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The main concepts of general relativistic thermodynamics and general
relativistic statistical mechanics are reviewed. The main building block of
the proper relativistic extension of the classical thermodynamics laws is
the four-temperature vector β, which plays a major role in the quantum
framework and defines a very convenient hydrodynamic frame. The gen-
eral relativistic thermodynamic equilibrium condition demands β to be a
Killing vector field. We show that a remarkable consequence is that all Lie
derivatives of all physical observables along the four-temperature flow must
then vanish.
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1. Introduction

Relativistic thermodynamics and relativistic statistical mechanics are
nowadays widespreadly used in advanced research topics: high-energy as-
trophysics, cosmology, and relativistic nuclear collisions. The standard cos-
mological model views the primordial Universe as a curved manifold with
matter content at (local) thermodynamic equilibrium. Similarly, the matter
produced in high-energy nuclear collisions is assumed to reach and maintain
local thermodynamic equilibrium for a large fraction of its lifetime.

In view of these modern and fascinating applications, it seems natural
and timely to review the foundational concepts of thermodynamic equilib-
rium in a general relativistic framework, including — as much as possible
— its quantum and relativistic quantum field features. I will then address
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the key physical quantity in describing thermodynamic equilibrium in rel-
ativity: the inverse temperature or four-temperature vector β. I will show
how this can be taken as a primordial vector field defined on the sole basis
of thermodynamic equilibrium and ideal thermometers, and its outstanding
geometrical features in curved spacetimes.

2. Entropy in relativity

The extension of the classical laws of thermodynamics to special rela-
tivity raised the attention of Einstein and Planck themselves [1, 2]. Their
viewpoint is still the generally accepted one, with a later alternative ap-
proach put forward in the 60s [3, 4], which will be discussed in Sect. 3.

The first question, when trying to extend classical thermodynamics to
relativity, is how to deal with entropy. More specifically, should entropy
be considered as a scalar or the time component of some four-vector, like
energy? The non-controversial answer is that total entropy should be taken
as a relativistic scalar, for various well-founded reasons. Here, a general
relativistic argument based on the second law of thermodynamics, that is
total entropy of the universe must increase in all physical processes. As in
some finite portion of the spacetime entropy may decrease, as it is borne
out by our daily experience, the only sensible choice for an extensive non-
decreasing quantity is the result of an integration. Since in general relativity
an integral can only be a scalar to be generally covariant, entropy must
then be a scalar. Examples of integral scalars are well-known: the action,
which is the integral over a finite four-dimensional region of spacetime of the
Lagrangian density

A =

∫
Ω

d4x
√
−gL ;

the total electric charge, which is the integral over a 3D spacelike hypersur-
face Σ of a conserved current

Q =

∫
Σ

dΣ nµj
µ ,

where n is the (timelike) normal unit vector to Σ and dΣ its measure.
Similarly, total entropy should result from the integration over a 3D spacelike
hypersurface of an entropy current sµ,

S =

∫
Σ

dΣ nµs
µ . (1)
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Even if this approach is apparently the most reasonable relativistic ex-
tension, it should be pointed out that the total entropy (1) is meaningful
only if entropy current is conserved, i.e. if ∇µsµ = 0, which applies only at
global thermodynamic equilibrium. In a non-equilibrium situation,

∇µsµ ≥ 0

and the total entropy will depend on the particular hypersurface Σ cho-
sen. Otherwise stated, in non-equilibrium, the total entropy is an observer-
dependent quantity as two inertial observers moving at different speed have
two different simultaneity three-spaces. Only if ∇µsµ = 0, because of the
Gauss’ theorem, the total integral S in Eq. (1) is independent of Σ provided
that the entropy flux at some timelike boundary vanishes. If Σ is a hyper-
surface at some constant time, however the time is defined, this also implies
that total entropy will be time-independent: precisely our familiar classical
definition of equilibrium.

