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1. Introduction

Recent experimental and theoretical studies of ultrarelativistic heavy-ion
collisions suggest that the quark–gluon plasma formed in these processes be-
haves like a strongly-interacting and dissipative fluid [1]. These observations
have triggered a broad interest in the relativistic hydrodynamics of viscous
systems and their respective transport coefficients [2]. The latter, by force
of the Kubo formulas, are sensitive to the long-distance dynamics of the
underlying microscopic theory [3]. The expected running-coupling strength
in the phenomenologically relevant regime is, however, of the order of unity,
g ∼ O(1) [4], it is, therefore, not a surprise that many of the experimental
features are unsatisfactorily described by conventional perturbation theory,
see [5] for the most up-to-date results on thermodynamic quantities. More-
over, the dynamic nature of the plasma evolution severely limits the appli-
cability of lattice methods [6]. Hence, the understanding of deconfinement
remains a pressing challenge for heavy-ion physics.

A way to tackle these obstacles is to improve the description of soft non-
Abelian gauge degrees of freedom. In this work, we introduce for the first
time a non-equilibrium and dynamic description of a plasma consisting of
confining gluons obtained from the Gribov–Zwanziger quantization of Yang–
Mills (YM) theory [7]. In this scenario, fixing the infrared (IR) residual gauge
transformation in the Coulomb gauge generates a new scale that leads to an
IR improved dispersion relation for gluons [7],

E(k) =

√
k2 +

γ4
G

k2 , (1)

where k is the gluon three-momentum and E the gluon energy. The Gri-
bov parameter γG, which governs the onset of non-Abelian effects in the IR,
is found self-consistently from a gap equation [7, 8]. This leads to a sup-
pression of soft degrees of freedom which is a necessary condition for colour
confinement [7–9]. Thus, low-momentum gluons are confining, while their
ultraviolet properties remain unaltered [8].

The Gribov framework has been extensively studied in the vacuum, see
Ref. [10] for reviews, where it is in good agreement with lattice and functional
methods, especially in the Coulomb gauge [11, 12]. The generic modifica-
tion of the IR properties of YM, embodied in Eq. (1), is, however, operative
at any temperature, and the framework has also been generalized to finite
temperature in order to study the deconfined phase, see e.g. [13–16]. In the
phenomenologically relevant temperature regime, the Gribov parameter γG

is approximately a constant [15] and, recently, its possible relation with the
phase transition has also been investigated [17]. The resulting equation of
state provides a good description of lattice data down to the vicinity of the
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critical temperature Tc [13, 15]. In particular, the interaction measure, see
Eq. (5), exhibits a characteristic peak near the phase transition [13]. It
has also been realized that this mechanism induces long-range correlations
through novel massless collective modes exclusively existing for YM theory
[16, 18]. Given these advances, it is intriguing to explore a dynamical ap-
plication of the Gribov framework, especially bearing in mind the pressing
challenges from heavy-ion experiments, and in the following, we provide a
first effort in this direction.

We will denote a hot system of gluons, governed locally by Eq. (1), as the
Gribov–Zwanziger (GZ) plasma. Based on the discussion above, we argue
that essential confinement effects are intrinsically incorporated in our set-
up once the Gribov dispersion relation is adopted. Since our present study
focuses on the phenomenologically relevant regime, we will set γG = const
motivated by Refs. [13, 15].

Firstly, we consider local thermodynamic properties of the GZ plasma
and, secondly, determine its dynamic evolution in a boost-invariant and
transversally homogeneous (0 + 1)D system [19]. This allows us to find
exact solutions for in- and out-of-equilibrium evolutions using the kinetic
theory approach in the relaxation time approximation [20–22].

One of our main results is to determine the connection between the
Gribov parameter γG and the bulk viscosity ζ. While the ratio of bulk
viscosity to entropy density ζ/s is found to be strongly suppressed for gluons
at asymptotically high temperatures [23], it is expected to be enhanced in the
vicinity of the YM phase transition [24], see also [25, 26] for results in quasi-
particle models. This is in line with lattice results [27] and a significant bulk
viscosity is also obtained from calculations in strongly-coupled theories [28].
Recently, the influence of bulk viscosity on observables in heavy-ion collisions
[29, 30], as well as on the stability of the hydrodynamic evolution [31], has
attracted a lot of attention. Our results highlight for the first time the direct
connection of ζ to the confining properties of YM theory in the vicinity of
the phase transition and its significance for phenomenological applications
to heavy-ion collisions.

