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Systematic calculations of superheavy region from Z = 100 to Z = 150
and N/Z ratio ranging from 1.19 to 2.70 have been carried out within
the framework of the Relativistic Hartree–Bogolyubov model. It has been
shown that the possible upper limit on the periodic table could be Z = 146,
which is at variance with predictions of sophisticated atomic many-body
calculations.
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1. Introduction

The question of an upper bound on the possible atomic numbers ap-
pearing in the periodic table is an interesting, important but difficult prob-
lem, which requires inputs from atomic physics as well as nuclear physics.
Using the quantum many-body theory for atomic systems [1, 2], recently,
Pyykkö [3] estimated the upper bound to be at charge number Z = 172,
which is 54 charge numbers away from the highest experimentally known Z,
118 [4]. In the context of finding a possible upper limit on Z, these calcu-
lations, though highly sophisticated, should be supplemented by the infor-
mation about nuclear structure and hence the stability. The present work is
an attempt to establish, from the nuclear structure point of view, a possible
upper limit on observable value of the charge number. It is, in fact, the
interplay between stability of atomic system with given number of electrons
and stability of nucleus with given charge number that is finally going to
decide on the possible upper limit, if it exists.

Here, we work within the framework of the well-established Relativis-
tic Mean Field/energy density functional, also known as the Effective Mean
Field theory [5–9], established to be one of the most successful structure
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models that describes ground state properties such as binding energies, radii
of the nuclei spanning the entire periodic table. The essentials of the rela-
tivistic mean field (RMF) theory are contained in the second section. The
results and their discussion form the subject matter of the third section.
Summary and conclusions are contained in the fourth section.

2. RMF/RHB calculation and discussion
of ground state properties

The starting point for the Relativistic Mean Field theory [5–9] is a La-
grangian density, describing the Dirac spinor nucleons, interacting by ex-
change of isoscalar–scalar σ meson that simulates long-range attraction,
isoscalar–vector ω meson that simulates short-range repulsion, isovector–
vector ρ meson that provides the crucial isospin dependence, and the pho-
ton for electromagnetic interaction. Here, we use the standard nonlinear
interaction Lagrangian with σ self-coupling, which has been used success-
fully to describe a variety of ground state properties of nuclei spanning the
entire periodic table. The Lagrangian density with minimal coupling is
composed of the free baryonic (LfreeB ), the free mesonic (LfreeM ), and the in-
teraction (LinteractionBM ) terms (see, for example, Refs. [7, 8]) such that the net
Lagrangian density is given by

L = LfreeB + LfreeM + LinteractionBM . (1)

The free baryonic part is given by [7, 8]

LfreeB = ψ̄i (iγµ∂µ − M)ψi . (2)

The free mesonic part, on the other hand, is expressed as [7, 8]

LfreeM = 1
2 ∂

µσ ∂µσ − U(σ)− 1
4 Ω

µν Ωµν + 1
2 m

2
ω ω

µ ωµ

−1
4
~R
µν ~Rµν + 1

2 m
2
ρ ~ρ

µ ~ρµ − 1
4 F

µνFµν , (3)

and the interaction term is taken to be [7, 8]

LinteractionBM = −gσ ψ̄iψi σ − gω ψ̄iγµψi ωµ − gρ ψ̄iγµ~τψi ~ρµ

−e ψ̄iγµ
(1 + τ3)

2
ψi Aµ . (4)

The quantity U(σ) contains the σ–σ self-interaction terms, and is given
by [14]

U(σ) = 1
2 mσ σ

2 + 1
3 g2 σ

3 + 1
4 g3 σ

4 . (5)
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In the equations above, M is the nucleon mass, the quantities mσ, mω and
mρ (gσ, gω and gρ) are meson masses (coupling constants), whereas g2 and
g3 are the coupling constants for the cubic and quartic self-interaction terms
for the σ field [14], and e is the electronic charge. The symbol ~τ (τ3) denotes
isotopic spin (third component of ~τ ) for the nucleon spinor (τ3 is −1 for
a neutron and +1 for proton). The isovector–vector field ~ρµ is essential in
determining the behaviour of the model with isospin.