3. Temperature and thermometers in relativity

The first physical quantity encountered in thermodynamics textbooks is
temperature. It is then natural to wonder how relativity affects the classical
temperature notion. There has been a long-standing debate about the way
temperature changes with respect to Lorentz transformations (see e.g. [5] for
recent summary). The debate stemmed from the possible ambiguity in the
extension of the well-known thermodynamic relation (at constant volume)

TdS = dU . (2)

If this is seen as a scalar relation, one would most likely conclude, like
Einstein and Planck [1, 2], that dU/T must be generalized to be a scalar
product of four-vectors β = (1/T )u (see later on) and dP , u being the
four-velocity of the observer and P the four-momentum

dS =
1

T
u · dP . (3)

Conversely [3, 4], if relation (2) is seen as the time component of a four-
vectorial relation, with dU = dP 0, then one would accordingly conclude
that T is the time component of a four-vector Tµ = Tuµ and

TuµdS = dPµ . (4)

These two different extensions of the classical thermodynamic relation in-
volve two converse answers to a relevant physical question: what does a
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moving thermometer — with respect to the system which is in thermal con-
tact with — measure? Or, tantamount, what does a thermometer at rest
measure if it is put in thermal contact with a moving system with four-
velocity u? It should be stressed that here by thermometer we mean an ide-
alized gauge with zero mass, pointlike and capable of reaching equilibrium
instantaneously (zero relaxation time) with the system which is in contact
with. In the first option, the temperature measured by a thermometer at rest
in a moving system is smaller by a factor γ, in the latter case is larger by a
factor 1/γ, where γ is the Lorentz contraction factor. To see how this comes
about, we have to keep in mind that a thermometer which is kept at rest,
by definition, can achieve equilibrium with respect to energy exchange with
the system in thermal contact with it, and not with momentum. In other
words, the energies — that is the time components of the four-momentum
— of the thermometer and the system will be shared (interaction energy is
neglected) so as to maximize entropy, thus,

∂S

∂E

∣∣∣
T

=
∂S

∂E

∣∣∣
S
, (5)

where S stands for system and T for thermometer. The left-hand side, in the
rest frame of the thermometer, must be 1/TT, i.e. the inverse temperature
marked by its gauge, while the right-hand side is either γ/T in the Einstein–
Planck option (3) or 1/γT in the alternative option (4).

Without delving the controversy in depth, my viewpoint is that the Ein-
stein and Planck’s — hence the most widely accepted in the past [6] as well
as today [7, 8] — relativistic extension of the temperature concept is the
correct one. If entropy is a Lorentz scalar, it must be a function of the
invariant mass, that is S = S(

√
E2 − P 2 ). Hence,

∂S

∂Pµ
=

∂S

∂M

∂

∂Pµ

√
E2 − P 2 =

∂S

∂M

Pµ
M

=
∂S

∂M
uµ .

The derivative of the entropy with respect to the mass of the system, that
is its rest energy, can be properly seen as the proper temperature, the one
which would be measured by a thermometer at rest with the system, hence
the above relation reads

∂S

∂Pµ
=

1

T
uµ ≡ βµ ,

where we have introduced the inverse temperature four-vector, or simply,
the four-temperature β, see Introduction. Hence, the entropy differential
can be written as

dS =
∂S

∂Pµ
dPµ = βµdPµ = β · dP
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which is apparently the Einstein–Planck extension (3). Instead, the alter-
native option suffers from a serious difficulty: to make sense of a differen-
tial relation (4), the four-momentum vector of a relativistic thermodynamic
system must be a function of a scalar, the entropy. This is clearly counter-
intuitive and against any classical definition and experimental evidence, as
entropy has to do only with the internal state of a system and should be
independent of its collective motion. Therefore, the alternative by Ott and
followers should be refused.

4. Four-temperature β and the β frame

The four-temperature β is then the correct relativistic extension of the
temperature notion. The four-temperature vector is ubiquitous in all rela-
tivistic thermodynamic formulae, such as the well-known Jüttner or Cooper–
Frye distribution function

f(x, p) =
1

eβ·p ± 1
.

Yet, β is usually viewed as a secondary quantity obtained from previously
defined temperature and an otherwise defined velocity u, with β = (1/T )u.
In this section, we will overturn this view.

One can make the definition of four-temperature operational, like in clas-
sical thermodynamics for the temperature, by defining an ideal “relativistic
thermometer” as an object able to instantaneously achieve equilibrium with
respect to energy and momentum exchange. This implies that an ideal rel-
ativistic thermometer will istantaneously move at the same velocity as the
system which is in contact with, besides marking its temperature, i.e. it will
tell the β vector in each spacetime point

∂S

∂Pµ

∣∣∣
T

=
∂S

∂Pµ

∣∣∣
S

=⇒ βµT = βµS .

