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We analyze random forcing in QM from the dual perspective of the
measure and category correspondence. The dual Cohen forcing allows in-
terpreting the real numbers in a modelM and its Cohen extensionM [G] as
absolute subtrees of the binary tree (Cantor space). The trees are spanning
non-trivial Casson handles of smooth exotic 4-manifolds, like R4. We for-
mulate the consequences for the cosmological model with random forcing
where dual smooth non-standard and non-flat Riemannian geometries have
to appear.
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1. Introduction

Searching for physics beyond the Standard Model (SM) of particle physics
is a far-reaching project. Even though supersymmetry signals have not been
found at the LHC data yet, the expectation is to unveil partially the nature
of dark matter (DM). The tremendous effort of experimentalists at micro-
scales will allow better understanding of the deep mysteries of the expanding
Universe at the cosmological scales. However, this fascinating scenario has
to be augmented by substantial activity of theorists. The direct reason is
that we still do not have any satisfactory theory of quantum gravity and
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cosmology has to deal with some fundamental issues like cosmological con-
stant (CC) problem or the nature of dark energy (DE). Both these problems
are touched in this paper, however the method we follow differs from usually
applied. Namely, we explore the formalism of quantum mechanics (QM) and
its relation to mathematics of general relativity (GR) from the point of view
of some deep results in set theory and differential topology of dimension
four. It appears that the mathematical structure of the line of real num-
bers R, that essentially is in use in GR (but also in QM), is highly non-trivial,
which indicates the new and fundamental relation between both theories [1].
This mathematical fact, without deforming QM and GR into entirely new
theories, helps to understand some subtleties in the relation between QM
and GR, and also sheds some new light on CC and DE problems.

As shown in [2], the semiclassical state in the local hidden variables
(LHV) program (if it exists) has to be given by a generic filter in an atom-
less Boolean algebra B containing pairwise commuting self-adjoint operators
made of QM projections [3]. It was analyzed and explained in detail in our
previous work [1], where we showed (without assumptions of LHV) that
there indeed exists a generic filter in the measure algebra on R when pass-
ing from (quantum) micro-scales to the (classical) large-scale regimes. A
measure algebra is not absolute in countable transitive models (CTMs) of
Zermelo–Fraenkel set theory (ZF) which gives dependence on the choice of
such model (see e.g. [4]).

In the paper, we dualize this measure algebra into the Cohen algebra and
analyze its meaning in the cosmological model where the change of ZFC (ZF
with the axiom of choice) models is allowed [1]. We find unexpectedly that
Cohen forcing, adding Cohen reals to a CTM of ZFC, is represented by de-
formed trees which correspond to Casson handles known from 4-dimensional
topology [5, 6]. The appearance of Casson handles shows that exotic smooth
Riemannian geometry on R4 is an important complementation of the model
of the Universe with forcing. Such smooth exotic R4s cannot be flat (Rie-
mannian tensor cannot vanish totally, though they are topologically like R4)
and it can have some gravitational impact. Indeed, it was shown recently
that they generate realistic cosmological parameters, like the value of CC [7]
(see also [8]). The connection between forcing, Casson handles, and exotic
4-smoothness was already studied some time ago (see e.g. [9–11]).

We explain some symbols from set theory since they are not in common
use within the physics community. Symbol 2ω denotes the set of all subsets
of the natural numbers N and ω is the order type of N. 2ω can be also seen
as a set of real numbers R. For a CTM M of ZFC, M [G] is its generic
extension by a forcing and RM denotes the real line in M . Note that if M
is countable, then RM is countable too (when seen from the outside of M).
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2. Dual Cohen forcing vs. random forcing

