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One of the central issues in High Energy Physics is the close interchange
between Theory and Experiment. Ever since I know Andrzej Bialas, I
know him as one of the theorists most interested in experimental data.
This has naturally led to continuous fruitful contacts. Even though we
have been working somehow together since about 1968, we so far have
only one single publication in common. This was back in 1969 and it was
on means to efficiently study what we then called (exclusive) Multihadron
Final States. At that time, this meant 3- or at best 4-particle final states
of two-hadron collisions at c.m.s. energies of some 4 GeV (not TeV!). The
field of multiparticle dynamics was, in fact, the domain of Polish high-
energy physicists. The first of a very successful (and still lasting) series of
annual International Symposia on Multiparticle Dynamics was organized
in Paris in 1970, but essentially by Polish physicists. Andrzej himself was
not attending, but it was him who organized the third in these series in (of
course) Zakopane. Since heavy-ion collisions, another field of major interest
for Andrzej, will be covered by others, I here will restrict myself mainly to
the collisions of two elementary particles.

DOI:10.5506/APhysPolB.47.1909

1. Exclusive longitudinal phase-space analysis and its variables

One of our common interests at that time was the so-called Longitudinal
Phase-Space (LPS) Analysis of 3- and 4- or even 5-particle final states and
I will first try to recall the ideas behind that.

The most complete way to study a so-called exclusive reaction of multi-
plicity n

A+B −→ C1 + C2 + · · ·+ Cn (1)

(1909)
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is to look at the differential distribution of its matrix element in full phase
space. This, however, requires a (3n − 4)-dimensional analysis ((3n − 5)-
dimensional if the incident particles are unpolarized) and becomes increas-
ingly impossible with increasing n.

Nature helps: at low c.m.s. energies, the vast majority of collisions is
“soft”, i.e. leads to low transverse (with respect to the collision axis) momenta
of final-state particles, largely independent of the nature of the particle, the
multiplicity n and the c.m.s. energy s1/2 . On the other hand, longitudinal
(along the collision axis) momenta are unlimited (i.e. limited only by phase
space) and depend strongly on the nature of the particle, the multiplicity
and the energy.

In elastic and other two-particle production collisions, one is used to
distinguish between forward and backward scattering. An extension of this
classification to multiparticle final states is an analysis in just longitudinal
phase space (LPS) [1, 2]. Then, each individual reaction of type (1) is repre-
sented by a point with coordinates (p‖1, . . . , p‖n) in a now only n-dimensional
Euclidean space Sn. Conservation of longitudinal momentum in the c.m.s.,

n∑
p∗‖i = 0 , (2)

defines LPS as an (n − 1)-dimensional hyperplane Ln−1. Furthermore, be-
cause of conservation of c.m.s. energy s1/2

n∑
i=1

(
m2
i + p2Ti + p∗2‖i

)1/2
= s

1/2 . (3)

All points with equal transverse momentum |pTi| lie on an (n − 2)-dimen-
sional hypersurface Kn−2 defined by (3). For the case of a transverse mass
mTi = (m2

i + p2Ti)
1/2 = 0, (3) reduces to

n∑
i=1

∣∣∣p∗‖i∣∣∣ = s
1/2 (4)

and defines a regular polyhedron Hn−2. For n = 3, this is the Van Hove
Hexagon shown in Fig. 1 together with the one-dimensional manifold K1.
For n = 4, the polyhedron H2 is the cuboctrahedron celebrated in Fig. 2.

A typical three-particle distribution in LPS for the final state of reaction

π−p→ pπ−π0 (5)

at an incident lab momentum of 16 GeV/c is given in Fig. 3 [3].
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Fig. 1. Longitudinal phase-space plot (Van Hove Hexagon) for the final state ππN
at the c.m.s. energy of s

1/2 = 4 GeV. The innermost solid line is K1 for transverse
momenta of 0.4, 0.4, and 0.5 GeV/c, respectively, while the outer one is K1 for
vanishing transverse momenta. The dashed line represents the hexagon H1 [1].

Fig. 2. The polyhedron H2 for a four-particle final state (cartoon by R. Sosnowski).

The distribution of (5) against the angle ω is given in Fig. 4, before and
after correcting for phase-space effects (sub-figure (a) and (b), respectively).
According to the definition in Fig. 1, the ω region considered (60◦ < ω <
120◦) corresponds to the hemisphere of LPS in which the proton is backward
in the c.m.s. The π0 is taken to be longitudinally at “rest” at ω = 120◦,
the π− at ω = 180◦. Peaks in the (model independent!) experimental data
(histograms) indicate strong correlations between particles in the final state,
in particular in the region of 60 < ω < 120◦.
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Fig. 3. Distribution of final-state points for the reaction π− → π−π0p at incident
lab momentum of 16 GeV/c [3].