Alternatively, one can retain the more traditional definition of thermome-
ter, with an externally imposed four-velocity uT. In the latter case, going
to the thermometer rest frame, one has, from equation (5), the equality of
the time components of the β vectors in that frame

β0 = β0T

or

β · uT =
1

TT
.
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Hence, a thermometer moving with four-velocity uT in a system in local
thermodynamical equilibrium, characterized by a four-vector field β, will
mark a temperature

TT =
1

β(x) · v
. (6)

As the scalar product of two timelike unit vectors u · v ≥ 1 and

u · v = 1 iff u = v ,

one has, according to (6),

TT ≤ T =
1√
β2

, TT = T iff u = uT

that is, the temperature marked by an idealized thermometer is maximal if
it moves with the same four-velocity of the (fluid) system. Thus,

T = 1/
√
β2

is the comoving, or proper, temperature.
Thereby, we can establish a thought operational procedure to define a

four-velocity, that is a frame, for a fluid based on the notion of local ther-
modynamical equilibrium at some spacetime point x:

— put (infinitely many) ideal thermometers in contact with the relativis-
tic system at the spacetime point x, each with a different four-velocity
uT;

— the ideal thermometer marking the highest temperature value T moves,
by construction, with the four-velocity u(x) = Tβ(x) = 1/

√
β2β(x).

We can thus define a four-velocity of a fluid just by using an ideal ther-
mometer. This makes the four-vector β a more fundamental quantity than
the fluid velocity. We defined this frame as β frame [9] to distinguish it
from the tradtional Landau and Eckart frames, from which it differs even in
general global equilibrium states, as we explicitely showed in Ref. [10]. The
β frame has many nice features and it is very convenient in general relativity,
especially for quantum statistical mechanics, because at equilibrium it has a
crucial feature: it is a Killing vector field as we will see in the next section.

5. Quantum relativistic statistical mechanics at equilibrium

In thermal quantum field theory, the usual task is to calculate mean val-
ues of physical quantities at thermodynamic equilibrium with an equilibrium
density operator, whose familiar form is

ρ̂ = (1/Z) exp
[
−Ĥ/T0 + µ0Q̂/T0

]
, (7)
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where T0 is the temperature and µ0 the chemical potential (the reason for
the 0 superscript will become clear soon) coupled to a conserved charge Q̂,
and Z the partition function. The above density operator can be obtained
by maximizing the total entropy S = −tr(ρ̂ log ρ̂ ) with respect to ρ̂ with
the constraints of fixed total mean energy and fixed total mean charge. If a
further constraint of fixed mean momentum vector is included, the density
operator becomes manifestly covariant

ρ̂ = (1/Z) exp
[
−β · P̂ + µ0Q̂/T0

]
, (8)

where P̂ is the four-momentum operator and β is a four-vector Lagrange
multiplier for energy and momentum. Form (8) is thus the covariant form
of (7), which is a special case when β = (1/T0,0).

However, the density operator (8), is not the only form of global ther-
modynamic equilibrium, as one can add more constraints. For instance, one
can include the angular momentum and obtain [11, 12]

ρ̂ = (1/Z) exp
[
−Ĥ/T0 + ωĴz/T0 + µ0Q̂/T0

]
, (9)

where Ĵz is the angular momentum operator along some axis z, which rep-
resents a globally equilibrated spinning fluid with angular velocity ω.

The above (8) and (9) are, indeed, special cases of the most general ther-
modynamic equilibrium density operator, which can be obtained by max-
imizing the total entropy S = −tr(ρ̂ log ρ̂ ) with the constraints of given
mean energy-momentum and charge densities at some specific time over
some spacelike hypersurface Σ [9, 13, 14]. Therefore, the general equilib-
rium density operator can be written in a fully covariant form as [13, 15, 16]

ρ̂ = (1/Z) exp

−∫
Σ

dΣµ

(
T̂µνβν − ζĵµ

) , (10)

where T̂µν is the stress-energy tensor operator, ĵµ a conserved current and
ζ is a scalar whose meaning is the ratio between comoving chemical potential
and comoving temperature. The four-vector field β can be seen as a field
of Lagrange multipliers and no longer needs to be constant and uniform at
equilibrium.

