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This work focuses on gluon (jet) production in dilute (proton)–dense
(nucleus) collisions. Depending on the frame and gauge, gluon production
can be viewed as a freeing of gluons coming from either the proton wave
function or from the nucleus wave function. These (apparently) very dif-
ferent pictures must lead to the same result and the purpose of this paper
is to see how that happens. The focus is on gluons having k⊥ ∼ QS or
gluons in the scaling region k⊥/QS � 1. In the McLerran–Venugopalan
(MV) model with k⊥ ∼ QS, we are able to derive gluon production in a way
that (graphically) manifestly shows k⊥-factorization in terms of the num-
ber density of gluons in the nuclear wave function. We presume that this
picture, and k⊥-factorization, continues to hold in the presence of small-x
evolution although we have not been able to explicitly verify this. Our
result is in agreement with usual k⊥-factorization where the gluon number
density of the nucleus does not appear in an explicit way.
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1. Introduction

The focus of this paper is particle production in proton–nucleus (pA)
collisions at high energies1. For explicitness, and for simplicity, we shall
often describe this scattering in terms of dipole scattering on a nucleus,
but it is always easy to convert our discussion from a dipole to an actual
proton, though the formulas will sometimes be a bit more cumbersome. In
particular, we shall be interested in rapidity regions where the saturation
momentum of the proton, if we are in a region where that quantity makes
sense, is much less than that of the nucleus. We shall refer to this as the
forward (proton) region although the rapidity of the particles being measured

∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.
1 For a good review of this topic, see chapters 5 and 8 of [1].
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may be quite far removed from the rapidity of the proton. Since we are
only focused on particle production in rapidity regions where the saturation
momentum of the nucleus is significant, what is produced immediately after
the collision are (mainly gluon) jets which then will later decay into hadrons.
It is these gluon jets which are the center of our study.

The dynamics of how the gluons are produced in a pA collision depends
very much on the gauge and frame of reference in which the description is
made. Suppose we choose a frame where the proton is right-moving and
the nucleus is left-moving. If one observes produced gluon jets which are
right-moving, following the proton, the production process is very simple
in A+ = 0 gauge. In this frame and gauge, all gluons in the protons wave
function having k⊥ � QS will be produced as gluon jets of transverse mo-
mentum QS and with a longitudinal momentum fraction the same as in the
wave function [2, 3]. (QS is the saturation momentum of the nucleus at
the rapidity of the produced gluon.) Gluons in the proton are freed mainly
through multiple scattering with the dense set of gluons in the nucleus. Be-
cause there are, in general, many scatterings as the gluon from the proton
passes through the nucleus, k⊥-factorization is far from manifest [1, 4–9].
The formula for gluon production, see (3) and (4) below, is very simple as
is the picture of the production.

Now suppose we shift frame and view the same produced gluons, but now
as left-movers following the nucleus. Here, the natural gauge to use is A− = 0
since the produced gluons can naturally be viewed as coming from the wave
function of the left-moving nucleus. However, there are many gluons in the
nucleus at the rapidity in question and only a very small fraction of them
can be freed by the collision with the proton if (3) and (4) are to emerge.
The main purpose of the present paper is to do this calculation which is
presented in Sec. 4.

Our results agree with k⊥-factorization, however, our picture is more
complete in the sense that we can exhibit the Feynman graphs, in Fig. 4,
which can be used to evaluate the production and which naturally have a
k⊥-factorization structure.

2. Two different pictures of forward p–A collisions

To describe precisely what we are trying to do, it is useful to begin with
a schematic picture of the saturation momentum, Q2

S(y), of the nucleus as
a function of the rapidity, measured from the rapidity of the nucleus itself.
This picture is shown in Fig. 1. It is also convenient to define three different
frames of reference. The A-frame is where the nucleus is at rest and the
proton has rapidity Y . In the p-frame, the proton is at rest and the nucleus
has rapidity Y . Finally, in the y0-frame, the nucleus has rapidity Y −y0 and
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Fig. 1. Schematic picture of the saturation momentum, Q2
S(y), in the proton–

nucleus collisions.

the proton’s rapidity is y0. The plot of Q2
S in Fig. 1 corresponds to the

p-frame. In the y0-frame, the region of Fig. 1 where y > y0 corresponds
to left-moving components of the nucleus’ wave function, however y < y0
corresponds to right-movers which are part of the proton’s wave function.
Thus, in the y0-frame only the part of the Q2

S(y) plot having y > y0 actually
corresponds to the saturation scale in the nucleus wave function. In all our
discussion where small-x evolution is present, we assume a Coulomb gauge is
being used where right-moving quanta are effectively in an A+=0 gauge and
left-moving gluons in an A− = 0 gauge [10]. Thus, the nuclear wave func-
tion, consisting of left-movers, is described in A− = 0 gauge, while the proton
wave function, consisting of right-movers, is described in A+ = 0 gauge. In
the y0-frame, gluons produced at y0 in the figure correspond to gluons having
k+ = k− = k⊥/

