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In this contribution, we will discuss how the study of various fluctua-
tion observables may be used to explore the phase diagram of the strong
interaction. We will briefly summarize the present study of experimental
and theoretical research in this area. We will then discuss various correc-
tions and issues which need to be understood and applied for a meaningful
comparison of experimental measurements with theoretical predictions.
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1. Introduction

Soon after the discovery of QCD [1], and following the realization that
QCD exhibits asymptotic freedom [2, 3], it was recognized that QCD predicts
a new high temperature phase of weakly interacting quarks and gluons,
termed the Quark–Gluon Plasma [4–6]. The existence of a new phase was
confirmed in the first calculations using the lattice formulation of QCD,
initially for pure SU(2) gauge theory [7, 8]. Over the years, as lattice QCD
methods have been refined to allow for continuum extrapolated calculations
with dynamical quarks at the physical masses, it has been found that the
transition from hadrons to partons at vanishing net-baryon density is an
analytic cross over [9]. At the same time, many model calculations suggested
that at vanishing temperature but large baryon density, there might be a
first-order transition [10]. This first-order phase transition will end at a
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critical point, the location of which is not really constrained by any model
calculations let alone lattice QCD, which, due to the fermion sign problem,
can only explore regions of small net-baryon chemical potential, µB/T . 1.

The potential presence of a first-order phase co-existence region together
with a critical point has motivated a dedicated experimental program at
RHIC, the so-called RHIC Beam Energy Scan (BES). Experimentally, re-
gions of higher baryon density can be reached by lowering the beam energy
where some of the projectile and target baryons are stopped at mid-rapidity.
The study of fluctuations play an important role in the quest to experimen-
tally explore the QCD phase diagram. Both, the second-order phase tran-
sition associated with a critical point and the first-order transition give rise
to characteristic fluctuation pattern. Of course, the system produced in a
heavy-ion collision is of finite size and evolves in time which smoothens the
singular structures associated with phase transitions. However, fluctuation
measurements are still helpful in this case, because, as we shall discuss be-
low, fluctuations are related to derivatives of the free energy. For example,
cumulants of the baryon number are given by derivatives with respect to the
baryon chemical potential, µB, etc. Therefore, the measurement of cumu-
lants of a sufficient high order will allow to explore experimentally if there
are any “wiggles” in the free energy, which may be associated with some
phase changes.

In addition to thermal fluctuations, there are many other sources and
types of fluctuations. On the most fundamental level, there are quantum
fluctuations, which arise if we measure several non-commuting observables.
In heavy-ion collisions, we encounter fluctuations and correlations related
to the initial state of the system, fluctuations reflecting the subsequent evo-
lution of the system, and trivial fluctuations induced by the experimental
measurement process. Initial state fluctuations are driven by, e.g., inho-
mogeneities in the initial energy and baryon number deposition. These
fluctuations are quite substantial, and are reflected, for example, in higher
harmonics of the radial flow field.

In this contribution, we will concentrate on thermal fluctuations, which,
away from some phase transitions, are typically small, suppressed by 1/

√
N ,

where N is the average number of particles in the volume considered. We
will also be concerned with fluctuations originating in the measurement.
These need to be understood, controlled and subtracted in order to access
the dynamical fluctuations which tell as about the properties of the system.

In experiment, fluctuations are most effectively studied by measuring
so-called event-by-event (E-by-E) fluctuations, where a given observable is
measured on an event-by-event basis and its fluctuations are studied for the
ensemble of events. Alternatively, one may analyze the appropriate multi-
particle correlations measured over the same region in phase space [11].



Fluctuations and the QCD Phase Diagram 1869

This contribution is organized as follows. We will first provide a short
review on thermal fluctuations and how they can be addressed, e.g., by
lattice QCD. We will then discuss various corrections which need to be
applied to the data and (model) calculations. We will close with a discussion
of the recent preliminary measurement of net-proton cumulants by the STAR
Collaboration. Finally, we wish to dedicate this contribution to Andrzej
Bialas on the occasion of his 80th birthday.