The duality of measure and category (or null sets and 1st Baire category
sets) is the classic and well-studied phenomenon in mathematics (e.g. [12]).
Subsets of R of Lebesgue measure 0 are null sets and they constitute the
ideal N , whereas meager (1st Baire category) sets are countable unions of
nowhere-dense sets and constitute the idealM. The Boolean algebra (BA)
Bor(2ω)/N is the measure algebra (MA) and the Bor(2ω)/M is the Cohen
algebra (CA). Here, Bor(2ω) is the σ-algebra of Borel subsets of R ' 2ω.
Both MA and CA are atomless BAs, but CA is the unique (up to isomor-
phism) atomless BA that has a countable dense subset [13]. As atomless BAs
they serve as forcing algebras for the Boolean-valued models of ZFC. In [1],
we worked out the physical meaning of the forcing based on MA, namely the
forcing is ever-present when passing from QM regime (though in Boolean
contexts) to the classical macro-scales of GR. Thus, one refers to different
real lines in Boolean contexts of QM and in GR. Moreover, the inner mea-
sure of RM in the generic extension M [G] is 0, while the outer measure is 1
(full measure) [4]. Let us dualize the random forcing into the Cohen forcing
according to the following Erdős–Sierpiński theorem [12, p. 75]. Assuming
the continuum hypothesis, it holds that:

Theorem 1 (Sierpiński 1934, Erdős 1943). There exists a one-to-one map-
ping f of R onto itself such that f = f−1 and such that f(E) is a null set
if and only if E is meager. And conversely, f(E) is meager if and only if E
is a null set.

M is switched to N , but also f : Bor(R)→ Bor(R) and hence f : MA→
CA. From the point of view of physics, f is not a local transformation (a
differentiable function of spacetime coordinates). It is rather the choice of
a complementary mathematical formalism. Thus, one has Cohen or ran-
dom forcing pictures. Choosing the Cohen picture, we have the immediate
reformulation of the result in [1]:

Lemma 1. µM [G](RM ) = 0 in M [G], where M and M [G] are a CTM model
and its Cohen generic extension, respectively, and µM [G](RM ) is the Lebesgue
measure of RM in M [G].

Since RM ⊂ RM [G] ⊂ R and the set RM is dense in RM [G] (and hence
in R), we consider the quantity µM [G](RM ) as the measure of density of
RM in RM [G]. Note that since models M and M [G] are countable, then the
densities of RM and RM [G] in R also vanish (i.e. µR(RM ) = µR(RM [G]) = 0).
Following [1], we assume that the density of RM in RM [G] is the measure
of density of zero-modes of quantum fields in the cosmological model where
the change M → M [G] is assumed. The change of models switches the
presentation of the real line without affecting the physical fields (∼ no new
interactions).
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Theorem 2. In the dual Cohen picture, the density of zero-modes of the
quantum fields of particles of mass m vanishes in the extended model M [G].

Proof. The statement follows from the direct calculation of the integrals

E

V
=

∫
R3
M

d3k

(2π)3

√
k2 +m2

2
, m ∈ RM [G] , k ∈ R3

M , (1)

which all vanish, since we integrate over the null set R3
M ⊂ R3

M [G].

3. Casson handles, Cantor sets and Cohen forcing

The set of all subsets of N, i.e. 2ω = {0, 1}ω is the real line [4]. It is the
Cantor space since there exists a homeomorphism of 2ω onto the standard
Cantor set (CS). One can represent 2ω by an infinite binary tree (BT). Taking
this binary tree as CS and noting that every real number is represented in 2ω

by some infinite branch, we ask the question: which real numbers from 2ω

are still present in 2ω|M (real numbers in the model M)? Another question
is which real numbers are in 2ω|M [G], 2ω|M and 2ω? We can compare all
these sets, since

RM ⊂ RM [G] ⊂ R , RM = 2ω|M , RM [G] = 2ω|M [G] , R = 2ω .

Moreover, for CTMs M and M [G], the subsets RM and RM [G] of 2ω are
countable. In M and M [G], these sets of real numbers are ‘internal’ trees.
Are they still infinite subtrees of 2ω as seen outside of the model? The
answer is yes and comes from the following absoluteness result:

Lemma 2 ([14]). Let M be a transitive model of ZFC. If T is a tree in M ,
then T has an infinite branch in M if and only if it has an infinite branch.

