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In the high-energy domain, gluon transverse-momentum dependent dis-
tributions in nuclei obey constraints coming from positivity and unitarity
of the colorless QCD dipole distributions through Fourier–Bessel transfor-
mations. Using mathematical properties of Fourier-positive functions, we
investigate the nature of these constraints which apply to dipole model
building and formulation.
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1. Introduction

The QCD dipole formalism [1] has proven to be quite successful as a tool
for describing “low-x physics”. This is the domain of high-energy scattering of
particles on nuclei at high energy and moderate but high enough transverse
momentum exchange allowing the QCD coupling constant to be small. One
relevant example is the description and model building for the transverse-
momentum dependent (TMD) gluon distributions in nuclei. They appear in
the formulation of physical observables such as forward jet production [2]
and forward dijet correlations [3] off nuclei by scattering of protons. In the
QCD dipole formalism, i.e. in the large Nc and leading-log approximation
of perturbative QCD, they are related to the size-dependent distribution of
colorless gluon–gluon (gg) dipoles in the target nucleus.
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Within some simplifying assumptions [2], this relation takes the form of
a pair of Fourier–Bessel transforms, namely

G(Y, k) =

∞∫
0

rdrJ0(kr)S(Y, r) ,

S(Y, r) =

∞∫
0

kdkJ0(kr)G(Y, k) , (1.1)

where 1−S(Y, r) = T (Y, r) is the gg distribution in the target as a function
of their size r at total center-of-mass energy eY . Its Fourier–Bessel partner
G(Y, k) enters into the expression of the TMD gluon distribution

xG(x, k) =
k2Nc

2π2αS
A⊥ G(Y, k) , (1.2)

where x = e−Y , αS is the QCD coupling constant, and A⊥ the target trans-
verse area1.

Interestingly enough, the dipole formalism is submitted to positivity and
unitarity conditions which gives rise to nontrivial constraints on the pair of
Fourier transforms (1.1). Let us specify them as follows:

(i) Positivity constraint on T (Y, r). The dipole gluon distribution
xG(x,k) is expected to be positive. In fact, it is required to be so,
since it is proportional [2, 3] to physical observables. Hence, from
(1.2), G(Y, k) is positive and through (1.1), it induces nontrivial math-
ematical constraints on the gg dipole distribution in the target T (Y, r).
Its Fourier–Bessel transform should be positive.

(ii) Unitarity constraint on G(Y, k). The dipole distribution T (Y, r) is
also expressed as the dipole-target total cross section at total incident
energy E = eY , up to a normalization. As such, it obeys the S-matrix
unitarity condition S = 1 − T (Y, r) ≥ 0. Hence, through relations
(1.1), unitarity implies that G(Y, k) has to have a positive Fourier–
Bessel transform.

In both cases, one has functions whose Fourier transforms are positive
(here, 2-dimensional radial i.e. Fourier–Bessel ones). The aim of the present
contribution is to show some interesting physical consequences of this math-
ematical property. We call it F-positivity.

1 This is the so-called dipole gluon distribution which is to be distinguished from
the Weiszsäcker–Williams gluon distribution. The Weiszsäcker–Williams distribu-
tion cannot be expressed as the Fourier transform of a QCD dipole distribution [3].
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2. Fourier-positivity

F-positivity is the mathematical property of real-valued functions whose
Fourier transforms are positive [4]. Contrary to expectation, there is no ex-
plicit parametrization of the set of F-positive functions. They instead can
be characterized by an infinite set of necessary conditions, which constitute
the Böchner theorem [5]. For a given F-positive real function ψ(~v ) whose
d-dimensional Fourier transform ϕ(~w ) is positive, the Böchner theorem
states that the function ψ is positive definite, that is

n∑
i,j=1

ui ψ (~vi − ~vj)uj > 0 , ∀ui , ∀~vi , ∀n . (2.1)

In the case of the Fourier–Bessel transforms (1.1), the conditions (2.1) apply
to any set of two-dimensional vectors ~vi. Hence, for any n ∈ N and for
any set of numbers {ui, i = 1, . . . , n}, the n × n matrix M with elements
ψ(|~vi − ~vj |) is positive definite. This is equivalent to the property that the
lowest eigenvalue of M remains positive for all ~vi, ui, and all values of n. In
the case of (1.1), two-dimensional transverse position coordinates ~r (with
r = |~r |) or transverse momentum space ~k (with k = |~k|) may be involved,
depending on the required physical constraint we shall consider later on.