As a demonstration of how one can use LPS to test the success of the-
oretical models, the so-called CŁA model [4] of that time was used. It is a
Reggeized form of a multiperipheral model, in which the amplitude is treated
as an incoherent sum of contributions from various multiperipheral graphs.
For the reaction studied in Fig. 4, they are given in sub-figure (c) together
with their contributions. The solid line in (a) and (b) corresponds to their in-
coherent sum. After exclusion of a sharp ρ-resonance, the model can describe
the overall distribution of Fig. 4 surprisingly well. From the contribution of
the graphs in sub-figure (c), we can see that vacuum exchange, commonly
called IP(omeron) exchange, on the upper vertex essentially determines the
shape of the distribution.

Turning back to a model-independent data analysis, we investigate the
energy dependence of the distribution and its shape in Fig. 5 according to
its parametrization σ(plab) ∝ p−Nlab . As shown in sub-figure (b), N is indeed
close to zero for 60◦ < ω < 120◦, in agreement with IP exchange (diffraction
dissociation) in that region [5].

Where, however, is the ∆ resonance? Unlike the incident proton, it has
isospin I = 3/2 and cannot, therefore, be produced via vacuum exchange.

One way to look for it is the so-called prism plot [6] ingeniously com-
bining the advantages of the angle ω along the z-axis with the subsystem
masses given in a Fabri–Dalitz plot (triangle) at the basis (Figs. 6 and 7).
The separation into individual mechanisms, each corresponding to a straight
section of the tube within the prism, is better than in its projection onto
the z-axis or the basis in the xy-plane. The mass of the (pπ+)-subsystem
is plotted in Fig. 8, for all events (sub-figure (a)) and for events in the cor-
responding section of the tube (sub-figure (b)). In the latter, the ∆++ is
well-separated from the background still present in (a).
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Fig. 4. (a) Distribution against the angle ω of final-state points for the reaction
π−p → π−π0p at incident lab momentum of 16 GeV/c [3]. (b) The same after
correcting for non-constant phase-space effects. The solid lines are the distributions
according to the CŁA model [4] normalized to the data after exclusion of the
sharp ρ−-resonance. The individual CŁA exchange graphs considered and their
contributions to the total distribution are given in sub-figure (c).

Another way of extracting a pure ∆ signal is a separation of the isospin
matrix element according to the graph in Fig. 9. Since isospin exchange
IE = 0 is excluded for the production of the I = 3/2 (Nπ)-system, we are
left with three matrix elements and their interferences. Their squares, re-
spectively real parts, can readily be extracted model independently from
combinations of the 6 measurable (of the 7 possible) final states of π±p re-
actions. They are given in Fig. 10 as a function of the (Nπ) effective mass.
While a wide diffractive shoulder is observed in sub-figure (a), a sharp and
well-separated ∆ can be seen in sub-figure (c).
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Fig. 5. (a) ω-distribution for the reaction π+p→ π+π0p at incident lab momentum
of 4, 5 and 8 GeV/c. (b) Exponent N as a function of ω for the same reaction [5].

Fig. 6. The prism plot as constructed by pulling a Fabri–Dalitz plot out in the
direction of the Van Hove angle ω (cartoon by Suzy Smile).
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Fig. 7. Prism plot for π+p → π+π0p at 3.9 GeV/c. (a) invariant phase-space and
(b) experimental data [6].

Fig. 8. Effective mass of the (pπ+)-subsystem for the reaction π+p → π+π0p at
incident lab momentum of 3.9 GeV/c, for (a) all events and (b) for events in the
corresponding section of the tube in the prism plot [6].

Fig. 9. The three diagrams corresponding to the amplitudes specified by the ex-
changed isospin IE and the isospin I of the (Nπ) system. (Note that the combina-
tion IE = 0, I = 3/2 is excluded from isospin conservation.)
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Fig. 10. Squared amplitudes |M IE
I |2 and their interference terms as functions of the

(Nπ) mass obtained from the reactions π±p→ ππN at 16 GeV/c [7].

Overlap between different sub-systems is a problem, in particular in the
determination of spin-parity of a particular sub-system (partial wave anal-
ysis). However, interference also provides a unique possibility to study the
relative phase between overlapping amplitudes. In such a study, all mech-
anisms contributing to a particular few-body final state have to be treated
simultaneously in an iterative and interactive computer analysis. A beautiful
method allowing that is the so-called Analytical Multichannel Analysis [8].

The method has successfully been applied to 30 000 events of the final
state of K−p → K̄0π−p at 4.2 GeV/c [9]. As the four variables needed to
describe a three-particle final state, the effective mass M has been used for
the sub-system considered, the invariant four-momentum t′ in its production
and the two angular variables Θ and φ of its decay.

As examples for the results after 9 iterations, Figs. 11 and 12 correspond
to the (K̄0π−) S-wave and its P-waves JPMη = 1−0−, 1−1− and 1−1+.
Except for the S-wave which is not yet flat, the angular distributions corre-
spond to the particular wave and are as expected. Of particular interest are
the differences in the four-momentum t′ distributions for the three P-waves,
typical for pseudo-scalar and vector exchange, respectively.
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Fig. 11. Effective mass distribution of the (K̄0π−)-system, four-momentum transfer
t′ from initial to final-state proton, decay angles of the (K̄0π−)-system, and effective
mass of the (pπ−)- and (pK̄0)-systems for the 0+0− and 1−0− (K̄0π−) samples
after iteration 9 [9].