Indeed, for the right-hand side of Eq. (10) to be a true, global equilibrium
distribution, the integral must be independent of the particular Σ, which
also means independent of time if Σ is chosen to be t = const, as it was
pointed out in Sect. 2. Provided that the flux at some timelike boundary
vanishes, this condition requires the divergence of the vector field in the
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integrand to be zero. If the stress-energy tensor T̂ and the current ĵ are
covariantly conserved, this requires ζ to be a constant scalar field and β a
Killing vector field, that is fulfilling the equation

∇µβν +∇νβµ = 0 . (11)

This condition for thermodynamic equilibrium has been known for a long
time (see e.g. [17] for a kinetic derivation and [18] for the above one). The
density operator (10) is well-suited to describe thermodynamic equilibrium
in a general curved spacetime possessing a timelike Killing vector field. It
should be pointed out that extending the building blocks of quantum me-
chanics, that is operators and Hilbert spaces, to curved spacetimes, features
several major difficulties, which can be partly circumvented by using the
path integral formalism [19]. Thus, making full sense of expressions such as
(10) in curved spacetimes may not be trivial and it has been the subject of
long discussion and research which certainly goes beyond the scope of this
work. Nevertheless, one can keep on using the operator formalism in an
abstract algebraic sense, with the understood convention that traces are to
be calculated by path integrals, so that conclusion (11) holds.

In Minkowski spacetime, the general solution of Eq. (11) is known

βν = bν +$νµxµ , (12)

where b is a constant four-vector and $ a constant antisymmetric tensor,
which, because of Eq. (12) can be written as an exterior derivative of the β
field

$νµ = −1
2 (∂νβµ − ∂µβν) (13)

defined as thermal vorticity. Hence, by using Eq. (12), the integral in
Eq. (10) can be rewritten as∫

Σ

dΣµ T̂
µνβν = bµP̂

µ − 1
2$µν Ĵ

µν (14)

and the density operator (10) as

ρ̂ =
1

Z
exp

[
−bµP̂µ +

1

2
$µν Ĵ

µν + ζQ̂

]
, (15)

where the Ĵs are the generators of the Lorentz transformations

Ĵµν =

∫
Σ

dΣλ

(
xµT̂ λν − xν T̂ λµ

)
.
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Therefore, besides the chemical potentials, the most general equilibrium
density operator in Minkowski spacetime can be written as a linear com-
binations of the 10 generators of its maximal continuous symmetry group,
the orthocronous Poincaré group with 10 constant coefficients. The density
operator (15) can also be obtained by maximizing the entropy with the con-
straints of given mean values of all the generators of the Poincaré group,
namely energy, momenta, angular momenta and boosts, with b and $ being
the corresponding Lagrange multipliers. Note that, even if they do not all
commute with each other, their mean values are actually constant and the
constrained maximum problem can be solved and has precisely the solu-
tion (15) [20].

It can be readily seen that the familiar density operator (7) is obtained
by setting b = 1

T0
(1, 0, 0, 0) and $ = 0, what we define as homogeneous

thermodynamic equilibrium. The rotating global equilibrium in Eq. (9) can
be obtained as a special case of Eq. (15) by setting

bµ = (1/T0, 0, 0, 0) , $µν = (ω/T0) (g1µg2ν − g1νg2µ) (16)

i.e. by imposing that the antisymmetric tensor $ has just a “magnetic”
part; thereby, ω gets the physical meaning of a costant angular velocity [11].
In fact, there is a third, not generally known, form which is conceptually
independent of the above two, which can be obtained by imposing that $
has just an “electric” (or longitudinal) part, i.e.

bµ = (1/T0, 0, 0, 0) , $µν = (a/T0) (g0µg3ν − g3µg0ν) . (17)

The resulting density operator is

ρ̂ = (1/Z) exp
[
−Ĥ/T0 + aK̂z/T0

]
, (18)

K̂z being the generator of a Lorentz boost along the z axis. This represents a
relativistic fluid with constant comoving acceleration along the z direction.
Note that the operators Ĥ and K̂z are both conserved and yet, unlike in
the rotation case (9), they do not commute with each other. This makes
the density operator (18) a very peculiar kind of thermodynamic equilib-
rium [21].