Applying the whole set of consitions (2.1) is not realistic for practical
purposes. For this sake, we have developed in the recent years [6–8] specific
tools for practical tests of F-positivity. They are formulated, in various
forms, in terms of an optimized finite subset of necessary conditions issued
from 1- and 2-dimensional versions of relations (2.1).

One of the conditions coming from the Böchner theorem which appears
to be relevant for our problems is the following. Let us consider the 3 × 3
matrix M3 with matrix elements

{M3}i,j ≡ {ψ (|~vi − ~vj |)} , ~vi = {0, 0} , {0, v} , {v sin θ, v cos θ} , (2.2)

which leads to the F-positivity conditions for the matrix

M3 =

 ψ(0) ψ(v) ψ
(
2v sin θ

2

)
ψ(v) ψ(0) ψ(v)

ψ
(
2v sin θ

2

)
ψ(v) ψ(0)

 . (2.3)

Positive-definiteness implies positivity of the matrix determinant and of its
minors along its diagonal. This leads, up to a rescaling of v, to the inequal-
ities

ψ(0) > ψ(v) > 2
ψ2
(
v/
[
2 sin θ

2

])
ψ(0)

− ψ(0) , ∀v > 0 , ∀θ ∈ [0, π] .

(2.4)
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Note that a larger number of points, provided they include the points of
(2.2), still leads to condition (2.4), together with others, forming a hierarchy
of necessary condition [8] for F-positivity.

An important addendum to the F-positivity tests for a 2-dimensional
radial function ψ(v) has been noticed in [7]. They can be extended to the
action of the radial Laplacian on ψ(v), namely

42 [ψ] (v) ≡ −1

v

d

dv

(
v

dψ(v)

dv

)

=

∞∫
0

w3dwJ0(vw) ϕ(w) > 0 , (2.5)

where φ(w) > 0 is the positive Fourier–Bessel transform of ψ(v). Hence,
F-positivity tests then apply not only to ψ, but also to 42[ψ], and its
iterations, provided the integrals, such as in (2.5) for the first one, remain
convergent.

3. Positivity constraints on the dipole distribution

Through the second equation (1.1), the positivity of the gluon distri-
bution G(Y, k) induces F-positivity constraints on the dipole amplitude
T (Y, r) = 1− S(Y, r).

In order to conveniently formulate these F-positivity constraints, let us
turn to the first equation (1.1). By double integration by part on the right-
hand side, one obtains

G(Y, k) =

∞∫
0

rdrJ0(kr)(1− T (Y, r))

=

∫
rdrJ1(kr)

∂

∂r
T (Y, r)

=

∫
rdrJ0(kr)

1

r

∂

∂r

(
r
∂

∂r
T (Y, r)

)
=

∫
rdrJ0(kr)42 [S] (Y, r) > 0 . (3.1)

Performing the integrations, we used the known derivative relations between
Bessel functions, successively, rJ0(r) = ∂

∂rJ1(r) and J1(r) = − ∂
∂rJ0(r).

Now, the key point, as discussed in our recent work [9], is the behavior
of T (Y, r) when the dipole size r → 0. The standard leading order QCD
behavior near the origin is given by the property of “color transparency”,
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T (Y, r) ∝ r2. Following [9], higher order QCD corrections of the dipole
amplitude near the origin leads to the modified behavior

T (Y, r) ∝ r2+ε when r → 0 , (3.2)

where 0 < |ε| � 1 parameterizes the slight deviations from color trans-
parency. On the one hand, they are expected to come from the running of
the coupling constant. On the other hand, they are generated by the resum-
mation of the perturbative QCD expansion in the low-x (high Y ) domain of
dipole models.