Fig. 12. The same as Fig. 11, but for the 1−1− and 1−1+ samples [9].
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Striking is the difference in the reflection into the (pπ−) and (pK̄0) sys-
tems in the lowest row of Fig. 12. The Monte Carlo curve superimposed
on the (pπ−) mass distribution shows a two-peak reflection from the 1−1−
wave. Just mind the enormous error introduced by the simple smooth hand-
drawn background as used in earlier conventional analysis!

Very similar results are obtained [9] for the three D- and even F-waves
and for other sub-channels down to the %� level of their contribution to the
total final state, not detectable in earlier analysis.

In conclusion from this section: With the help of model-independent
data analysis, we have moved from analysis in Longitudinal Phase Space to
a complete Multichannel Analysis. While the LPS analysis has demonstrated
strong correlation of final-state particles, the increased number of variables
of the prism plot could show overlap of these mechanisms in full phase
space (not just in projections of it). These mechanisms can be separated by
means of quantum numbers as isospin, spin and angular momentum, and
their interferences can be studied when all channels contributing to a final
state are treated simultaneously. This analysis is particularly useful for the
isolation of channels at the permille level of cross section or branching ratio.

What had we learned for the future? Experiments have to be complete
in the sense that acceptance losses should be minimal and the four vectors
of all particles should be known. Furthermore, the analysis has to be done
iteratively and interactively, i.e. has to be guided by computer graphics.

2. Momentum correlations and density fluctuations

2.1. The formalism

We start by defining symmetrized inclusive q-particle distributions

ρq(p1, . . . , pq) =
1

σtot

dσq(p1, . . . , pq)
q∏
1

dpq

, (6)

where σq(p1, . . . , pq) is the inclusive cross section for q particles to be at
p1, . . . , pq, irrespective of the presence and location of any further parti-
cles, pi is the (four-) momentum of particle i and σtot is the total hadronic
cross section of the collision under study. For the case of identical particles,
integration over an interval Ω in p-space yields∫

Ω

ρ1(p)dp = 〈n〉 ,
∫
Ω

∫
Ω

ρ2(p1, p2)dp1dp2 = 〈n(n− 1)〉 ,

∫
Ω

dp1 . . .

∫
Ω

dpqρq(p1, . . . , pq) = 〈n(n− 1) . . . (n− q + 1)〉 , (7)
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where n is the multiplicity of identical particles within Ω in a given event
and the angular brackets imply the average over the event ensemble.

Besides the interparticle correlations we are looking for, the inclusive
q-particle number densities ρq(p1, . . . , pq), in general, contain “trivial” con-
tributions from lower-order densities. It is, therefore, advantageous to con-
sider a new sequence of functions Cq(p1, . . . , pq) as those statistical quan-
tities which vanish whenever one of their arguments becomes statistically
independent of the others [10–12]

C2(1, 2) = ρ2(1, 2)− ρ1(1)ρ1(2) , (8)

C3(1, 2, 3) = ρ3(1, 2, 3)−
∑
(3)

ρ1(1)ρ2(2, 3) + 2ρ1(1)ρ1(2)ρ1(3) , (9)

etc. In the above relations, we have abbreviated Cq(p1, . . . , pq) to
Cq(1, 2, . . . , q); the summations indicate that all possible permutations must
be taken. Expressions for higher orders can be derived from the related
formulae given in [13]. Deviations of these functions from zero shall be
addressed as genuine correlations.

It is often convenient to divide the functions ρq and Cq by the product
of q one-particle densities, which leads to the definition of the normalized
inclusive densities and correlations

Rq(p1, . . . , pq) = ρq(pq, . . . , pq)/ρ1(p1) . . . ρ1(pq) , (10)
Kq(p1, . . . , pq) = Cq(p1, . . . , pq)/ρ1(p1) . . . ρ1(pq) . (11)

In terms of these functions, correlations have been studied extensively for
q = 2. Results also exist for q = 3, but usually the statistics (i.e. number
of events available for analysis) are too small to isolate genuine correlations.
To be able to do that for q ≥ 3, one must apply factorial moments Fq defined
via the integrals Eq. (7), but in limited phase-space cells [14–16].

2.2. Density spikes

To see whether it is worth the effort, we first look for density fluctua-
tions in single events, signalling high-order correlations. A notorious JACEE
event [17] (Fig. 13 (a)) at a pseudo-rapidity resolution (binning) of δη = 0.1
has local fluctuations up to dn/dη ≈ 300 with a signal-to-background ratio
of about 1:1. An NA22 event [18] (Fig. 13 (b)) contains a “spike” at a ra-
pidity resolution δy = 0.1 of dn/dy = 100, as much as 60 times the average
density in this experiment.
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a) b)  NA22 event

Fig. 13. (a) The JACEE event [17]; (b) The NA22 event [18].

Bialas and Peschanski [14, 15] suggested that this type of spikes could
be a manifestation of “intermittency”, a phenomenon well-known in fluid
dynamics [19]. The authors argued that if intermittency indeed occurs in
particle production, large density fluctuations are not only expected, but
should also exhibit self-similarity with respect to the size of the phase-space
volume.