2. Fluctuations of a thermal system

The system created in an ultra-relativistic heavy-ion collision reaches, to
a very good approximation, thermal equilibrium (see e.g. [12] for a recent
review). Thermal fluctuations are typically characterized by the appropriate
cumulants of the partition function or, equivalently, by equal time correlation
functions which, in turn, correspond to the space-like (static) responses of
the system. In the following, we will concentrate on cumulants of conserved
charges, such as baryon number and electric charge. To this end, we will
work within the grand-canonical ensemble, where the system is in contact
with an energy and “charge” reservoir. Consequently, the energy and the
various charges are only conserved on the average with their mean values
being controlled by the temperature and the various chemical potentials.
As far as heavy- ion reactions are concerned, the grand-canonical ensemble
appears to be a good choice as long as one considers a sufficiently small
subsystem of the entire final state. In addition, as discussed e.g. in [13],
the final-state hadron yields are very well-described by a grand-canonical
thermal system of hadrons.

Fluctuations of conserved charges are characterized by the cumulants of
susceptibilities of that charge. Given the partition function of the system
with conserved charges Qi

Z = Tr

[
exp

(
−
H −

∑
i µiQi

T

)]
, (1)

the susceptibilities are defined as the derivatives with respect to the appro-
priate chemical potentials. In the case of three flavor QCD, the conserved
charges are the baryon number, strangeness and electric charge, (B,S,Q),
and we have

χB,S,QnB ,nS ,nQ
≡ 1

V T 3

∂nB

∂µ̂nB
B

∂nS

∂µ̂ns
S

∂nQ

∂µ̂
nQ

Q

lnZ , (2)

where µ̂i = µi/T is the reduced chemical potential for charge i. Since the
pressure is given by P = (T/V ) ln(Z), the above susceptibilities also control
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its Taylor expansion for small values of the various chemical potentials. For
example,

P (T, µB)

T 4
=
P (T, µB = 0)

T 4
+
∑
n

cn (µB/T )n , (3)

with the expansion coefficients given by cn = χB
n
n! . Such a Taylor expansion is

employed in order to determine the QCD equation of state for small chemical
potentials [14–16] from lattice QCD, since the fermion sign problem does
not allow for a direct calculation. Let us next discuss two examples which
illustrate how the study of fluctuations and correlations provide insight into
the structure of QCD matter.

Net-charge fluctuations

One example are the fluctuations of the net electric charge. In Refs.
[17, 18], it has been realized that the electric charge q of particles contributes
in square to the fluctuations of the net-charge,〈

(δQ)2
〉

= q2
〈

(δN)2
〉

= q2 〈N〉 , (4)

where in the last step, we assumed the particles to be uncorrelated. Thus,
cumulants of the net-charge are sensitive to the fractional charge of quarks
in a quark–gluon plasma. To remove the dependence on the system size,
it is convenient to scale the charge variance by another extensive quantity,
such as the entropy

R =

〈
(δQ)2

〉
S

. (5)

A simple estimate using Boltzmann statistics gives [17, 19]

RQGP = 1
24 (6)

for a two-flavor quark–gluon plasma whereas for a gas of massless pions, we
obtain

Rπ = 1
6 . (7)

In other words, due to the fractional charges of the quarks and the increased
entropy due to the presence of gluons, the charge fluctuations per entropy in
a QGP is roughly a factor four smaller than that in a pion gas at the same
temperature. In reality, the hadronic phase contains more particles than
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pions, and, taking into account hadronic resonances, the charge variance per
entropy is reduced by about 30% which leaves about a factor three difference
between a hadronic system and a QGP. Also, a system of constituent quarks,
without any thermal gluons leads to a ratio of charge fluctuation to entropy
similar to a hadron resonance gas [20]. Finally, it is worth pointing out
that similar arguments have been utilized to identify the fractional charges
in a quantum Hall system as well as the double charge of cooper pairs in
measurements of shot noise [21, 22].

Since the above ratio, Eq. (5), contains only well-defined thermal ob-
servables, it can be determined using lattice QCD methods, thus accounting
for all possible correlations, the presence of strange quarks etc. In Fig. 1,
we show lattice QCD results for the net-charge variance per entropy based
on the calculations for the net-charge variance from [23] and for the en-
tropy density from [24]. We also show the results for a free pion gas and
a QGP with three flavors of massless quarks, both using the proper quan-
tum statistics, as well as that for a hadron resonance gas. We see that
the hadron resonance gas agrees well with the lattice results for tempera-
tures up to, T . 160 MeV, which is close to the pseudo-critical or cross-
over temperature of Tpc = 154 ± 8 MeV. For temperatures in the range of
160 MeV . T . 250 MeV, the lattice calculations are in between the res-
onance gas prediction and that of a non-interacting QGP, indicating that
some of the correlations leading to resonance formation are still present in
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T [MeV]
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〈δQ2 〉 / S