Interestingly enough, the F-positivity inequalities (2.4) impose the sim-
ple but nontrivial condition ε ≤ 0 in (3.2). This condition has consequences
[9] on various dipole models when the running QCD coupling constant αS(r)
at short dipole separation is taken into account.

Let us consider, for instance, the saturation model consistent with the
leading order DGLAP evolution [10]. The dipole amplitude reads

T (Y, r) = 1− S(Y, r) = 1− exp

(
−π

2r2

3σ0
α
(
µ2
)
xg
(
x, µ2

))
, x ≡ e−Y .

(3.3)
Here, xg(x, µ2) is the gluon distribution function in the proton considered at
momentum fraction x with r-dependent momentum scale µ2 = C/r2 + µ20,
with α(µ2) ∝ logΛ2

QCD/µ
2 and σ0, C are phenomenological constants fitted

to deep-inelastic data. The interest of this model is that it combines the
saturation effect S → 1 at large dipole size r with a behavior at small r
compatible with the DGLAP evolution equation.

In Eq. (3.3), the color transparency behavior T (Y, r) ∝ r2, r → 0, is nat-
urally obtained for fixed αS and constant xg(x, µ2) at first order of the QCD
perturbative expansion. This is equivalent to the original Golec-Biernat and
Wüsthoff model [11] which reads

T (Y, r) = 1− exp

(
−r

2

4
Q2

S(Y )

)
, (3.4)

where QS(Y ) is the “saturation scale”. In fact, the model verifies the
F-positivity constraints, as it is obvious from (1.1) by Gaussian integration.

Adding higher orders in the coupling constant modifies that behavior
and its consequences. The running of αS(µ2) ∼ 1/ log(1/r2) leads to an
effective value εrun < 0 in Eq. (3.2). On the other hand, the summation of
the double leading logarithms of the QCD perturbative expansion at small x
leads to

xg
(
x, µ2

)
≈
∑
n

[
Y
∫ µ2
µ20
α
(
k2
)

dk2/k2
]n

(n!)2
∼ ecst.

√
Y log log 1

r2 . (3.5)
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Hence, in this case, the overall modification of the color transparency behav-
ior due to the increase of the gluon parton distribution function at small r
leads to a positive contribution 0 < εresum � 1 to the behavior (3.2). The
overall effect of both higher order contributions leads to

T (Y, r)

r2
≈ e

cst.
√
Y log log 1

r2

log 1
r2

→ 0 when r → 0 . (3.6)

Hence, one finds that the compensation of the running effect by the resum-
mation one in model (3.3) is incomplete, leading to ε = εrun + εresum < 0 in
Eq. (3.2). The effect may be small in absolute value, but is non-zero.
F-positivity of the model (3.3) is thus violated. Hence, the corresponding

G(Y, k) is not everywhere positive. This can be verified by explicit Fourier
transform. The phenomenological and theoretical relevance of such and
similar behavior in various dipole models has been discussed in Ref. [9]. It
may lead to a reformulation of dipole models in the presence of higher order
QCD corrections. We shall discuss this conclusion further on in Section 5.