In multiparticle experiments, the number of hadrons produced in a single
collision is small and subject to considerable noise. To exploit the techniques
employed in complex-system theory, a method had to be devised to sepa-
rate fluctuations of purely statistical (Poisson) origin, due to finite particle
numbers, from possibly self-similar dynamical fluctuations of the underlying
particle densities. A solution, already used in quantum optics [20] and sug-
gested for multiparticle production in [14], consists in measuring Fq(δy) in
given phase-space volumes (resolution) δy of ever decreasing size.

2.3. Power-law scaling

Besides the property of noise-suppression, high-order factorial moments
act as a filter and resolve the large-multiplicity tail of the multiplicity dis-
tribution. They are thus particularly sensitive to large density fluctuations
at the various scales δy used in the analysis. As shown in [14], a smooth
density distribution, which does not show any fluctuations except for the
statistical ones, has the property of normalized factorial moments Fq(δy)
being independent of the resolution δy in the limit δy → 0. On the other
hand, if self-similar dynamical fluctuations exist, the Fq obey the power law

Fq(δy) ∝ (δy)−φq , (δy → 0) . (12)



Hadron Correlations at Energies from GeV to TeV 1921

Equation (12) is a scaling law since the ratio of the factorial moments at
resolutions L and `

R =
Fq(`)

Fq(L)
=

(
L

`

)φq
(13)

only depends on the ratio L/`, but not on L and ` themselves.
In Fig. 14, logF5 is plotted [14] as a function of −log δη (η is the pseu-

dorapidity) for the JACEE event. It is compared with an independent-
emission Monte Carlo model tuned to reproduce the average η distribution
of Fig. 13 (a) and the global multiplicity distribution, but has no short-range
correlations. While the Monte Carlo model indeed predicts constant F5, the
JACEE event shows a first indication for a linear increase, i.e. a possible
sign of intermittency.

Fig. 14. logF5 as a function of − log δη for the JACEE event [17] (full circles)
compared to independent emission (small crosses) [14].

This observation was the trigger for a tremendous outburst of exper-
imental research on all types of collisions from e+e− to heavy nuclei, all
showing (approximate) power-law scaling. An 118 page summary including
more than 300 references is given as chapters 7 and 10 in [21].

The powers φq (slopes in a double-log plot) are related [22] to the anoma-
lous (or co-) dimensions dq = φq/(q − 1), a measure for the deviation from
an integer dimension.

Anomalous dimensions dq fitted over the (one-dimensional) range of 0.1<
δy < 1.0 are compiled in Fig. 15 [23]. They typically range from dq = 0.01 to
0.1, which means that the fractal (Rényi) dimensions Dq = 1−dq are close to
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one. The dq are larger and grow faster with increasing order q in µp and e+e−
(Fig. 15 (a)) than in hh collisions (Fig. 15 (b)), and are small and almost
independent of q in heavy-ion collisions (Fig. 15 (c)). For hh collisions, the
q-dependence is considerably stronger for NA22 (

√
s = 22 GeV, all pT) than

for UA1 (
√
s = 630 GeV, pT > 0.15 GeV/c).

Fig. 15. Anomalous dimension dq as a function of the order of q, for (a) µp and
e+e− collisions, (b) NA22 and UA1, (c) KLM [23].

2.4. Factorial cumulants

One further has to stress the advantages of normalized factorial cumu-
lants Kq compared to factorial moments, since the former measure genuine
correlation patterns.

As an example, high statistics data of the OPAL experiment [24] are
given in Fig. 16 in terms of Kq, as a function of the number M ∝ 1/δy
of phase-space partitions for q = 3 to 5. In the leftmost column, the one-
dimensional rapidity variable y is used for the analysis. The data (black
dots) show an increase of Kq with increasing M for small M , but a satura-
tion at larger M . Even though weaker, some saturation still persists when
the analysis is done in the two-dimensional plane of rapidity y and azimuthal
angle ϕ (middle column), but approximate power-law scaling is indeed ob-
served for the analysis in three-dimensional momentum space (right column).
Thus, in high-energy collisions, fractal behaviour is fully developed in three
dimensions, while projection effects lead to saturation in lower dimension.

In Fig. 16, the data are also compared to a number of parametrizations
of the multiplicity distributions, as well as to the Monte Carlo models JET-
SET and HERWIG. One can see that the fluctuations given by the negative
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Fig. 16. Cumulants of the order of q = 3 to 5 as a function of M1/D in comparison
with the predictions of various multiplicity parametrizations and two Monte Carlo
models [24].

binomial (NB) (dashed line) are weaker than observed in the data. Contrary
to the NB, the log-normal (LN) distribution (dotted line) overestimates the
cumulants, while these expected for a pure birth (PB) process (dash-dotted)
underestimate the data even more significantly than the NB. Among the dis-
tributions shown, a modified NB (MNB) gives the best results, even though
significant underestimation is observed also there. The Monte Carlo models
do surprisingly well.



1924 W. Kittel

2.5. Transverse-momentum dependence

An interesting question is whether semi-hard effects [25], observed to play
a role in the transverse-momentum behaviour even at NA22 energies [26], or
low-pT effects [27, 28] are at the origin of intermittency. A first indication
for the latter comes from the most prominent NA22 spike event (Fig. 13 (b)),
where 5 out of 10 tracks in the spike have pT < 0.15 GeV/c.