QGP

HRG

π-Gas

Fig. 1. (Color online) Net-charge variance per entropy, R, as a function of tem-
perature from 2+1 flavor lattice QCD with physical quark masses. The gray (red)
dashed lines indicate the uncertainty. Results for 〈(δQ)

2〉 are from [23] and the
entropy is extracted from [24]. The dashed horizontal lines indicate the results for
a massless pion gas, a hadron gas as well as a non-interacting QGP with three
flavors of massless quarks.
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the system. With few exceptions, this trend is seen for most quantities which
have been calculated on the lattice, such as energy density, cumulant ratios,
etc. Good agreement with the hadron resonance gas up to the cross-over
temperature, followed by a rather smooth transition to a free QGP which
takes place over a temperature interval of approximately ∆T ∼ 100 MeV,
where the correlations slowly disappear. As we will show in the next ex-
ample, some of these correlations, namely those between the various quark
flavors, can be explored explicitly by studying the so-called mixed flavor or
“off-diagonal” cumulants.

Correlations between quark flavors

Let us start by considering the co-variance between strangeness and
baryon number, 〈δBδS〉 ∼ χB,S1,1 . To illustrate the sensitivity of this co-
variance to correlations among quarks, let us again compare a non-interacting
QGP with a non-interacting hadron resonance gas (HRG). In the QGP,
strangeness is carried exclusively by baryons, namely the strange quarks,
whereas in a HRG, strangeness can also reside in strange mesons. There-
fore, baryon number and strangeness are more strongly correlated in a QGP
than in a hadron gas, at least at low baryon number chemical potential,
where mesons dominate. To quantify this observation, Ref. [25] proposed
the following quantity

CBS ≡ −3
〈δBδS〉
〈δS2〉

= 1 +
〈δu δs〉+ 〈δd δs〉

〈δs2〉
, (8)

where we have expressed CBS also in terms of quark degrees of freedom,
noting that the baryon number of a quark is 1/3 and the strangeness of a
s-quark is negative one. Here, (u, d, s) represent the net-number of up, down
and strange quarks, i.e., the difference between up and anti-up quarks etc.
For a non-interacting QGP, 〈δu δs〉 = 〈δd δs〉 = 0, so that CBS = 1. For a
gas of kaons and anti-kaons, on the other hand, where a light (up or down)
quark is always correlated with a strange anti-quark (kaons) or vice versa
(anti-kaons) 〈δu δs〉 < 0, resulting in CBS < 1. Strange baryons, on the
other hand, correlate light quarks with strange quarks or light anti-quarks
with strange anti-quarks, so that 〈δu δs〉 > 0. Therefore, for sufficiently large
values of the baryon number chemical potential, CBS > 1 for a hadron gas,
whereas for a non-interacting QGP CBS = 1 for all values of the chemical
potential [25]. Since CBS can be expressed in terms of susceptibilities, CBS =

−3
χB,S
11

χS
2
, it can and has been calculated on the lattice with physical quark

masses by two groups [23, 26]. Both calculations agree with each other, and
both report a small, but significant difference between the lattice results and
that from the hadron resonance gas. In [27], it has been argued that this
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discrepancy may be removed by allowing for additional strange hadrons,
which are not in the tables of the Particle Data Group (PDG) [28], but
are predicted by various quark models. This is shown in Fig. 2, where the
lattice QCD results are compared with a hadron resonance gas based on
all the hadrons in the Review of Particles [28] (dotted line) and a hadron
gas with additional strange hadrons (solid line). Whether or not this turns
out to be the correct explanation, this comparison demonstrates that these
cumulant ratios are a sensitive probe of the relevant microscopic degrees of
freedom.
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Fig. 2. Lattice QCD results for −χ
B,S
11

χS
2

= 1
3CBS together with results from hadron

resonance gas with and without extra strange mesons. Figure adapted from [27].

To summarize, the above examples illustrate how cumulants of conserved
charges can be utilized to extract useful information about the correlations
and relevant degrees of freedom of QCD matter. Since they are amenable
to lattice QCD methods, the insights derived from such studies are rather
model independent.