2. Covariant kinetic equation set-up

In order to generalize the results [13] to a dynamical formulation, one
needs to implement Lorentz covariance while respecting the dispersion re-
lation in Eq. (1) in the local rest frame. The dispersion relation in Eq. (1)
may hence be rewritten in covariant form,

E(k · u) =
√

(k · u)2 + γ4
G/(k · u)2 , (2)
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where u is the four-velocity of the fluid element1. The use of Eq. (2) allows
us to restrict our considerations to energies that are invariably defined in the
local rest frame by Eq. (1), where the Gribov parameter is evaluated. Further
details about our covariant set-up can be found in [32]. Thus, generalizing
the results of [13], the energy density and pressure of the fluid described by
the distribution function f = f(x, k) are given in covariant forms by

ε =

∫
dKE(k · u) f , (3)

P =
1

3

∫
dK

(k · u)2

E(k · u)

(
1− γ4

G

(k · u)4

)
f , (4)

respectively, where the integration measure is dK = g0d
3k(k · u)/[(2π)3k0]

and g0 = 2(N2
c − 1) is the degeneracy factor for gluons with Nc colours

(g0 = 16 for SU(3)). These expressions can be used to find the interaction
measure (sometimes referred to as the trace anomaly)

I = ε− 3P = 2

∫
dK

γ4
G

(k · u)2E(k · u)
f . (5)

This quantity is closely related to the deviation from conformality of the
system under consideration. We note that I vanishes identically in the
γG → 0 limit, i.e., for a conformal gas of massless quasi-particles.

In the case of local equilibrium, the function f has the Bose–Einstein
form fGZ = [exp(E(k ·u)/T (x))−1]−1, where the temperature T can depend
on space and time. The energy density and pressure obtained from Eqs. (3)
and (4) with f = fGZ will be denoted below as εGZ and PGZ, respectively.
The temperature dependence may, in this case, be eliminated to construct
the equation of state of the perfect GZ plasma, εGZ = εGZ(PGZ).

In order to study dynamic phenomena away from equilibrium, we employ
kinetic theory in the relaxation time approximation (RTA) [21]. The (0+1)D
system is described by the Bjorken flow vector uµ = xµ/τ = (t/τ, 0, 0, z/τ),
where τ =

√
t2 − z2 is the proper time. Furthermore, we introduce the

boost-invariant variables [33] v = k0t − k‖z and w = k‖t − k0z, where

k·u = v/τ =
√
w2/τ2 + k2

⊥. Consequently, the integration measure becomes

1 We assume that the in-medium value of γG is determined in the fluid element’s local
rest frame, where uµ = (1, 0, 0, 0). We introduce k0 ≡ |k|, which is the magnitude
of the three-vector k ≡ (kx, ky, k‖), and k⊥ = (k2x + k2y)

1/2 such that the resulting
four-vector kµ = (k0,k) has standard Lorentz transformation properties with k2 = 0.
The four-vector k can be interpreted as a four-momentum of a perturbative, non-
interacting gluons. Equation (2) seems to be a straightforward generalisation of the
non-covariant expression (1), however, other version of (1) might be also possible.
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dK = g0 dw d2k⊥/[(2π)
3τ ]. We note that the thermodynamic functions now

depend only on the proper time, while the distribution function may depend
on τ, w and k⊥.

Calculating the proper time derivative of the energy density given by
Eq. (3), which in these coordinates reads ε(τ)=

∫
dKE(τ, w, k⊥) f(τ, w, k⊥),

one gets

dε

dτ
+
ε+ P‖

τ
=

∫
dKE (τ, w, k⊥)

∂f (τ, w, k⊥)

∂τ
, (6)

where we identify the component of the pressure acting in the longitudinal
direction as

P‖ =

∫
dK

w2

τ2E(τ, w, k⊥)

[
1− γ4

G(
w2/τ2 + k2

⊥
)2
]
f . (7)

With w2/(τ2E) replaced here by k2
⊥/(2E), one may find the transverse pres-

sure,

P⊥ =

∫
dK

k2
⊥

2E(τ, w, k⊥)

[
1− γ4

G(
w2/τ2 + k2

⊥
)2
]
f , (8)

and check that P = (2P⊥ + P‖)/3
2.