In Fig. 17, NA22 data [29] on lnFq versus − ln δy are given for particles
with transverse momentum pT below and above 0.15 GeV/c, and with pT
below and above 0.3 GeV/c. For particles with pT below the cut (left), the
Fq exhibits a far stronger δy dependence than for particles with pT above
the cut (right).

Fig. 17. lnFq as a function of − ln δy for various pT cuts as indicated [29].

UA1 has a bias against pT < 0.15 GeV/c and the anomalous dimen-
sion is indeed smaller in UA1 than in NA22 in Fig. 15. We conclude that
intermittency in hh collisions is not dominated by semi-hard effects.
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2.6. Energy and multiplicity dependence

As seen in Fig. 18, a strong multiplicity dependence of the intermittency
strength is observed for hh collisions by UA1 [30]. The trend is opposite to
the predictions of the models used by this collaboration. This decrease of
the intermittency strength with increasing multiplicity is usually explained
as a consequence of mixing of independent sources of particles [22].

Fig. 18. (a) Multiplicity dependence of the slope φ3, compared to that expected
from a number of models, the crosses correspond to a combination of independent
events [30], (b) slope φ2 extrapolated (∝ ρ−1) as a function of particle density from
NA22 (hp at 250 GeV) (solid line) and heavy-ion collisions as indicated [33].

Mixing of emission sources leads to a roughly linear decrease of the slopes
φq with increasing particle density 〈ρ〉 in rapidity [15, 31, 32]: φq ∝ 〈ρ〉−1.
This is indeed observed by UA1 [30].

Figure 18 (a) helps in explaining why intermittency is so weak in heavy-
ion collisions (cf. Fig. 15): the density (and mixing of sources) is particularly
high there. In Fig. 18 (b), EMU01 [33], therefore, compares φ2 for NA22
(hp at 250 GeV) and heavy-ion collisions at similar beam momentum per
nucleon, as a function of the particle density. Whereas slopes averaged
over multiplicity are smaller for AA collisions than for NA22 in Fig. 15,
at fixed 〈ρ〉 they are actually higher than expected from an extrapolation
of hh collisions to high density and may even grow with increasing size
of the nuclei. The trend is confirmed by KLMM [34] for intermittency in
azimuthal angle ϕ and for slopes up to the order of 5. This may be evidence
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for re-scattering (see [35]) or another (collective) effect, but, as shown by
HELIOS [36] and confirmed by EMU-01 [33], one has to be very sure about
the exclusion of γ-conversions before drawing definite conclusions.

2.7. Density and correlation integrals

A fruitful development in the study of density fluctuations is the density
and correlation strip-integral method [37] illustrated in Fig. 19 [38]. By
means of integrals of the inclusive density over a strip domain in y1, y2
space, rather than a sum of box domains, one not only avoids unwanted
side-effects such as splitting of density spikes, but also drastically increases
the integration volume (and therefore the statistical significance) at given
resolution. In terms of the strips (or hyper-tubes for q > 2), the density
integrals can be evaluated directly from the data after selection of a proper
distance measure, as e.g. the four-momentum difference Q2

ij = −(pi − pj)2,
and after definition of a proper multiparticle topology (snake integral [39],
GHP integral [37], star integral [40]). Similarly, correlation integrals can
be defined by replacing the density ρq in the integral by the correlation
function Cq.

Fig. 19. (a) The integration domain ΩB = ΣmΩm of ρ2(y1, y2) for the bin-averaged
factorial moments, (b) the corresponding integration domain ΩS for the density
integral, (c) illustration of a q-tuple in snake topology, (d) GHP topology, (e) star
topology [38].

Of particular interest is a comparison of hadron–hadron to e+e− results
in terms of the same and opposite charges of the particles involved. Such
a comparison is shown in Fig. 20 for q = 2 [41]. An important difference
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Fig. 20. Comparison of density integrals for q = 2 in their differential form (in in-
tervals Q2, Q2+dQ2) as a function of 2 log(1/Q2) for e+e− (DELPHI) and hadron–
hadron collisions (UA1) [41].

between UA1 and DELPHI can be observed in comparison of the two sub-
figures: For relatively large Q2(> 0.03 GeV2), where Bose–Einstein effects
do not play a major role, the e+e− data increase much faster with increasing
−2 logQ2 than the hadron–hadron results. For e+e−, the increase in this Q2

region is very similar for the same and for opposite-sign charges. At smallQ2,
however, the e+e− results approach the hh results. For e+e− annihilation at
LEP, at least two processes are considered to be responsible for the power-
law behaviour: Bose–Einstein correlation at small Q2 following the evolution
of jets at larger Q2, but what is remarkable is the smooth transition between
the two domains (if at all present) (see Sect. 3).