3. Measuring cumulants

3.1. Some general considerations

Given the wealth of information which can be extracted from cumu-
lants of conserved charges and the fact that they can be determined model
independently, it would be desirable to measure these cumulants in heavy-
ion collisions. However, a heavy-ion collision is a highly dynamical process
whereas lattice QCD deals with a static system in global equilibrium. In
addition, real experiments have limitations in acceptance etc., which are
difficult to map onto a lattice QCD calculation. Consequently, a direct com-
parison of experiment with lattice QCD results for fluctuation observables
is a non-trivial task. In the following, we will discuss various issues which
need to be understood and addressed in order for such a comparison to be
meaningful.
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— Dynamical evolution: So far our discussion assumed that the sys-
tem is static and in global thermal equilibrium. However, even if fluid
dynamics is applicable, the system is at best in local thermal equi-
librium. The difference between local and global thermal equilibrium
is an important aspect of the evolution of fluctuations of conserved
charges, because the amount of conserved charge in a given co-moving
volume can only change by diffusion, and the rate of diffusion is lim-
ited by causality [29]. This observation is central to the use of the
variable R defined in Eq. (5) to detect the presence of quark–gluon
plasma. If we consider a sufficiently large rapidity window ∆y, then
the value of R is frozen during the QGP phase, and cannot change in
the subsequent hadronic stage. Of course, if ∆y is chosen too large,
then R never equilibrates, and reflects properties of the initial state.
This observation can be made more quantitative using the theory of
fluctuating hydrodynamics. However, so far most theoretical studies
have focused on schematic models, see, for example, [30].

— Global charge conservation: Obviously, baryon number, electric
charge and strangeness are conserved globally, i.e., if we detected all
particles, none of the conserved charges would fluctuate. In contrast,
lattice QCD calculations are carried out in the grand-canonical ensem-
ble, which allows for exchange of conserved charges with the heat bath.
Consequently, charges are conserved only on the average and, thus, do
fluctuate due to the exchange with the heat bath. These exchanges
and, thus, the fluctuations depend on the correlations between parti-
cles and, as demonstrated above, on the magnitude of the charges of
the individual particles. Therefore, in order to compare with lattice
QCD, one has to mimic a grand-canonical ensemble in experiment.
This can be done by analyzing only a subset of the particles in the fi-
nal state. However, even in this case, corrections due to global charge
conservation are present. These corrections increase with the order
of the cumulant [31] and need to be taken into account as discussed
in [30, 32–34].

— Finite acceptance: All real experiments do have a finite acceptance,
i.e., they are not able to cover all of phase space. In addition, most
experiments are unable to detect neutrons, which do carry baryon
number. However, due to rapid isospin exchange processes, the lack
of neutron detection may be modeled by a binomial distribution [34].
While it is desirable to study only a subset of particles, in order to
mimic a grand-canonical ensemble, it is mandatory to have sufficient
coverage in phase space in order to capture all correlations.
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— Efficiency corrections: A real world experiment detects a given par-
ticle only with a probability, commonly referred to as efficiency ε, which
is smaller than one, ε < 1. However, this does not imply that in every
event, the same fraction of produced particles is detected. Rather, the
number of measured particles fluctuates even if the number of pro-
duced particles does not. In other words, the finite detection efficiency
gives rise to fluctuations, which need to be removed or unfolded before
comparing with any theoretical calculation. If the efficiency follows a
binomial distribution, analytic formulas for the relation between mea-
sured and true cumulants can be derived [35–37]. Those have been
applied to the most recent analysis by the STAR Collaboration.

— Dynamical fluctuations: A heavy-ion collision is a highly dynami-
cal process and the initial conditions as well as the time evolution may
easily give rise to additional fluctuations. Especially, at lower energies,√
s . 30 GeV, the incoming nuclei are stopped effectively and deposit

baryon number and electric charge in the mid-rapidity region. Clearly,
the amount of baryon number deposited will vary from event to event,
resulting in fluctuations of the baryon number at mid-rapidity, which
are not necessarily the same as those of a thermal system. This po-
tential source of background needs to be understood, especially at low
energies where one uses higher cumulants of the net-proton distribu-
tion in order to find signals for a possible QCD critical point. Not only
does the number of baryon and charges fluctuate due to the collision
dynamics, so does the size of the system. And while ratios of cumu-
lants do not depend on the average system size (unless the system is at
a second-order phase transition), they are affected by event-by-event
fluctuation of the system size. This has been studied in [38] and it was
found that only for the very most central collisions, these fluctuations
are suppressed. Alternatively, one can device observables, which are
not sensitive to size fluctuation [19, 39–41].