The electromagnetic field tensor (Fµν) and the field tensors correspond-
ing to the ω and ρ fields (Ωµν and Rµν) are given by

Ωµν = ∂µων − ∂νωµ , (6)
Rµν = ∂µ~ρ ν − ∂ν~ρµ , (7)
Fµν = ∂µAν − ∂νAµ . (8)

The isovector quantities are indicated by overhead arrows.
The variational principle yields the equations of motion. In the mean

field approximation, the meson and the photon fields are not quantised, and
are replaced by their expectation values. The time reversal symmetry and
charge conservation are then imposed. This then leads to a set of coupled dif-
ferential equations, namely, (i) the Dirac-like equation with potential terms,
describing the nucleon dynamics, and (ii) Klein–Gordon-like equations with
sources involving nucleonic densities, for mesons and the photon. Explicitly,
the resulting Dirac equation reads [7, 8](
−ια ·∇ + β (M + gσσ) + gωω

o + gρτ3ρ
o
3 + e

1 + τ3
2

Ao
)
ψi = εi ψi , (9)

here, σ, ωo, ρo3 and Ao are the meson and electromagnetic fields. Due to time
reversal symmetry, the space-like components of ωµ, ~ρ µ and Aµ vanish, and
only the time-like components survive. These are denoted by superscript
‘o’ above. The meson and electromagnetic fields are determined from the
Klein–Gordon equations [7, 8]{

−∇2 +m2
σ

}
σ = −gσρs − g2σ2 − g3σ3 , (10){

−∇2 +m2
ω

}
ωo = gωρv , (11){

−∇2 +m2
ρ

}
ρo3 = gρρ3 , (12)

−∇2Ao = eρc . (13)

The source terms (nuclear currents and densities) appearing in the above
equations are given by [7]

ρs =
∑
i

niψ̄iψi , (14)
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ρv =
∑
i

niψ
†
iψi , (15)

ρ3 =
∑
i

niψ
†
i τ3ψi , (16)

ρc =
∑
i

niψ
†
i

(
1 + τ3

2

)
ψi . (17)

In practical calculations, the sum in these equations is taken only over the
positive energy states, which is known as the no-sea approximation (see, for
example, [7, 8] for more details). The quantities, ni, are known as occu-
pation probabilities. In absence of pairing correlations, these are 1 and 0,
respectively, for occupied and unoccupied states. Incorporation of pairing
correlations leads to mixing of states, thereby resulting in occupation prob-
abilities which differ from 1 and 0.

The pairing correlations can be incorporated by the simple BCS pre-
scription, or self-consistently through the Bogolyubov transforms, leading
to the Relativistic Hartree–Bogolyubov (RHB) equations [8, 10–12](

hD − λ ∆̂

−∆̂∗ −h∗D + λ

)(
U
V

)
k

= Ek

(
U
V

)
k

. (18)

Here, λ is the Lagrange multiplier, Ek is the quasi-particle energy, and Uk
and Vk are normalized four-dimensional Dirac super spinors∫ (

U †kUk′ + V †k Vk′
)

= δkk′ ; (19)

hD is the usual Dirac Hamiltonian (see [8]) given by

hD = −ια ·∇ + β (M + gσσ) + gωω
o + gρτ3ρ

o
3 + e

1 + τ3
2

Ao . (20)

The RHB equations comprise of two parts: (i) the self-consistent Dirac
type field describing long-range particle-hole correlations. This involves the
nucleon mass, the σ field and the time-like components of ω and ρ meson
fields, in addition to the time-like component of the electromagnetic field; (ii)
the pairing field describing the particle–particle correlations. The meson and
electromagnetic fields are determined self-consistently through the Klein–
Gordon-like equations as discussed above. The pairing field is expressed in
terms of the matrix elements of a suitable two-body nuclear potential in the
particle–particle channel and pairing tensor (∆). In the case of constant gap
approximation, the RHB equations reduce to the usual RMF equations with
occupancies given by the usual BCS type of expressions.
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In the practical RHB calculations, one needs the parameters appearing
in the Lagrangian, as well as the pairing matrix elements. Several sets of
these parameters appearing in the Lagrangian are available in the literature
[8, 13, 15–22]. In the present work, we employ one of the most widely used
Lagrangian parameter sets, NL3 [16].

In absence of any reliable two-body nuclear potential derived within the
framework of the RMF model [8, 12], here, we use the finite range Gogny–
D1S [23, 24] interaction, which is known to have the right content of pairing.
The RHB calculations have been carried out in spherical harmonic oscillator
basis. For the purpose of the present exploratory investigations, 20 fermionic
and 20 bosonic shells have been found to be adequate. We now present and
discuss the principal results of the current investigation.

3. Results and discussion

The RMF/RHB results for the region of known nuclei are found to be
in close agreement with the experimental data. The binding energies are
found to agree within 0.3% of the experimental values [25, 26], whereas the
charge radii are reproduced within 0.5% of the measured values [27]. These
observations are very standard, and will not be discussed further.