2.8. Genuine higher-order correlations

The correlation integral method turns out particularly useful for the
unambiguous establishment of genuine higher-order correlations in terms of
the normalized cumulants Kq(Q

2), when using the star integration [40].
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Non-zero values of (star integral)K∗q (Q2) increasing according to a power
law with decreasing Q2 were first observed in NA22 up to the fifth order [42]
(see Fig. 21) and in E665 for the third order [43]. Again, note the difference
between all charged and like-charged particles, and the smooth transition
between larger and smaller Q2.

Fig. 21. lnK∗q (Q2) as a function of − lnQ2 for all charged particles as well as for
like-charged particles [42].

2.9. Functional form

The exact functional form of F S
2 is derived from the data of UA1 [30]

and NA22 [38]1 in Fig. 22. Clearly, the data favour a power law in Q over
an exponential, double-exponential or Gaussian law.

If the observed effect is real, it supports a view developed in [44]. There,
intermittency is explained from Bose–Einstein correlations between (like-
charged) pions. As such, Bose–Einstein correlations from a static source are

1 In fact, in this form, F S
2 (Q

2) is identical to R(Q2) usually used in Bose–Einstein
analysis. The only difference is that here it is plotted on a double-logarithmic plot.
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Fig. 22. Density integrals F S
2 (in their differential form) as a function of Q2 for

like-charged pairs in UA1 [30] and NA22 [38], compared to power-law, exponential,
double-exponential and Gaussian fits, as indicated.

not power behaved. A power law is obtained (i) if the size of the interaction
region is allowed to fluctuate, and/or (ii) if the interaction region itself is
assumed to be a self-similar object extending over a large volume. Condition
(ii) would be realized if parton avalanches were to arrange themselves into
self-organized critical states [45]. Though quite speculative at this moment,
it is an interesting new idea with possibly far-reaching implications. We
should mention also that in such a scheme, intermittency is viewed as a
final-state effect and is, therefore, not troubled by hadronization effects.

So, in conclusion of this section, (approximate) intermittency is found to
be all-present in hadron production and is evidence for genuine correlations
to high orders, but it seems dominated by Bose–Einstein correlations. How-
ever, what we have learned is that we have been fooled for more than half a
century by an assumed Gaussian behaviour of the BE correlations, while an
approximate power law is required. This highly non-trivial lesson we have
learned indeed sheds a completely new light on the topic of femtoscopy.

3. Bose–Einstein correlations (or what?)

3.1. Early results

Whether derived as Fourier transform of a (static and chaotic) pion
source distribution, a covariant Wigner-transform of the (momentum de-
pendent) source density matrix, or from the string model, identical-pion
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correlation leads to a positive, non-zero two-particle correlatorK2(Q), i.e. to

R2(Q) = 1 +K2(Q) > 1 (14)

at small four-momentum difference Q. These so-called Bose–Einstein corre-
lations, by now, are a well-established effect in all types of collisions, even in
hadronic Z0 decay (for reviews, see [21, 46, 47]) originally expected, however,
to be too coherent to show an effect.

Other important observations are given in abstract form below.

1. When evaluated in two (or better three) dimensions in the Bertsch–
Pratt system, a small elongation of the emission region (better region)
of homogeneity [48] is observed along the event axis in all types of col-
lisions (hadron–hadron [49], all four LEP experiments [50], ZEUS [51],
RHIC [52]). However, it is important to note that the longitudinal
radius of homogeneity is much shorter than the length of the sting (of
the order of 1%).
The observation that the out-radius does not grow beyond the side-
radius at RHIC [52] points to a short duration of emission and causes a
problem for some hydrodynamical models, but not for e.g. the Buda–
Lund hydro model. The latter, in fact, gives a beautifully consistent
description of single-particle spectra and BEC in hadron–hadron and
heavy-ion collisions at SPS and RHIC [53]. The emission function
resembles a Gaussian shaped fire-ball for AA collisions, but a fire-tube
for hh collisions.

2. The form of the correlator at small Q is steeper than Gaussian, in
fact, consistent with a power law as would be expected from the inter-
mittency phenomenon described above. Unifying progress is reported
in [54].

3. An approximate m−1/2T scaling first observed in heavy-ion collisions
at the SPS [55] and usually blamed on collective flow, is observed at
RHIC [56], but also in e+e− collisions [57]. Quite generally, it follows
from a strong position momentum correlation [58, 59], be it due to
collective flow or to string fragmentation.

4. Genuine three-pion correlations exist in all types of collisions and, in
principle, allow a phase to be extracted from

cosφ ≡ ω(Q3) = K3(Q3)/2
√
K2(Q3) . (15)

At small Q, this ω is near unity (as expected from incoherence) for
hh [60] and e+e− [61] collisions, as well as for PbPb [62, 63] and
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AuAu [64] collisions at SPS and RHIC, while it is near zero (compat-
ible with full coherence) in collisions of light nuclei [62]. This contra-
diction can be solved [46, 65] if ω is interpreted as a ratio of normalized
cumulants. Since K(N)

q of N -independent overlapping sources gets di-
luted like 1/N q−1, ω would be reduced if strings produced by light ions
do not interact. If, in heavy-ion collisions, the string density gets high
enough for them to coalesce, some kind of percolation sets in and full
inter-string BEC gets restored.