The first three points deserve some additional discussion, as they pose con-
tradictory demands on the measurement [39]. In order to minimize cor-
rections from global charge conservation, one wants to keep the acceptance
window ∆, say in rapidity, as small as possible. On the other hand, in or-
der to capture the physics, the acceptance window needs to be sufficiently
wide in order to catch the correlation among the particles. Therefore, if σ
is the correlation length in rapidity and ∆charge the range over which all the
charges are distributed, then ∆/∆charge � 1 in order to minimize the effects
of charge conservation, and σ/∆� 1 in order to capture the physics.
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To illustrate this point, let us consider the following schematic model.
Let us define a two-particle correlation function (in rapidity y)

〈n(y1) (n(y2)− δ (y1 − y2))〉 = 〈n (y1)〉 〈n (y2)〉 (1 + C (y1, y2)) (9)

with 〈n(y)〉 = ρ = const. Then, the (acceptance dependent) scaled variance
of the particle number is given by〈

(δN)2
〉

〈N〉
= 1 +

ρ

∆

∆/2∫
−∆/2

dy1 dy2C (y1, y2) , (10)

where the acceptance in rapidity is given by −∆/2 < y < ∆/2. Using a
simple Gaussian for the correlation function

C (y1, y2) =
C0

ρ
exp

(
−(y1 − y2)2

2σ

)
(11)

in Fig. 3, we show the scaled variance as a function of the size of the accep-
tance window in units of the correlation length ∆/σ. The solid (black) line
is simply the expression of Eq. (10), where we have ignored any effects due
to global charge conservation, i.e., ∆charge → ∞. The short-dashed (red)
and long-dashed (blue) lines represent the situation where the total charge is
distributed over a range of ∆charge/σ ≤ 5 and ∆charge/σ ≤ 10, respectively.
Here, we used the leading order formulas of [42] to account for charge con-
servation, noting that a more sophisticated treatment à la [43] would not

0 2 4 6 8 10 12

Δ

σ
0.0

0.5

1.0

1.5

δN2 

〈N〉

Fig. 3. (Color online) Observed scaled variance as a function of the acceptance
window in units of the correlation length. The solid (black) line corresponds to an
infinite system where global charge conservation can be ignored. The long-dashed
(blue) and short-dashed (red) lines correspond to the situation where the charge is
conserved within (−10σ, 10σ) and (−5σ, 5σ), respectively.
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change the picture qualitatively. Lattice QCD and model calculations, on
the other hand, would give the asymptotic value indicated by the horizontal

dashed (gray) line, which we have chosen to be 〈(δN)2〉
〈N〉 = 1.5. The obvious

lesson from this exercise is that a comparison of a measurement at one sin-
gle acceptance window ∆ with any model calculation is rather meaningless.
Instead, one needs to measure the cumulants for various values of ∆, and
remove the effect of charge conservation. If the subsequent results trend
towards an asymptotic value for large ∆, it is this value which should be
compared with model and lattice calculations. Such a program has been
carried by the ALICE Collaboration in order to extract the aforementioned
charge fluctuations [44]. In this context, it is worth mentioning that recent
comparisons of measured cumulant ratios with lattice QCD to extract the
freeze-out conditions [45, 46] are based on measured cumulants which have
not been extrapolated as described above. Thus, these results need to be
taken with some care.

Before we turn to the proton cumulants, let us make a few additional
remarks concerning efficiency corrections, as they do play a significant role
in the recent STAR data [47]. As can be seen in the left panel of Fig. 4, finite
detection efficiency, ε < 1, affects the observed cumulants considerably, and,
thus, needs to be corrected or unfolded. As discussed in Refs. [35–37], such
an unfolding can be done analytically if the probability for detection of a
particle follows a binomial distribution. However, there is no a priori reason
why the response of a complicated detector should follow a binomial distri-
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Fig. 4. Left panel: Observed cumulant ratio as a function of binomial probability p.
The lines from top to bottom correspond to true cumulant ratios of K4/K2 =

5, 1, 0, −1, −5. Figure adapted from [35]. Right panel: Effect of multiplicity-
dependent efficiency on various cumulant ratios. Deviations from Kn/K2 = 1

indicate the effect of unfolding based on the binomial distribution with constant
efficiency, ε0. For reference, the STAR data at 7.7 GeV exhibit a multiplicity
dependence corresponding to ε′ ' −5× 10−4 [47]. Figure adapted from [48].
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bution. For example, in most experiments, the efficiency depends on the
particle multiplicity, which would not be the case for a binomial distribution
where the binomial probability, i.e., the efficiency, is constant, independent
of the number of Bernoulli trials. In Ref. [48], the effect of a multiplicity-
dependent efficiency and various other corrections have been explored. In
the right panel of Fig. 4, we show the resulting cumulant ratios Kn/K2

assuming that the efficiency depends linearly on the multiplicity M

ε (M) = ε0 + ε′ (M − 〈M〉) .

