealed here, or in an analogous, though
less simplified manner (as in here) by [7].

3.5. Virtual connotations with a mesoscopic biolubrication mechanism
in articulating systems

Let us address the obtained results in terms of mechanism of facilitated
lubrication in articular cartilage (AC) [17, 21]. According to [22], phos-
pholipids in their micellar aggregates may influence overall mechanism of
lubrication in natural joints. Synovial fluid (SF) is composed of water (60–
70%) and other aggregates, such as: hyaluronic acid (HA), surface active
phospholipids (SAPLs), etc. AC shows very low friction coefficient which
can be µ ≈ 10−3 ÷ 10−2, and a lubrication is to be considered of hydrody-
namic nature [18]. There is a growing amount of recent papers [17, 22–27]
that indicate the role of vesicles in biolubrication. They propose, at least
at the laboratorial scale, that the mechanism of biolubrication can be ex-
plained in terms of vesicles’ response to both: loading and (small) shearing
force factors. The basic notion staying behind this mechanism is proposed
to be the hydration repulsion, possibly assisted by laminae shearing over one
another [23, 27]. The overall name coined for the mechanism is the hydra-
tion lubrication. What in our opinion turns out to be a certain drawback of
the mechanism is that the vesicles involved in it have to suffer from creation
and annihilation of transient pores in the vesicles’ membranes. Those pores
can occur while vesicle is inhomogenously compressed [24]. Therefore, pore
creation and annihilation is a vivid subject that should be intensively stud-
ied. Based on knowledge of previously studied systems, we wish to argue
the self-healing, thermodynamic character of the transient pore occurring
virtually during friction vs. lubrication effects. Based on our studies of the
role of micelles of facilitated lubrication in articular joints, we came into
conclusion that at least at the (sub)micrometer level, the pores are neces-
sary to supplement a dynamic separation of the opposing (nano)surfaces
by means of available ionic streams, such as the hydrogen ones, coming
out from hydrogen bond breakage in the aqueous milieu. Then, the corre-
sponding Grotthuss mechanism of hydrogen ions transport is possible [28].
As a consequence, the facilitated lubrication can be obtained due to super-
diffusive transport of hydrogen ions [26], complemented by the overall action
of screened electrostatics [29]. The leakage of the water and dissolved ions
[22, 26] accompanying H-bond breakage may cause a proton streams cas-
cades’ creation. The Re number is higher in nanochannels as confinement
grows [16, 30], thus, such revealed mechanism seems to be an important
factor in systems with facilitated lubrication.
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Regarding, in turn, the model hydration–lubrication system [24] of mul-
tilamellar vesicular character, one can foresee a relevant circumstance of its
virtual deconstruction [31, 32]. Namely, a type of (lipid) vesicle’s disinte-
gration may occur, depending on pH, lipid concentration (and the corre-
sponding osmotic pressure) as well as near physiologic temperature condi-
tions. Though such disintegration is less probable for micelles, it is plausible
to occur for layer-by-layer grown multilamellar vesicles. Moreover, some
biomolecular inclusions, mostly of protein-type, might cause the vesicles to
deconstruct into two-dimensional films; such an instance would apply pre-
ferrably at as-achieved (minute) electrical neutrality conditions [31]. Return-
ing comparatively to micelles [22], and their roles played in the biolubrication
mechanism, it appears when the kinetic friction coefficent is about to reach
its appreciably high value, out of the facilitated lubrication regime [26]. It
implies that the (pores-affecting) self-healing mechanism does not apply,
and the layers reform at suitable surfaces of articulating system. This, in
turn, forces somehow the system to make use of the shear involving part of
the hydration–lubrication event: the layers may slide then one over another
[25, 27]. The self-healing phenomenon does not preserve any longer until the
curvilinearly shaped micelle- or vesicle-type soft object eventually rebuilds.

Moreover, it has previously been shown in Ref. [15] that the elastic con-
tribution to the free energy of the membrane that forms a vesicle may be,
depending on the properties of the membrane itself (bending constant and
linear tension of the pore), a bistable function. For giant spheres (with a
radius bigger than 50 nm), the free energy has a minimum at the spherical
configuration and, therefore, the formation of the vesicle takes place as a
transport process from planar membrane to a closed sphere. In this case,
there is no critical size of the pore for which the vesicle disintegrates. In
contrast, for small enough vesicles, the formation has to overcome a free
energy barrier. In this circumstance, it is appropriate to ascertain that the
critical radius of the pore, rc, over which the pore never collapses again is
determined, in the first approximation, by the relation rc ' R2

eqγ/κB. For a
prestressed vesicle, this relation can be approximated, in turn, by rc ' γ/σ0

with σ0 — the initial value of the effective surface tension, see Ref. [8]. Here,
the competition between the closing force (γ) and the opening force (σ0) are
the main parameters controlling the size of this critical value of the pore’s
radius.
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4. Summary

The presented work can be summarized concisely as follows:

— The new approach (based on Onsager theory) of irreversible thermo-
dynamics of small systems gives very useful formalism for description
of the process of vesicular pore creation and annihilation. Numerical
solutions of Fig. 2 show one of the possible forms in which the consid-
ered system is coupled to the heat bath — the characteristic relaxation
times of the system’s variables are dependent on the viscosity of the
solvent as expected from experiment.

— Presented model does not look at molecular level of pore creation and
annihilation in vesicle. To look into detail one has to use experimen-
tal methods as well as computer modeling. Presented approach gives,
however, an impression on how this so revealed mechanism may oc-
cur and thus gives a possible control in e.g. drug delivery systems.
One may expect that due to electrostatic interactions between lipids’
heads, the Coloumbic interactions may play a crucial role in our system
in molecular detail. However, in aqueous solutions, the phospholipid
membranes acquire a net negative charge. At physiological concentra-
tions, the Debye length is quite short (less then 1 nm) and the elec-
trostatic interactions are strongly screened. Therefore, electrostatics
is not expected to play a crucial role in revealed mechanism.

— The self-healing mechanism of the pore’s closing rests upon a coop-
eration of thermodynamic (energetic) and hydrodynamic natural co-
factors driving together the cessation of the pore’s dynamics. It is
self-evident when inspecting again the small-Re conditions in the con-
text of Eq. (17), largely assisted here by the thermodynamic — ge-
ometric precondition of closure. A possible application to facilitated
lubrication due to vesicles/micelles interactions enabling ions to go
through so-called ion channels. Among all ions, protons have the
highest charge-to-mass ratio in physiological solutions (such as SF),
therefore, their role in decreasing friction between AC surfaces is of
high importance due to Grotthuss mechanism. Our future studies will
focus on mechanism of proton conduction in so-called proton inter-
micellar channels.

— Simultaneously membrane rupture occurs, which results in the release
of the encapsulated substance into the liposome-surrounding compart-
ment. The reason for the rupture at the lower pH is the transition from
lamellar to hexagonal HII phase. Liposomes also ruptured following
adsorption when providing poor high-pressure lubrication.
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