In order to map the entire superheavy region, all 9377 nuclei with 100 ≤
Z ≤ 150 and N/Z ratio ranging from 1.19 to 2.70 have been considered.
The entire range has been divided for convenience into two regions: 100 ≤
Z ≤ 126 (region 1) and 126 ≤ Z ≤ 150 (region 2). The ranges of neutron
numbers are taken to be 150 ≤ N ≤ 260 and 200 ≤ N ≤ 350, respectively.
These choices are adequate to cover the neutron as well as proton drip lines
for the entire range of Z values. The calculations have been carried out for
even–even, even–odd, odd–even as well as odd–odd nuclei.

In the case of the odd–odd, even–odd and odd–even nuclei, the time
reversal symmetry is broken due to the presence of odd particle(s). In such
cases, the odd particle(s) is (are) assigned to specific state(s), and the rest of
the even–even system is treated in the usual way. This is known as blocking,
and one needs to incorporate these effects in the calculations. In practice,
the identification of level(s) to be blocked is nontrivial, and is usually guided
by either the experimental ground states of the neighbouring nuclei or by the
theoretically calculated results of the neighbouring even–even nuclei. Note
that it is not necessary to consider the blocking effects if the calculations are
carried out with all the currents incorporated. However, such calculations
are considerably more difficult and time consuming.

In the present work, we explicitly impose the time reversal symmetry,
and the blocking effects are taken into account. However, to keep the number
of curves within reasonable limit, we shall only display the results for even–
even nuclei.
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The calculated binding energy per particle (BE/A) for all the even–even
nuclei considered here has been presented in Fig. 1. The horizontal line
depicted in Fig. 1 stands for BE/A of 6.5 MeV (see the discussion below
regarding this particular value). As expected, the BE/A value increases
with increasing neutron number, reaches a maximum and then decreases
as the neutron number increases further. Interestingly, for a narrow range
of neutron numbers, all the elements in a given region turn out to have
almost equal BE/A value. Further, with increasing Z, the number of nuclei
with BE/A greater than 6.5 MeV decreases, an observation, which will be
important for the subsequent discussions.
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Fig. 1. The calculated binding energy per particle for nuclei with 100 ≤ Z ≤ 126

and 126 ≤ Z ≤ 150.

As it is well-known, the magicity in the superheavy region depends on
both proton as well as neutron numbers (see, for example, [28]). Pairing
energies (Trκ∆/2, here, κ is anomalous density, see [8]) are one of the mea-
sures of magicity and hence stability of a given nucleus in comparison with
its neighbours. It should, however, be noted merely smallness of pairing
energy does not automatically guarantee the existence of the nucleus (see
the discussion below).

We plot the calculated neutron pairing energies as a function of neutron
number for the two regions in Fig. 2. The neutron pairing energy is found to
have sharp peaks at certain values of neutron numbers, indicating enhanced
stability there. In some cases, the pairing energy is found to be close to zero,
indicating possible existence of magicity at those combinations of neutron
and proton numbers. This indicates that particularly in superheavy region,
the magicity depends on both proton and neutron numbers, an observation
that has been reported elsewhere [28]. In particular, sharp peaks are ob-
served at neutron numbers (N) 164, 172, 184 and 258. At N = 164, nuclei
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Fig. 2. The calculated neutron pairing energies for region 1 and region 2.

with Z > 112 have small neutron pairing energies, but they all are pro-
ton unbound, that is, they have positive values of the corresponding proton
Fermi energies. On the other hand, at N = 172, for the nuclei with Z > 116,
the neutron pairing energy is very small. The nucleus 290118 is close to the
proton dripline, whereas 292120 turns out to be just beyond the dripline.
Therefore, even if 292120 turns out to be doubly magic, it is unlikely that it
will be observed.

In the case of N = 184, nuclei with Z < 110 turn out to have very small
neutron pairing energy, implying enhanced binding for these cases. All the
elements considered in region 1 turn out to have almost zero neutron pairing
at N = 258. However, all these nuclei turn out to have small BE/A values,
consequently, are unlikely to be stable (see the discussion below). In the
case of region 2, a robust shell closures exists at neutron number 216, at
which, nuclei in the range of 129 ≤ Z ≤ 141 are found to be well-bound. On
the other hand, the nuclei with very small pairing energy at neutron number
346 either are not bound, or turn out to have small values of BE/A, and are
unlikely to survive.