Already a rather weak multiplicity dependence gives rise to correction of the
order of 50% for K4/K2.

The multiplicity dependence of the efficiency is just one example for
a non-binomial behavior of the detection probability. There are certainly
others and some examples are discussed in [48]. Therefore, the only way
to assure that detector effects are probably accounted for is for individual
experiments to simulate and understand the response of the detector and
carry out the necessary unfolding. That such an exercise is necessary should
be obvious from the above examples.

3.2. Proton cumulants

Let us next turn to the net-proton cumulants. It has been suggested
that higher order baryon-number cumulants are particularly sensitive to the
presence of a critical point in the QCD phase-diagram [49]. Since it is
difficult to detect neutrons, this let to a series of measurements of net-
proton cumulants at various energies [47, 50]. As shown in [34], given rapid,
pion-driven, isospin exchange, the absence of neutrons can be rather reliably
modeled by a binomial process, with binomial probability p ' 0.5. This, on
the other hand, implies that in addition to the detection efficiencies, one
also needs to unfold the absence of neutrons, or, in other words, detection of
protons with an efficiency of 0.8 corresponds to detection of baryons with an
effective efficiency of 0.4. As a result, the sensitivity to the correct magnitude
of the true cumulants gets considerably reduced as can be seen in the left
panel of Fig. 4.

Finally, let us discuss the preliminary results for the K4/K2 cumulant
ratio for net-protons obtained by the STAR Collaboration. In Fig. 5, we
show both the dependence on the beam energy (left panel) and on the
width of the rapidity window (right panel) for the lowest beam energy of√
sNN = 7.7 GeV. Also shown in the left panel are results from UrQMD cal-

culations. These exhibit a decreasing cumulant ratio with decreasing beam
energy, which is due to baryon number conservation [31]. This behavior is
in stark contrast with the measured cumulant ratio, which shows a steep
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Figure 7. (Color online) Left: Upgrades of the STAR detector for the second phase of beam energy scan at RHIC. Right: Rapidity coverage
dependence of the �2 of net-proton distribution in 0-5% central Au+Au collisions at psNN=7.7 GeV. The blue band shows the expecting trend
and statistical error for net-proton �2 at BES-II. For this analysis, the rapidity coverage can be extend to |y| < 0.8 with iTPC upgrades.

higher baryon density, running of STAR detector at the fixed target mode has been proposed. Test runs of fixed target
mode were successfully conducted and preliminary results have been obtained for Au+Au collisions at psNN=3.9 and
4.5 GeV collected in 2014 and 2015, respectively. In the future BES-II, fixed target mode collisions allow us to have
energy coverage from psNN=3 GeV (µB=720 MeV) up to 7.7 GeV.

In Fig.7 left, the inner TPC (iTPC) of STAR is being upgraded to improve the energy loss resolution and can
extend the pseudo-rapidity acceptance from |⌘| < 1 to |⌘| < 1.5 [39]. It is also planed to install a Time-of-Flight (eTOF)
detector at the west end cap of the STAR TPC to extend the PID capability at forward region. The iTPC upgrade is
important to test the criticality and study dynamical evolution of the fluctuations by looking at the rapidity coverage
dependence for the fluctuations of conserved quantities [40]. In Fig.7 right, the blue band is the extrapolating from
current measurements by assuming critical contributions (�2/N3 [41]). In the forward and backward region of STAR
detector, a new Event Plane Detector (EPD) will be built and used to replace the old Beam-Beam Counters (BBC) for
independent centrality and event plane measurements, which can reduce the auto-correlations in the measurements
at mid-rapidity. Due to the discovery potential at high baryon density, future experimental facilities beyond current
running experiments at RHIC and SPS, are planed to be built to study the physics at low energies. The fixed target
heavy-ion collisions experiments Compressed Baryonic Matter experiment (CBM) at Facility for Anti-proton and Ion
Research (FAIR) at GSI, Germany will cover the energy range psNN=2-8 GeV and the Japan Proton Accelerator
Research Complex (J-PARC) will cover the energy range psNN=2-6.2 GeV. The collider mode heavy-ion collision
experiment Multi Purpose Detector (MPD) at Nucleon based Ion Collider fAcility (NICA) will cover the energy rangepsNN=4-11 GeV at JINR, Russia.