6. Killing vectors and Lie derivatives

In this section, I will prove a general property of any physical observable
in general thermodynamic equilibrium:
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The Lie derivative of any physical observable X along the four-tempera-
ture vector β vanishes at thermodynamic equilibrium.

This statement makes it clear what thermodynamic equilibrium physi-
cally implies for an observer moving along a Killing vector field in a general
spacetime, as it will be discussed in Sect. 7.

A physical observable X in quantum statistical mechanics is always de-
fined as the mean value of a corresponding quantum operator, which can be
either local or resulting from an integration

X = tr
(
ρ̂X̂(x)

)
.

With a density operator given by (10), the mean value will depend on the
four-temperature field, the metric and ζ, in a functional sense

X = X[β, ζ, g]

because so does the density operator ρ̂. This is the most general dependence
that X can have upon the data, i.e. the background metric and the ther-
modynamic fields β and ζ (in fact, the only non-trivial dependence will be
on β and g as ζ is constant at thermodynamic equilibrium). Expanding the
functional dependence, a local mean valueX will then depend, in general, on
the derivatives of all orders of both β and g calculated in x. Indeed, all the
derivatives at some point are what we need to know the supposedly analytic
functions β and g in any other spacetime point. Furthermore, because of
general covariance, we can choose an inertial set of coordinates in x so that
the first derivatives of the metric vanish, and all derivatives in x of β and g
at all orders in x can be expressed as combinations of covariant derivatives
of any order of β and the Riemann tensor. In symbols

X(x) = X[β, ζ, g] = X(β,∇β,∇∇β, . . . , g, R,∇R,∇∇R, . . .) . (19)

Indeed, β being a Killing vector, it is known that its second covariant deriva-
tive can be expressed as

∇µ∇νβλ = Rρµνλβρ (20)

so that, effectively, the dependence on the four-temperature field at equilib-
rium is just on the field and its covariant derivative. Therefore, Eq. (19) can
be rewritten as

X(x) = X[β, ζ, g] = X(β,∇β, g,R,∇R,∇∇R, . . .) . (21)
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Altogether, X can be seen as an analytic function of infinitely many
arguments and expanded in them. In general, the tensorial rank of X de-
termines how the arguments can appear in its expansion: for instance, if
X is a scalar, it will be expressed as all possible scalar combinations of the
arguments with scalar coefficients depending on β2, e.g.

c1
(
β2
)
RµνλρRµνλρ+ c2

(
β2
)
R+ c3

(
β2
)
RµνRµν + c4

(
β2
)
∇µβν∇µβν + . . . ,

where we have used the Ricci tensor and the curvature scalar.
A simple example of relation (21) is the well-known mean value of the

stress energy at the homogeneous equilibrium in the Minkowski spacetime
with constant β = b with $ = 0 (see Section 5)

Tµν(x) =
h
(
β2
)

β2
βµβν + p

(
β2
)
gµν ,

where h is the enthalpy density and p the pressure, which are both functions
of β2, i.e. the proper temperature. In curved spacetimes or in general equi-
libria in flat spacetime defined by Eq. (12), there can be much more than the
ideal form. Indeed, an expansion of the general relation (21) for the stress-
energy tensor was envisaged in Refs. [22, 23] which was further studied and
developed in several papers, e.g. Refs. [24–26] with path integral methods;
the coefficients of the expansion have been calculated in some relevant cases
[10, 27].

Therefore, in order to prove the statement at the beginning of this sec-
tion, we just need to show that any argument ofX in Eq. (19) has a vanishing
Lie derivative along β. For β, this is trivial, for g, it is true by definition of
Killing vector, i.e. Eq. (11) itself. To proceed and show that this holds for
any other argument, we need first to prove the following:
Proposition. For any vector field V , the Lie derivative along a Killing
field β commutes with the covariant derivative, that is Lβ(∇V ) = ∇Lβ(V ).