√
2. Gluons produced at points 1 or 2 in the figure, y > y0 for

point 1 and y < y0 for point 2, are right-moving or left-moving, respectively.
We call y0 in the forward region of the proton as long as all gluons at y ≥ y0
in the proton’s wave function are dilute at a transverse momentum scale
k⊥ = QS(y0). Finally, at y = 0 in Fig. 1, and in the horizontal dashed line
where evolution is neglected, the saturation momentum, QS(0), is given by
the McLerran–Venugopalan picture as [11–13]

Q2
S(MV) =

4π2αNc

N2
c − 1

ρLxGp

(
x,Q2

S

)
, (1)

where ρ is the density of nucleons in the nucleus, L is the length of nuclear
matter at an impact parameter b,
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L = 2
√
R2 − b2 , (2)

and R the nuclear radius. We suppose xG is independent of x in the not
too small x region.

Points 1 and 2 in Fig. 1 correspond to y slightly below y0 and slightly
above y0, respectively. In the y0-frame, gluons produced at point 2 are right-
moving and correspond to gluons from the wave function of the proton which
have been freed by the scattering with the nucleus, while gluons produced
at y1, point 1 in the figure, are left-moving and come from the nucleus’ wave
function having been freed by interacting with the proton. The object of this
paper is to see how these two disparate pictures can agree and lead to the
same result when α(y2 − y1) � 1. In particular, we wish to see how gluon
production at point 1 can be seen in terms of the gluonic partonic content
of the nucleus. As we shall see, calculating gluon production at point 2 in
Fig. 1 is very simple in the y0-frame. And this is true whether one neglects
evolution, the MV picture, or includes small-x evolution and then evaluates
gluon production either in the geometric scaling region, k2⊥/Q

2
S(y0)� 1, or

in the region k2⊥ on the order of Q2
S(y0).

3. Viewing produced particles as coming from the proton

In this section, we evaluate gluon production at y2, in the y0-frame,
where the gluon can be viewed as coming from the proton and freed by the
nucleus [2, 3]. (We do not consider final-state emission of gluons from the
remnant valence quarks of the proton as such gluons have k2⊥ � Q2

S. In
the calculation of [3], such gluons are contained in the first term on the
right-hand side of Eq. (66) of that reference.) Gluons in the proton’s wave
function will be freed in the collision with the nucleus if those gluons have
k⊥ ≤ QS(y0) and they will not be freed if k⊥ ≥ QS(y0). Therefore, at y = y2,

dN

d2k⊥dy
= xGp

(
x,Q2

S(y0)
)
p (k⊥, QS) , (3)

where

p(k⊥, QS(y0)) =

∫
d2x⊥
4π2

e−ik⊥·x⊥S (x⊥, y0) (4)

with S(x⊥, y0), the elastic scattering-matrix for a gluon dipole of size x⊥
to scatter on a nucleus at relative rapidity y0. (We suppress the impact
parameter dependence in QS and in S.) In the McLerran–Venugopalan
model

S = eQ
2
Sx

2
⊥/4 (5)
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and, neglecting the logarithmic x⊥-dependence in QS,

p (k⊥, QS) =
e−k

2
⊥/Q

2
S

πQ2
S

. (6)

We note that (6) can be viewed as a probability distribution of the transverse
momenta and that is true of the p, defined by (4), so long as S is dominantly
absorptive.

Equation (3) is very simple. The total number of gluon jets produced is
given by xGp and their distribution is given by p. The x in xG is given by

x = k+/p+ , (7)

where, in the y0-frame, p+ is the light cone momentum of the proton and

k+ = e(y2−y0)QS(y0)/
√
2 . (8)

We note that all produced gluons at y2 come from gluons in the proton’s
wave function which have k+ given by (8). (We are neglecting collisional
energy loss in the scattering.) However, their rapidity in the wave function
is given by

y(k⊥) = y2 + ln
QS(y0)

k⊥
. (9)

Independently of the k⊥ that a gluon has in the wave function of the pro-
ton, after scattering with the nucleus, it ends up with a transverse momen-
tum on the order of QS thus lowering its rapidity to near y2. (y2 dependences
are given in terms of αy2 so that we need not worry about uncertainties in
y-values on the order of one.)

Equation (3) is correct in a first order hard scattering formalism where
the hard scale, Q2

S in xG, can be multiplied by a factor of the order of
one without changing the result significantly and thus our casual statement
that all gluons in the proton’s wave function having k⊥ ≤ QS are freed,
while gluons having k⊥ ≥ QS are not freed should be understood in this
sense. Also, it is relatively easy to see why the elastic S-matrix comes into
the formula for p in (4). To that end, we use transverse coordinate space
with the produced gluon having x1, in the amplitude and x2 in the complex
conjugate amplitude with x1−x2 = x in (4). But the transverse momentum
distribution of gluon going through a nucleus, the p⊥-broadening problem,
is given by the S-matrix for the elastic scattering of a dipole [10], x⊥, with
the nucleus, thus resulting in (4).