Thus, the change of reals corresponding to the change of CTMs is coded
in the structure of infinite trees, seen as model-independent absolute trees.
For countable models, the trees are infinite (length of branches) and with
countably many branches. But we know more: the set of rational numbers
Q is a dense subtree of each 2ω|M , 2ω|M [G], and 2ω. How does the tree gen-
erated by the rational numbers look like? Its branches are infinite eventually
zero sequences of 0s and 1s, meaning that if 〈ai|i ∈ N〉 is such a sequence,
then there exists k ∈ N such that ∀i>k ai = 0. Since all rational numbers
are already present in every M , the reals added by a forcing are irrational.
In fact, added numbers are transcendental (i.e. not algebraic). The trees
corresponding to RM and RM [G] differ as subtrees of 2ω by branches which
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represent such transcendental numbers. The corresponding deformations of
the trees, representing reals in the models M and M [G], are, in general,
hard to describe.

Let us now turn to Casson handles. They are represented by an infinite
(+,−)-signed trees. Such trees are created due to the infinite geometric con-
structions [9, 15]. The important fact is the following: given any infinite tree,
one can always build a Casson handle (CH) corresponding to it [16]. So the
deformed trees representing real numbers in M and M [G] generate Casson
handles. For small exotic R4s, there always exist infinite Casson handles in
their handle-decompositions [5]. The question is whether the deformed trees
as above give rise (or not) to non-diffeomorphic smoothness structures on R4

via Casson handles representing them [17]. The trees T1, T2 corresponding
to CHs are smoothly deformed whenever none of T1, T2 is homeomorphic to
any embedded subtree of T1, T2 [17]. In such a case, the smoothly deformed
trees represent non-diffeomorphic CHs. In general, the following scenarios
are possible: (I) at least for some CTMs M of ZFC and their Cohen exten-
sions M [G], the trees 2ω|M , 2ω|M [G], 2

ω are pairwise smoothly deformed.
(II) the deformations represent the trees of non-diffeomorphic CHs which,
in turn, correspond to the pairwise non-diffeomorphic smooth exotic small
R4s. The opposite possibility is the following: even though (I) holds (or
instead (I’) is true: the trees 2ω|M , 2ω|M [G], 2

ω are pairwise smoothly un-
deformed), the (II’) holds: there is no change of exotic smoothness on R4.
The smooth structure on R4 still can be the standard one, even though CH
in the handle-body is exotic. We do not decide these claims here, instead, we
discuss some of their consequences for the cosmological model with forcing.
Applying (I) and (II) one has:

Corollary 1. (i) Suppose that the evolution of the Universe begins with the
standard smoothness of R4. The presence of forcing at some stage of the
evolution changes the smoothness into a small exotic one. (ii) Suppose that
the evolution begins with some small exotic R4. Then, the smooth evolution
requires large exotic R4.

(ii) follows from the fact that there exists universal large exotic R4 con-
taining all other exotics [5]. The conditions (I’) and (II’) lead to:

Corollary 2. (a) The evolution of the Universe begins with exotic smooth-
ness of R4. Then, the forcing does not change the smoothness on R4 which
remains exotic. (b) The evolution of the Universe begins with the standard
smoothness of R4. Then, the non-trivial forcing is represented by exotic CH
even though R4 remains standard.
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(a) is obvious but, regarding (b), a CH with infinite tree labeled by
(+)-signs preserves the attaching region and embeds into the simplest one
[17]. Such CHs lead also to exotic smooth R4 [5, 6]. Here, one has infinite
(exotic) CHs but with different Akbulut cork, so that R4 would remain
standard.

These formal possibilities show that non-vanishing components of 4D
Riemann tensor are generated in the cosmological models with forcing chang-
ing the structure of the real line. Such Riemann tensor represents the cur-
vature of small exotic R4, i.e. the density of gravitational energy. One can
derive some realistic values of cosmological parameters from these densities
(such as CC) [7].
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