5. Azimuthal anisotropy is observed in configuration space of non-central
heavy-ion collisions at AGS energies [66], but also at RHIC [67]. Con-
trary to elliptic flow, it is directed out of the event plane, but consis-
tent with the elliptic nuclear overlap in a non-central collision. Due to
larger pressure in the event plane, the anisotropy gets reduced but not
destroyed at RHIC. Also this is evidence for a short duration of pion
emission.

3.2. The τ model

In e+e−, BEC depend, at least approximately, only on Q and not on its
components separately, in the sense that e+e− BEC is large if Q is small even
when any of its components are large. Further, R2 shows anti-correlations
in the region of 0.6–1.5 GeV as observed by L3 at LEP [68] as well as by
CMS [69] and ATLAS (preliminary) [70] at the LHC (see Fig. 23).

A model which predicts such Q-dependence, as well as the absence of
dependence on the components of Q separately, is the so-called τ model [58].
Further, it incorporates the Bjorken–Gottfried condition [59, 71] whereby the
four-momentum of a produced particle and the space-time position at which
it is produced are linearly related.

In this model, it is assumed that the average production point in the
overall center-of-mass system, x = (t, rx, ry, rz), of particles with a given
four-momentum p = (E, px, py, pz) is given by

xµ(pµ) = aτpµ . (16)

In the case of two-jet events, a = 1/mT, where mT is the transverse mass

and τ =

√
t
2 − r2z is the longitudinal proper time. For isotropically dis-

tributed particle production, the transverse mass is replaced by the mass in
the definition of a and τ is the proper time,

√
t
2 − r2x − r2y − r2z .

The second assumption is that the distribution of xµ(pµ) about its aver-
age, δ∆(xµ(pµ)−xµ(pµ)), is narrower than the proper-time distribution,H(τ).
Then, the two-particle Bose–Einstein correlation function is, indeed, found
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Fig. 23. The Bose–Einstein correlation function R2 for (a) L3 [68], (b) CMS [69]
and (c) ATLAS [70]. The curve in (a), the dashed line in (b) and the best fit in (c)
correspond to the fit of the τ model. The results of the L3 fit are given in Table I.
Also plotted in (a) is ∆, the difference between the fit and the data. The dashed
line represents the long-range part of the fit, i.e., γ(1 + εQ). The solid line in (b)
is an exponential fit. The lines in (c) correspond to Gaussian, exponential, and
τ model fits.

to depend on the invariant relative momentum Q, rather than on its separate
components, as well as on the values of a of the two particles [72]:

R2(p1, p2) = 1 + ReH̃

(
a1Q

2

2

)
H̃

(
a2Q

2

2

)
, (17)

where H̃(ω) =
∫

dτH(τ) exp(iωτ) is the Fourier transform (characteristic
function) of H(τ). (Note that H(τ) is normalized to unity.)

Since there is no particle production before the onset of the collision,
H(τ) should be a one-sided distribution. In the leading log approximation
of QCD, the parton shower is a fractal [73]. Further, a Lévy distribution
arises naturally from a fractal [74]. One is thus led to choose a one-sided
Lévy distribution for H(τ) [72]. The characteristic function of H(τ) can
then be written [75] (for α 6= 1) as
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H̃(ω) = exp

[
−1

2

(
∆τ |ω|

)α (
1− i sign(ω) tan

(απ
2

))
+ i ωτ0

]
, (18)

where the parameter τ0 is the proper time of the onset of particle production
and ∆τ is a measure of the width of the proper-time distribution. 0 < α < 2
is the so-called index of stability [76] of the Lévy distribution. Using this
characteristic function in (17), and incorporating the usual strength factor λ
and the long-range parametrization, yields

R2(Q, a1, a2) = γ

{
1+λ cos

[
τ0Q

2(a1+a2)

2
+tan

(απ
2

)(∆τQ2

2

)α
aα1 +aα2

2

]
× exp

[
−
(

∆τQ2

2

)α
aα1 + aα2

2

]}
(1+ εQ) . (19)

It is the cosine factor which generates oscillations corresponding to al-
ternating correlated and anti-correlated regions mentioned above. Note also
that since a = 1/mT for two-jet events, the τ model predicts a decrease of
the effective source size with increasing mT.

For each bin in Q, the average values of mT1 and mT2 are calculated,
where mT1 and mT2 are the transverse masses of the two particles making
up a pair, requiring mT1 > mT2. Using these averages, (19) is fit to R2(Q)
by the L3 Collaboration [68]. The fit results in τ0 = 0.00± 0.02 fm, and the
results of a re-fit with τ0 fixed to zero are shown in Table I.

TABLE I

Results of the fit of (19) for two-jet events, as shown in Fig. 23 (a) [68]. The param-
eter τ0 is fixed to zero. The first uncertainty is statistical, the second systematic.