3. Summary and Outlook

Beam energy scan programs in heavy-ion collisions have been carried out by RHIC and SPS with the main goals
of finding the signature of QCD phase transition and QCD critical point at high baryon density region. During past
few years, we have found many intriguing non-monotonic structures in the energy dependence of various observables
in Au+Au collisions, such as dips in the slope of net-proton directed flow and v2

3{2}/nch,PP, peak in the HBT radii
measurement, and oscillations in �2 of the net-proton distributions. All of these structures are observed at the similar
energy region 14 <psNN< 20 GeV, which suggests some interesting could happen there. However, one should keep
in mind that in this energy range the baryon density and baryon to meson ratio also change a lot, which makes it
much complicated to attribute the observed structures to the QCD phase transition or QCD critical point. In the near
future, it would be very helpful to explain the low energies data by comparing with the results from hydrodynamics
and/or hybrid models including the realistic equation-of-state at finite baryon baryon density. Experimentally, the
second phase of the beam energy scan at RHIC has been planed in 2019-2020 with upgraded detectors and increased
luminosity to explore the phase structure focusing on energies below 20 GeV with high precision.
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations

Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been
proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so

6

Fig. 5. Preliminary data by the STAR Collaboration for the energy and rapidity
dependence of the K4/K2 cumulant ratio. Figures adapted from [47, 51].

rise towards lower energies. It is noteworthy that this rise only occurs after
corrections for efficiency based on a binomial efficiency distribution have
been applied [47]. Obviously, these preliminary data are very intriguing, es-
pecially since most “trivial” effects tend to reduce the cumulant ratios, such
as the aforementioned baryon number conservation. However, in light of our
discussion, it will be important that the validity of the binomial efficiency
distribution is verified by a detailed analysis of the STAR detector response.

The dependence on the size of the rapidity window, shown in the right
panel of Fig. 5, is also quite interesting. The cumulant ratio keeps increas-
ing up to the maximum available range of ∆y = 1. Following our simple
model consideration, this implies that the underlying rapidity correlations
are rather long range. Typically long-range rapidity correlations are asso-
ciated with early times in the collision. Although this correspondence is
somewhat washed out at lower beam energies, it raises the question if the
observed signal may be due to some initial state effects such as impact pa-
rameter/volume or stopping fluctuations.

4. Discussion

In this contribution, we have discussed fluctuations of conserved charges
and their utility for the exploration of QCD matter. In particular, we have
concentrated on various cumulants which have the advantage of being ac-
cessible to lattice QCD calculations. Alternatively, one may study the un-
derlying correlations, as suggested by Bialas et al. [11]. These may actually
provide more physical insight into the dynamics at play. If only one particle
species is being considered, such as e.g. protons, one can relate the cumu-
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lants and the correlation functions [52, 53]. For example, the two-particle
correlation function is simply given by the first- and second-order cumulants,
K1,K2,

C2 = K2 −K1 .

However, once net-protons, i.e. protons and anti-protons, are being consid-
ered, no direct relations between the correlation functions and the cumu-
lants exist. Instead, additional (factorial) moments are required, which can
be measured but not be calculated in lattice QCD.

To conclude, fluctuations are a powerful tool to explore the structure of
QCDmatter. They provide insight into the relevant degrees of freedom, their
correlations, and possible phase structures. The measurement of fluctuations
requires some care. First, the detector response needs to be well-understood
and removed by a proper unfolding procedure. Furthermore, since a heavy-
ion collision is a highly dynamical process, fluctuations induced by the initial
state or by the dynamical evolution need to be understood before a compar-
ison with model or lattice QCD calculations is possible. Preliminary data
on net-proton cumulants from the STAR Collaboration show intriguing fea-
tures, especially at the lowest energies. To which extend they constitute our
first glimpse at structures in the QCD phase diagram can only be found out
if all these uncertainties are fully understood.
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