1960 A.H. Mueller

4. Viewing produced particle as coming from the nucleus

In this section, we will rederive (3) and (4), but now at y1 where the
produced gluon (jet) is viewed as left-moving, in the y0-frame, and hence
coming from the wave function of the nucleus. (In this section, we use the
MV model of the nucleus.) Now, there are many gluons at y1 in the nucleus’
wave function, many more than the number that are freed as given by (3).
Scattering with a proton frees only a small fraction of the gluons having
k⊥ ∼ QS(MV) in the nucleus’ wave function. Our object here is to see how
that can come about.

In the MV model, a typical contribution to the scattering is shown in
Fig. 2 where the produced gluon comes from the ith nucleon in the nucleus
lying a distance z from the front of the nucleus. In particular, since the
produced gluon transverse momentum, k⊥ is of the order of QS, the gluon
should come from a specific quark in the ith nucleon as shown in the figure.

x1 x2

l l

L − z z

i i

0

Fig. 2. A typical contribution to the nucleus–proton scattering in the MV model.

The scattering with the dipole target then occurs within the color connected
part of the active quark in nucleon i and the produced gluon. The key factors
are (

eil·x1 − 1
)(

e−il·x2 − 1
)
S (x1 − x2, z) , (10)

where
S (x1 − x2, z) = e−q̂(L−z)(x1−x2)

2/4 (11)

represents the color rotations of the produced gluon by all the nucleons ly-
ing behind nucleon i. The factors

(
eil·x1 − 1

)
and

(
e−il·x2 − 1

)
correspond

to exchanged gluons in the amplitude and complex conjugate amplitude,
respectively. Now, interactions purely in the amplitude or purely in the
complex conjugate amplitude do not contribute to gluon production so in-
stead of the first two factors of (10), we may take (see Fig. 3)
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Fig. 3. Graphical representation of Eq. (12).

(
eil·x1 − 1

)(
e−il·x2 − 1

)
+ 1

2

(
eil·x1 − 1

)2
+ 1

2

(
e−il·x2 − 1

)2
(12)

but at the order of l2, expression (10) is the same as in Fig. 4(
eil·(x1−x2) − 1

)
(13)

when an average our direction of l is taken. Thus, we use (13) for the
scattering with the dipole target and write the gluon production as

dN

d2kdy
=

∫
d2x

4π2
e−ik·xÑ(x)2

(
eil·x−1

) d2l

4π2
g2CF(
l2
)2 g2Nc

N2
c − 1

, (14)

where we have set x1 − x2 equal to x. The factors in (14) are the following:
Ñ(x) is as in [3] and corresponds to the number of gluons in the wave
function of a large nucleus. We shall give Ñ(x) in a moment. The factor
of 2 corresponds to the l-line hooking to one or the other of the two parts
of the target dipole. The

(
eil·x−1

)
is from (13) and gives the phases of the

hookings of the l-lines to gluons at 0 and x. g2CF

(l2)2
gives the coupling of the
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l-lines to a line of the dipole as well as the l-line propagators. Finally, g2Nc

N2
c−1

is the coupling of the l-lines to the k-lines where we have included a factor
of two for a second color connected component in addition to the graphs of
Fig. 4. This second color connected component involves final state emission.
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x1 x2
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k

+

(a) (b)

x1 x2
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k

+

(c)

Fig. 4. Graphical representation of expression (10) at the order of l2.

In the logarithmic approximation, one expands
(
eil·x − 1

)
to quadratic

order in l. This gives

dN

d2kdy
= −xGD

∫
d2x

αNc

4 (N2
c − 1)

x2Ñ(x)e−ik·x , (15)

where

xGD =
2αCF

π

1/x2∫
1/x2

01

dl2

l2
=

2αCF

π
ln
x201
x2

(16)

with x01 the target dipole size. From [3, 12], the Weizsächer–Williams gluon
distribution is

Ñ(x) =
N2

c − 1

π2αNcx2
(1− S(x)) (17)
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with S(x) exactly as in (4). If k 6= 0, the final answer is

dN

d2kdy
= xGp

(
x,Q2

A

) ∫ d2x

4π2
e−ix·xS(x) (18)

exactly as in Sec. 3. In going from (15) to (18), we have replaced the dipole
target by a proton target by changing GD to Gp. Equation (15) expresses
naturally gluon production, on the scale of QS, in a k⊥-factorized way in
terms of Ñ , the Weizsächer–Williams gluon distribution in the MV model.

There is an intuitive picture of why the graphs in Fig. 4 might be ex-
pected to give (14), (15) and (18). View the graphs in terms of a Boltzmann
process where a gluon of momentum k is produced, from a flux of incoming
gluons of the nuclear wave function as a gain term and a loss term. Fig-
ure 4 (a) corresponds to a gain term where k − l → k, and Figs. 4 (b) and
4 (c) correspond to loss terms of gluons having momentum k. Gluons that
do not interact with the target dipole cannot be freed and are not included
in (14).

The discussion we have given here is based on the McLerran–Venugopalan
model. One might hope that (14) and (17) are more general than the MV
model and it is a challenge for the future to generalize the current analysis
to include small-x evolution.
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