To show this, we expand the Lie derivative definition

Lβ(∇µVν) = βλ∇λ∇µVν +∇µβλ∇λVν +∇νβλ∇µVλ . (22)

Now, we use the commutator of two covariant derivatives

∇λ∇µVν −∇µ∇λVν = RρνµλVρ (23)

for the first term on the right-hand side of (22), and the Leibniz rule for the
covariant derivative of the other two terms. Hence,

Lβ(∇µVν) = βλ∇µ∇λVν + βλRρνµλVρ +∇µ
(
βλ∇λVν

)
−βλ∇µ∇λVν +∇µ

(
∇νβλVλ

)
−∇µ∇νβλVλ

= βλRρνµλVρ −∇µ∇νβ
λVλ +∇µLβ(Vν) , (24)
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where we have again used the Lie derivative definition, for a vector field.
Now, we can use Eq. (20), so that the first two terms on the right-hand side
of Eq. (24) cancel

βλRρνµλVρ −∇µ∇νβ
λVλ = RρνµλV

ρβλ −RρµνλβρV λ

= (Rλνµρ −Rρµνλ)V λβρ = (Rµρλν −Rρµνλ)V λβρ

= (Rρµνλ −Rρµνλ)V λβρ = 0 ,

where we have used the symmetry properties of the Riemann tensor indices.
Thus, Eq. (24) yields the sought relation

Lβ(∇µVν) = ∇µLβ(Vν)

and this concludes the proof.
By using the Leibniz rule for the covariant derivative of a tensor product,

it is straightforward to extend the above relation to the Lie derivative of any
tensor field T , that is

Lβ(∇T ) = ∇Lβ(T ) . (25)

A straightforward consequence of the above relation is that Lβ(∇β) = 0
being Lβ(β) = 0.

The last step to prove the initial statement is to show that the Riemann
tensor has vanishing Lie derivative along β, that is

Lβ(R) = 0 (26)

which implies, in view of (25) that all Lie derivatives of∇R,∇∇R, . . . vanish.
Let us take an arbitrary vector field V and write the Lie derivative of (23)

Lβ (∇λ∇µVν −∇µ∇λVν) = Lβ
(
RρνµλVρ

)
.

By using Leibniz rule and (25), we get

(∇λ∇µ −∇µ∇λ)Lβ(V )ν = Lβ
(
Rρνµλ

)
Vρ +RρνµλLβ(Vρ) .

By using again (23) for the left-hand side

RρνµλLβ(Vρ) = Lβ
(
Rρνµλ

)
Vρ +RρνµλLβ(Vρ) ,

whence we conclude that

Lβ
(
Rρνµλ

)
Vρ = 0

for any vector field V . Thus, we obtain (26), which finally demonstrates the
general statement at the beginning of the section.
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7. Concluding remarks

The general stationarity equation implied by the vanishing of the Lie
derivative for a scalar reads

Lβ(S) = βλ∂λS =
√
β2uλ∇λS ≡

√
β2DS = 0

implying that a scalar quantity does not change along the β flow. That is,
a comoving observer with four-velocity u = β/

√
β2 will measure the same

temperature, energy density, pressure and any other scalar field.
Instead, for a vector field,

Lβ(Vµ) = βλ∇λVµ + (∇µβλ)V λ = 0 . (27)

As β is a Killing vector, its covariant derivative is antisymmetric, thus, one
can extend (13) to the general relativistic case, that is $µλ = −∇µβλ. If
one sets

Ωµλ ≡
1√
β2
$µλ ,

the Ω is an antisymmetric tensor such that, according to (27)

DVµ = ΩµλV
λ . (28)

These are the well-known (in general relativity) equations of motion of an
orthonormal tetrad frame, the relativistic extension of the classical Poisson
equations for the motion of a rigid frame. The consequence of (28), for a
vector field V at thermodynamic equilibrium, is that its components are
constant for a comoving observer only if he has an associated tetrad frame
— which must include the normalized Killing vector itself as time direction
— which is Lie-transported, that is with vanishing Lie derivative; the same
holds for any tensor field.

It is also worth pointing out another interesting consequence of this for-
mulation of general relativistic thermodynamics:

A free-falling ideal thermometer in a fluid at global thermodynamic equi-
librium will mark a constant temperature TT = 1/(β · u) with β the four-
temperature of the fluid and u the four-velocity of the thermometer.

This is a straightforward consequence of the well-known conservation
theorem for a geodesic motion in spacetimes with Killing vectors [28] and
equation (6).

I am grateful to D. Seminara for interesting and clarifying discussions.
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