4. Unitarity constrains on the gluon distribution

The unitarity condition on the dipole distribution S(Y, r)=1−T (Y, r)≥0,
induces F-positivity of the gluon TMD distribution G(Y, k) as shown by the
relations Eq. (1.1). Indeed, let us consider the second line of Eq. (1.1). The
constraint reads

S(Y, r) =

∫
kdkJ0(kr)G(Y, r) ≥ 0 , (4.1)

which involves the F-positivity constraints (2.1) for G(Y, r). The necessary
condition (2.4) of Section 2 reads

G(Y, k = 0) > G(Y, k) > 2
G2
(
Y, k/

[
2 sin θ

2

])
G(Y, 0)

− G(Y, k = 0) . (4.2)

The limiting quantity G(Y, k = 0) is difficult to estimate directly from the
gluon transverse momentum spectrum. However, from the first line of (1.1),
one finds the expression

G(Y, 0) =

∞∫
0

rdrS(Y, r) , (4.3)

which can be estimated from the associated dipole model. In the original
GBW model (3.4), one finds G(Y, 0) = 2 Q−2S (Y ), which in a characteristic
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length squared scale of saturation models. More generally, a model veri-
fying “geometric scaling” [12], S(Y, r) = S(rQS(Y )) gives rise to a similar
dependence on the saturation scale, namely

G(Y, 0) = Q−2S (Y )

∞∫
0

ρdρ S(ρ) = λ−2 Q−2S (Y ) , (4.4)

where λ = O(1) is specified by the corresponding dipole model. All in all, for
generic saturation models (having only at most small violations of geometric
scaling), one expects G(Y, 0) ∼ O(Q−2S (Y )).

Combining Eqs. (4.2) and (4.4), one obtains

1 > g̃ (Y, k) > 2g̃2

(
Y,

k

2 sin θ
2

)
− 1 , (4.5)

where we introduced the short-hand notation

g̃ (Y, k) ≡ G (Y, k)

G (Y, 0)
= λ2Q2

S(Y ) G (Y, k) . (4.6)

Hence, the relation (4.5) induces bounds on the magnitude of the TMD
gluon distribution in the whole momentum range. In particular, from the
leftmost inequality in (4.5), it appears that

g̃ (Y, k) ≡ λ2Q2
S(Y )G (Y, k) < 1 . (4.7)

Thus, G cannot rise significantly above the inverse squared of the saturation
scale. The quantitative upper bound on g̃ is a function of the constant λ
and thus of the dipole model in use.

It is also interesting to take into account the second inequality of Eq. (4.5).
For a given value k of the transverse momentum and varying the angle
θ ∈ [0, π], the corresponding range is [k/2,∞]. Quoting g̃max(Y, k) ≤ 1,
the maximum value of g̃ in this range, we obtain now a lower bound on g̃.
Combining the upper and lower bounds, one gets

1 > g̃max(Y, k) > g̃ (Y, κ) > 2g̃max(Y, k)2 − 1 , κ ∈ [k/2,∞] . (4.8)

However, in order for the lower bound in Eq. (4.8) to be operating, one has
the condition

g̃max(Y, k) >
√

2/2 , (4.9)
which limits the range of validity of the lower bound in k.

One typical example is when g̃ is a monotonically decreasing function
of k then with g̃max(Y, k) = g̃(Y, k/2). Then, (4.9) translates into

1 > g̃ (Y, k) > 2g̃2(Y, k/2)− 1 (4.10)

with the condition g̃(Y, k/2) >
√

2/2. In all cases, Eq. (4.10) works in the
lower k range.
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5. Discussion

There are interesting phenomenological and theoretical consequences of
the mathematical constraints due to positivity and unitarity derived in the
previous sections. In particular, the positivity constraints of Section 3 ap-
pear to cast a doubt on some formulations of QCD dipole models when the
running of the QCD coupling constant in coordinate space αS(r) is taken
into account. Asymptotic freedom for short separation of the gluons in the
QCD dipole apparently leads to a contradiction with F-positivity.