The terms on the left-hand side of Eq. (6) cancel due to the energy-
momentum conservation, ∂µTµν = 0. This implies that the term on the
right-hand side in Eq. (6) should vanish as well and suggests the use of the
standard RTA kinetic equation of the form

∂f(τ, w, k⊥)

∂τ
=
fGZ(τ, w, k⊥)− f(τ, w, k⊥)

τrel(τ)
, (9)

altogether with the Landau matching condition, εGZ = ε, given explicitly by∫
dKE(τ, w, k⊥) (fGZ − f) = 0. We emphasise that Eq. (9) is applicable for

the close-to-equilibrium situations but this is sufficient for derivation of our
central result, namely, the formula for the bulk viscosity3.

2 For a (0 + 1)D system, the energy-momentum tensor is

Tµν = (ε+ P⊥)u
µuν − P⊥g

µν +
(
P‖ − P⊥

)
zµzν ,

where uµ = (t, 0, 0, z)/τ and zµ = (z, 0, 0, t)/τ . The energy density and the two
pressures are given by the formulas ε = uµuνT

µν , 3P = 2P⊥ + P‖ = −∆µνT
µν ,

P‖ = zµzνT
µν , where ∆µν = gµν − uµuν . In our case, the energy density and the

pressures are expressed by the integrals over the distribution function f , see Eqs. (3),
(7), and (8), respectively. For more details, see [20–22].

3 Free-streaming in Eq. (9) is recovered by taking the vanishing coupling limit, cor-
responding to simultaneously taking the relaxation time to infinity and the Gribov
scale to zero, see e.g. [15].
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The formal solution of Eq. (9) is [20–22]

f(τ, w, k⊥) = f0(w, k⊥)D(τ, τ0) +

τ∫
τ0

dτ ′

τrel (τ ′)
D
(
τ, τ ′

)
fGZ

(
τ ′, w, k⊥

)
, (10)

where the distribution function at the initial proper time τ0 is given by
f(τ0, w, k⊥) = f0(w, k⊥) and the damping function is given by

D(τ2, τ1) = exp

− τ2∫
τ1

dτ τ−1
rel (τ)

 . (11)

In order to construct the solution of Eq. (10), we have to know the depen-
dence of T and τrel on the proper time τ . Although the relaxation time
τrel can, in general, depend on the temperature, in this work, we fix it to
a constant in order to single out the genuinely novel features arising in the
GZ plasma.

In the τrel → 0 limit, the form of Eq. (9) guarantees that the actual
distribution function tends rapidly to the equilibrium one and P‖ = P⊥ =
PGZ. Thus, in order to obtain the leading-order temperature profile, we solve
the well-known Bjorken hydrodynamic equation

dεGZ(T (τ))

dτ
= −εGZ(T (τ)) + PGZ(T (τ))

τ
, (12)

which follows directly from the energy-momentum conservation [19]. In this
case, the equilibrium entropy density is sGZ = (εGZ +PGZ)/T , where dεGZ =
TdsGZ and dPGZ = sGZdT . The temperature dependence of the perfect
GZ plasma, which we denote TGZ, follows directly from these relations, and
is found by solving d lnTGZ(τ)

d ln τ = −c2
s (TGZ(τ)), where c2

s = ∂PGZ/∂εGZ is the
speed of sound of the plasma. For conformal systems, where ε = 3P , we
reproduce the well-known scaling solution T (τ) = T0(τ0/τ)

c2s with c2
s = 1/3.

In the GZ plasma, cs tends to the ideal value only in the high-T limit, while
deviating from it in the studied temperature range.

Away from equilibrium, the temperature of the system is determined
from the Landau matching condition by demanding that f yields the same
energy density as the GZ equilibrium function fGZ. Taking the appropriate
moment of the solution of the kinetic equation (10), we find the integral
equation

εGZ (T (τ)) = D(τ, τ0)Hε

(
γG

T (τ0)
,
τ0

τ

)

+

τ∫
τ0

dτ ′

τrel (τ ′)
D
(
τ, τ ′

)
Hε

(
γG

T (τ ′)
,
τ ′

τ

)
. (13)
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Here, we have introduced the auxiliary functions

Hε(a, b) =
g0γ

4
G

2π2

∞∫
0

dy
y hε(y, b)

exp
[
a
√
y2 + 1/y2

]
− 1

, (14)

and hε(y, b) = b
∫ π/2

0 dφ sin(φ)β−1
√
y4β4 + 1 with β2(b, φ) = b2 cos2 φ +

sin2 φ. The temperature dependence can then implicitly be read off from the
left-hand side of Eq. (13) by taking advantage of the equilibrium relation
εGZ(T ) = Hε(γG/T, 1). The evolution of the pressure is found in a completely
analogous way, i.e., by inserting the solution given in Eq. (10) into the
right-hand side of Eq. (4) with the temperature dependence found in the
previous step.