Parameter

λ 0.58 ± 0.03+0.08
−0.24

α 0.47 ± 0.01+0.04
−0.02

∆τ [fm] 1.56 ± 0.12+0.32
−0.45

ε [GeV−2] 0.001 ± 0.001± 0.003

γ 0.988 ± 0.002+0.006
−0.002

χ2/d.o.f. 90/95
C.L. 62%

Note that no significant long-range correlation is observed: ε = 0 well
within one standard deviation and γ is close to unity. Obviously, the τ model
by itself can reproduce the (smooth) shape of the Q-distribution over the
full range considered, the anticorrelation near Q = 0.6 GeV included.
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In the τ model, the basic assumption is the Bjorken–Gottfried condi-
tion [59, 71] leading to (16). Recently, it has been demonstrated by the same
authors [77], however, that already the compositeness of pions can most nat-
urally lead to an anti-correlation. At small distances, the constituents mix
and there are no separate pions to interfere.

3.3. The emission function

The τ model results for BEC can be used together with the single-particle
inclusive spectra to reconstruct the space-time evolution of hadronization.
The emission function in configuration space, Sx(x), is the proper time
derivative of the integral over p of S(x, p) [72]. Approximating δ∆ by a
Dirac delta function again, gives

Sx(x) =
1

n̄

d4n

dτd3x
=
(mT

τ

)3
H(τ)ρ1

(
p =

mTx

τ

)
, (20)

where n and n̄ are the number and average number of pions produced, respec-
tively, and ρ1(p) is the experimentally measurable single-particle spectrum.

Given the symmetry of two-jet events, Sx does not depend on the az-
imuthal angle, and one can write it in cylindrical coordinates as

Sx(r, z, t) = P (r, η)H(τ) , (21)

where η is the space-time rapidity. With the strongly correlated phase space
of the τ model, η is equal to the momentum-energy rapidity y and r =
pTτ/mT. Consequently,

P (r, η) =
(mT

τ

)3
ρpT,y(rmT/τ, η) , (22)

where ρpT,y is the joint single-particle distribution of pT and y.
The reconstruction of Sx is simplified if ρpT,y can be factorized into the

product of the single-particle pT and rapidity distributions, i.e., ρpT,y =
ρpT(pT)ρy(y). Then, (22) becomes

P (r, η) =
(mT

τ

)3
ρpT(rmT/τ)ρy(η) . (23)

The integral over the transverse distribution is shown in Fig. 24. It
exhibits a “boomerang” shape with a maximum at low t and z, but with
tails reaching out to very large values of t and z, a feature already observed
for hadron–hadron [78, 79] and heavy-ion collisions [80] (Fig. 25 (a) and (c))
in the framework of a hydrodynamical model [81].
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Fig. 24. The temporal-longitudinal part of the emission function normalized to
unity [68].

Fig. 25. The reconstructed emission function S(t, z) in arbitrary vertical units, as
a function of time t and longitudinal coordinate z (left diagrams), as well as the
reconstructed emission function S(x, y) in arbitrary vertical units, as a function of
the transverse coordinates x and y (right pictures), for hh (upper pictures) and
PbPb (lower pictures) collisions, respectively [78–80].
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The transverse part of the emission function is obtained by integrating
over z as well as azimuthal angle. Figure 26 shows the transverse part of
the emission function for various proper times. Particle production starts
immediately, increases rapidly and decreases slowly. In the transverse direc-
tion, a ring-like structure is observed similar to the expanding, ring-like wave
created by a pebble in a pond. This ring-like structure was also observed
in hadron–hadron collisions [78] (Fig. 25 (b)), where it was interpreted as
due to the production of a fire-ring. Despite this similarity, the physical
process is different. Reflecting a non-thermal nature of e+e− annihilation,
the proper-time distribution and space-time structure are reconstructed here
without any reference to a temperature.

Fig. 26. The transverse emission function normalized to unity, and its transverse
profile for various proper times [68]. An animated gif file covering the first 0.15 fm =

0.5× 10−24 sec is available [82].
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Interpolating and extrapolating Fig. 26, the proper-time dependence of
the transverse expansion of the emission function can be best shown in a
movie that ends in 0.15 fm (0.5 × 10−24 sec), making it the shortest movie
ever made of a process in nature [82].

In conclusion, I find it absolutely amazing how the combination of exper-
imental results on single particle spectra and two-particle correlations with
some theoretical interpretation can allow us to construct a “femtoscope” and
actually watch particle production at a scale below one fm taking place in
less than 10−24 sec!

However, one basic puzzle remains: why in the world should pions
thought to be produced coherently in a flux tube (at least in e+e− and TeV
pp collisions) be subject to incoherent Bose–Einstein correlations? Have
we fooled ourselves for the past half century or more? Perhaps! What
Todorova-Nová is trying to tell us in a series of papers [83] based on the
Lund Helix model [84] is just that. Bose–Einstein correlations may not be
needed to explain the charge asymmetry of pion pair production, a helix
shaped flux tube would not only generate transverse momenta and hadronic
masses, but a sharp correlation peak for like-charged pion pairs at low values
of four-momentum difference Q. I think, it should be a fruitful challenge for
younger ones among us to help sort that out in detail in the future.

I would like to thank first of all Andrzej, himself, for almost half a cen-
tury of direct and indirect encouragement and guidance in an attempt to
understand multihadron dynamics, and I would like to thank Michał Prasza-
łowicz and the organizers of this very special Symposium for the honour of
being invited to contribute.
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