In order to show the relevance of positivity and unitarity constraints on
an example, we show in figure 1 the results for the McLerran–Venugopalan
(MV) model with running coupling [13], using phenomenologically realistic
rapidity and model parameters. For concreteness, we thus choose a specific
version used in a recent summation model [14].
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Fig. 1. Positivity and unitarity tests of the McLerran–Venugopalan model with
running coupling. Left: the dipole amplitude: solid line, T (Y, r), dashed line,
D2T (Y, r), see (5.2), as a function of rQ. Right: its Fourier-transform ϕ(Y, k/Q) ≡
G(Y, k) in a log |ϕ|, log(k/Q) plot, and the upper and lower bounds from Eq. (4.10)
due to unitarity: solid line, the absolute value of ϕ(Y, k/Q) ≡ G(Y, k), showing the
positivity violation at a value of k/Q after the dip signalling the zero. The upper
and lower bounds due to unitarity are shown with discontinulous lines: short-
dashed line, the upper bound ϕ(Y, 0), long-dashed line, the absolute value of the
lower bound. Note that the lower bound becomes negative (and thus not operating)
beyond the dip signaling the zero.

The corresponding dipole amplitude reads

T (Y, r) =

{
1− exp

[
−
(

1

4
(rQ(Y ))2αS(rC)

[
1 + log

(
ᾱsat

ᾱS(rC)

)])p]}1/p

,

(5.1)
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where αS(rC) ∝ log−1(1/(rC) is the running QCD coupling in transverse
coordinate space and C, ᾱsat, p are phenomenological constants. Following
Eq. (3.1), F-positivity constrains the double derivative of the dipole ampli-
tude (5.1) defined as follows

D2T (Y, r) ≡ 1

r

∂

∂r

(
r
∂

∂r
T (Y, r)

)
. (5.2)

(i) Positivity constraints. The positivity violation and its source appear
clearly on the curves drawn in Fig. 1. The figure on the left-hand side
shows both the amplitude T and its double derivative D2T , Eq. (5.2).
This last function has a positive derivative near the origin (i.e. ε > 0
in Eq. (3.2)) which violates the F-positivity constraint (2.4). On the
right-hand side, the positivity violation is made manifest by explicit
computation of the Fourier–Bessel transform. The positivity violation
can be traced back to the inverse logarithmic coupling of the running
constant which is not compensated by the log–log term which appears
into brackets in (5.1). Hence, the formulation of QCD dipole mod-
els with a r-dependent coupling constant, αS(r), leads to a violation
of the expected positivity of the TMD gluon distribution. This vio-
lation appears on the ultra-violet side (k/Q > 1) of the TMD gluon
distribution spectrum.

(ii) Unitarity constraints. Figure 1, left shows explicitely that the unitarity
constraints (4.10) are satisfied by the amplitude of the McLerran–
Venugopalan model with running coupling, as can be easily checked on
Eq. (5.1). The constraints are shown by discontinuous lines in Fig. 1,
right. They are clearly operating on the infra-red (k/Q < 1) behavior
of the gluon TMD distributions. This comes from the upper bound
being the limiting value G at k = 0, and from the limiting condition
(4.9) on the lower bound to be valid.

As a concluding remark, both positivity and unitarity constraints provide
quite general constraints on the QCD dipole models, which are of common
and useful use in high energy phenomenology. We see that even the ap-
plication of the Böchner theorem on the low rank 3 × 3 matrix case, leads
to nontrivial consequences. These are remarkably distributed between the
ultra-violet (for positivity) and infra-red (for unitarity) sectors of the TMD
gluon spectrum.

Our study was limited to leading-log orders of dipole models and to the
lower rank matrix tests of the Böchner theorem. As an outlook, it is clear
that our observations ask for a developed study of F-positivity constraints
beyond leading orders and smaller matrix rank.
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The studies presented here mainly come from a thorough and long term
collaboration with Bertrand Giraud (IPhT, Saclay) and I warmly thank him
for this fruitful common work.

The present contribution has been elaborated and written in honor of
Andrzej Bialas with whom I have collaborated during so many years and
whom I consider both as a master and a close friend. Many domains of my
research, including the dipole formalism (remembering exciting after-dinner
sessions in our neighboring homes in the mid of 90’s!), found their starting
point and developments in our lively discussions and our studies in common.
For the dipole models, see among other common publications [15].
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