3. Thermodynamics-like quantities

We proceed with numerical calculations based on Eq. (10), where the
energy density and pressure are read off from Eqs. (3) and (4), respectively.
For the initial condition, we choose the GZ plasma in equilibrium at a given
temperature. As stated in the discussion above, we fix the Gribov param-
eter to the value γG = 700 MeV in order to obtain the best description
of lattice data at T & Tc in agreement with previous studies [13]. Fur-
thermore, we choose the initial time τ0 = 0.5 fm/c, the initial temperature
T (τ0) = 600 MeV, and study the non-equilibrium evolutions for two fixed
relaxation times, τrel = 1 fm/c and τrel = 2 fm/c.

The proper time dependence of the temperature is shown in Fig. 1. The
GZ plasma (GZP) in equilibrium (solid/red curve) cools at a slower rate
than the ideal gas (thin black curve) owing to the reduction of the speed
of sound in the vicinity of the critical temperature. The rate of cooling for
local equilibrium is only mildly restrained when going away from equilibrium,
see the long-dashed (green) and short-dashed (blue) curves in Fig. 1 which
correspond to the two equilibration times described above, respectively (we
keep the same colour coding in all subsequent figures).

The upper panel of Fig. 2 shows our results for the interaction mea-
sure, Eq. (5), compared to the lattice data [34], where we have chosen Tc =
260 MeV. The solid (red) line depicts the equilibrium result, which qualita-
tively describes the lattice data: it yields half of the peak of the anomaly
in the region of the phase transition and gives a good description of the
anomaly in the temperature range just above the phase transition, T ∼ 1.5–
4Tc. In this way, we reproduce the result of Ref. [13]. Further improvements
can only be achieved by taking into account quantum effects [15]. The long-
dashed and short-dashed lines in the lower panel of Fig. 2 depict the results
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Fig. 1. (Colour on-line) Evolution of the temperature of the system. Depicted are
the results for perfect fluid (thin black line), equilibrium GZ plasma (GZP)
(solid/red) and two non-equilibrium evolutions characterized by the relaxation
times τrel = 1 fm/c (long-dashed/green curve) and τrel = 2 fm/c (short-dashed/blue
curve).
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scaled by T 4. Upper panel: The result for the GZ plasma (GZP) in local equilibrium
(solid/red curve) together with the lattice data [34] (black dots). Lower panel: The
two non-equilibrium results for I, characterized by the relaxation times τrel =1 fm/c
(long-dashed/green curve) and τrel = 2 fm/c (short-dashed/blue curve), compared
to the equilibrium calculation (solid/red curve).
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of the non-equilibrium calculations for the two chosen values of τrel and ap-
proach the solid, equilibrium line at lower temperatures, reflecting that for
late times τ � τrel, the system approaches equilibrium. The results pre-
sented in the lower panel of Fig. 2 indicate that the trace anomaly becomes
larger if the system evolves out of equilibrium. In addition, the width of the
peak becomes wider. Similarly to the equilibrium results, we expect that
our kinetic results are the most legitimate in the same temperature region.

4. Bulk viscosity from the kinetic equation

We note that the interaction measure vanishes exactly at all temper-
atures for a conformal theory. In our case, it is the presence of an IR
non-Abelian scale in the dispersion relation Eq. (1), which allows us to qual-
itatively reproduce the YM theory around the phase transition. Although
the energy density is kept equal to the equilibrium one due to the Lan-
dau matching condition, the pressure can deviate. The difference between
the actual and equilibrium pressures describes the bulk viscous pressure
Π = P − PGZ. Owing to the definition of the trace anomaly in Eq. (5) and
the Landau matching, one finds

Π = −2

3

∫
dK

γ4
G

(k · u)2E(k · u)
(f − fGZ) , (15)

which simply corresponds to (IGZ − I)/3. The knowledge of Π allows us to
determine the effective bulk viscosity ζeff of the system through the identi-
fication