Next, we plot the proton pairing energies for the nuclei appearing in
regions 1 and 2 in Fig. 3 as a function of proton number. Each figure has
been divided into four panels, each being characterised by an integer, k. For
example, the panel with k = 0 (region 1) corresponds to neutron numbers
from 150 to 176, k = 1 corresponds to neutron numbers 178 to 304 and
so on. The neutron numbers plotted for region 2 are to be interpreted along
the same lines. A close inspection of these figures indicates that there are
sharp peaks existing in the graphs, indicating small or nearly zero pairing
energies for various charge numbers. The peak in k = 0 panel, for Z = 120,
seems to be robust, and as remarked earlier, the corresponding neutron
pairing energy is zero at N = 172, making 292120 a doubly magic nucleus.
Unfortunately, this nucleus turns out to be unbound. The charge number
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Fig. 3. The calculated proton pairing energies for region 1 and region 2.

106 (Sg) has a few neutron numbers at which proton pairing energy is zero
or small. Sg isotopes around these neutron numbers are known, and have
been studied experimentally. In the case of k = 1, there is one peak at
Z = 120, but its corresponding neutron pairing energies are large. In the
case of region 2, sharp peaks are seen, but in all these cases, the pairing
energies are significant (around −6 MeV), and no protonic shell closures are
found there. All these observations are consistent with the results discussed
in Ref. [28].

The shell closures are reflections of pairing energies. Another measure of
shell closures are the separation energies. We next plot two neutron and two
proton separation energies for regions 1 and 2 in Figs. 4 and 5, respectively.
As expected, the kinks in pairing energies appear at the places, where pairing
energy undergoes a sudden change.
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Fig. 4. The calculated two neutron separation energies for region 1 and region 2.
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Fig. 5. The calculated two proton separation energies for region 1 and region 2.

Having studied all the 9377 nuclei systematically, we now attempt to
answer an important question: how many of these are bound, and even if
we do get a bound solution, how many of them are likely to be observed
experimentally? To resolve this problem, we first demand that one and two
particle separation energies should be positive. This requirement reduced
the number of possible nuclei from 9377 to 6507. In this set, the values of
BE/A range from ∼ 7.5 MeV to ∼ 5.3 MeV. In order to understand this
range better, we first look at the experimental values of BE/A for the nuclei
spanning the entire periodic table.

The binding energy per nucleon (BE/A) of all the known nuclei [25, 26]
with Z ≥ 8 and N ≥ 8 has been plotted in Fig. 6 as a function of asymmetry
parameter (I = (N−Z)/A). The graph has been divided into horizontal and
vertical sectors, each representing certain range of BE/A or I. The number
of nuclei appearing in a given sector are mentioned suitably. For example,
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there are 12 nuclei appearing in the range of −0.2 ≤ I ≤ −0.1, and 4 nuclei
appearing in the range of 6.4 ≤ BE/A ≤ 6.8 MeV. A close examination of
the graph reveals that the most of the known nuclei appear within the range
of 0.0 ≤ I ≤ 0.25, which is hardly a surprise, and that most of them have
their BE/A values larger than 7.4 MeV. In fact, one can also see that the
number of nuclei appearing in different BE/A bins goes on decreasing with
decreasing BE/A. Hardly four known nuclei have BE/A in the range from
6.4 MeV to 6.8 MeV. These nuclei are 20Mg, 25,26O and 28F.
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Fig. 6. The experimental [25, 26] binding energy per particle for nuclei with Z ≥ 8

and N ≤ 8.

The principal aim of the present work being investigation of stability of
the superheavy nuclei, we set a lower cutoff of 6.5 MeV on the calculated
BE/A values, considering the discussion on the experimental BE/A above.
This reduces the number of possible nuclei from 6507 to 3001, Z = 146
being the largest possible Z allowed. We next note that the pairing energy
is a measure of degree of shell closure, and hence enhanced stability for the
given combination of N and Z values. Among the 3001 surviving the above
criterion, it is found that a significant number of nuclei have very large neu-
tron and/or proton pairing energies, and in a number of cases, these values
exceed −30 MeV. Clearly, these nuclei are far from shell closure, and are
unlikely to be stable. To pin down the number of possible nuclei further, we
set a cutoff on pairing energies at −20 MeV. This cutoff is quite conservative,
considering the region that we are looking at. With this cutoff, the number
of possible nuclei reduces to 2170, with the highest allowed Z being 146.
Finally, we impose a constraint on the half-lives against α decay and fission.
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We compute the α decay using the modified Viola–Seaborg formula [4, 29].
This formula though fitted for the known superheavy nuclei, works well even
far from the known region: we have explicitly verified this by computing the
α decay half-lives of nuclei with large Z (> 130) using the double folded α
daughter interaction potential within the WKB framework (details of com-
putation can be found in [30]). For example, the log of half-life (log Tα)
calculated for Z = 146 and A = 395 using theoretical Q value (15.357 MeV)
turns out to be −4.371 (−4.519) using the WKB framework [30] (the phe-
nomenological Viola–Seaborg formula [4, 29]), which agree very well with
each other.