Π = −ζeff ∂µu
µ = −ζeff/τ , (16)

where the latter equality holds for a (0 + 1)D system.
For small deviations from equilibrium, the effective viscosity ζeff ap-

proaches the standard bulk viscosity coefficient ζ. To determine ζ, we seek
the solution of the kinetic equation (9) in the form of f ≈ fGZ + δf . In the
linear approximation, we find δf = −τreldfGZ/dτ and substitute δf into the
right-hand side of Eq. (15). Using the equilibrium relation for the speed of
sound, we find

ζ =
g0γ

4
G

3π2

τrel

T

∞∫
0

dy

[
c2

s −
1

3

y4 − γ4
G

y4 + γ4
G

]
fGZ(1 + fGZ) , (17)

where fGZ = [exp(
√
y2 + γ4

G/y
2/T )− 1]−1, which is one of the main results

of our paper. The bulk viscosity is proportional to the relaxation time by
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construction. It vanishes when γG → 0, which is the case for a conformal,
massless gas. Our set-up is hence qualitatively different from the outset due
to the presence of the Gribov parameter.

In the left panel of Fig. 3, we show the proper time dependence of the
effective bulk viscosity ζeff obtained directly from the numerical solution of
the kinetic equation using Eqs. (15) and (16), and of the bulk viscosity co-
efficient ζ obtained from Eq. (17). As the system approaches equilibrium,
we find a good agreement between ζeff and ζ, which supports the validity of
Eq. (17). Moreover, it is worth noting the close relationship between ζ and
the deviation from conformality, understood here as c2

s − 1/3, see Eq. (17).
On a qualitative level, this is also observed in quasi-particle models [26],
however the magnitude of ζ/sGZ is significantly smaller in this case. Further
improvements are necessary for the GZ gas in order to facilitate more quali-
tative studies. In a parallel work [32], we have derived a scaling of the ratio
of bulk to shear viscosities to the speed of sound, ζ/η = κGZ(1/3−c2

s ) at high
temperature that is similar to the results from calculations in holographic,
strongly-coupled theories [28].

In the right panel of Fig. 3, on the other hand, we show the ratio ζ/sGZ

as a function of temperature. Similarly to Fig. 1, we observe a significant
increase of the bulk viscosity in the vicinity of the phase transition. We
note that large bulk viscosity may be related to prolonged deviations from
equilibrium [29].
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Fig. 3. Left panel: The effective bulk viscosity evaluated from the kinetic theory,
Eqs. (15) and (16) (solid curves), and the bulk viscosity coefficient obtained from
the linearised expression in Eq. (17) (long-dashed and short-dashed curves). Right
panel: Temperature dependence of the bulk viscosity coefficient scaled by the equi-
librium entropy density for two values of the relaxation time. The colour coding is
the same as in Figs. 1 and 2.



Bulk Viscosity in a Plasma of Gribov–Zwanziger Gluons 1843

5. Summary

In this work, we have established a novel framework for dealing with
a non-equilibrium plasma of confining gluons in close to equilibrium situa-
tions. Our method is based on the improved dispersion relation for gluons,
Eq. (1), which accounts for residual long-range correlations in the system in
the deconfined phase. If local equilibrium is assumed, our system expands
and cools as expected from the Bjorken model, see the solid (red) curve
in Fig. 1. In non-equilibrium situations, our numerical results show an in-
crease of the trace anomaly at a given effective temperature, see Fig. 2. In
the latter case, the system evolution is affected by dissipative phenomena,
in particular, by the presence of bulk viscosity. The full and linearised so-
lutions, derived in Eq. (17), for the bulk viscosity agree at large times and
indicate a rise of the ratio ζ/s close to the phase transition as expected in a
strongly coupled plasma.

The features above provide an improved understanding of the hot plasma
produced in heavy-ion collisions, in line with expectations from lattice data,
and implies that bulk viscosity should be implemented in their hydrody-
namic modelling. Finally, we note that the framework proposed herein can
be naturally extended to include other transport phenomena such as, for
example, the shear viscosity, and be systematically improved in order to
account for a more involved and realistic form of the relaxation time and a
temperature dependence of the Gribov parameter [14, 15]. We leave these
developments, which would allow for more qualitative assessments of the
dynamical properties of the GZ plasma, for future works.
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