The fission half-lives are estimated by using two recent phenomenological
formulas due to Santhosh [31] and Xu [32]. The cutoff on the half-lives thus
obtained has been set at 10−10 s. With this limit, the number of possible
observable nuclei reduces from 2170 to 964, with Z = 146 as the highest
allowed charge number. Summary of the 964 nuclei allowed after imposing
all these constrains is displayed in Table I.

It can be seen from the table that the constrains that we have imposed
do not exclude any of the known superheavy nuclei, indicating that the
constraints imposed are reasonable. Thus, it seems that the largest allowed
value of charge number is 146.

The results discussed so far have been obtained by ignoring deformation
effects. We have checked explicitly that the major conclusions drawn here
do not change drastically with the inclusion of deformation, an observation
that we had reported earlier [28]. Even with inclusion of deformation effects,
the largest possible Z is expected to remain at 146. However, it should be
noted that the ranges of the allowed values of A could change by a few
units. Further, in an extensive calculation, Zhang et al. [34] have reported
that different RMF parameters, such as, NL3 [16], DD-ME1 [35], PK1 and
PK1R [36] predict almost the same general structures in pairing energies.
We, therefore, expect that the general conclusions drawn here will not change
appreciably due to choice of RMF Lagrangian. The sophisticated atomic
many-body calculations reported in the literature indicate that the possible
upper bound on the periodic table could be Z = 172. We have extended our
calculations up to Z = 180, and through the analysis discussed above, have
not found any evidence for existence of elements above Z = 146.

From the experimental point of view, in addition to the analysis pre-
sented in this work, a study of the possible reactions leading to the super-
heavy elements, as well as an estimation of the corresponding production
cross sections is also important. An extensive investigation along these lines
has been reported elsewhere [37] with predictions for possible reactions to
produce the elements with Z = 119, 120 as well as unknown heavier isotopes
of Z = 116 and 118.
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TABLE I

Summary of the allowed nuclei. The known nuclei [33] are also mentioned there.

Range of A Range of A

Z Allowed Known Z Allowed Known

100 240 to 266 241 to 260 123 306 to 320
101 242 to 267 245 to 262 124 309 to 323
102 245 to 269 248 to 264 125 311 to 326
103 248 to 270 251 to 266 126 314 to 330
104 250 to 272 253 to 268 127 316 to 333
105 253 to 273 255 to 270 128 319 to 336
106 255 to 275 258 to 273 129 321 to 340
107 257 to 277 260 to 275 130 324 to 343
108 259 to 279 263 to 277 131 327 to 347
109 262 to 281 265 to 279 132 330 to 350
110 264 to 283 267 to 281 133 332 to 354
111 265 to 285 272 to 283 134 336 to 357
112 267 to 287 276 to 285 135 339 to 360
113 269 to 290 278 to 287 136 343 to 364
114 271 to 293 285 to 289 137 346 to 367
115 275 to 295 287 to 291 138 349 to 371
116 278 to 298 289 to 293 139 352 to 374
117 281 to 301 291 to 294 140 354 to 378
118 284 to 304 141 357 to 382
119 287 to 307 142 360 to 385
120 293 to 310 143 364 to 386
121 300 to 313 144 367 to 385
122 303 to 317 145 371 to 384

146 374 to 380

4. Summary and conclusions

In summary, an extensive and systematic RHB calculations for 9377
nuclei with 100 ≤ Z ≤ 150 has been carried out, with principal aim to de-
termine a possible upper limit on observable Z. A number of sophisticated
atomic many-body calculations have indicated that the largest possible value
of Z could be 172. However, as pointed out earlier, these calculations have
to be supplemented by the information on the stability of the nucleus. This
becomes crucial particularly while determining the possible termination of
the periodic table. Through application of a number of criteria for existence
and stability, we have demonstrated that the upper limit on periodic table
could be charge number 146, beyond which the nuclei are not likely to sur-
vive. Our calculations indicate that this estimation will not change even
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after inclusion of deformation effects, even though the details, that is, the
allowed range of mass numbers for a given charge number, might change by
one or two units only.
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