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The effect of the minimal length on the thermal properties of a Dirac
oscillator is considered. The canonical partition function is well-determined
by using the method based on the Epstein zeta function. Through this
function, all thermodynamics properties, such as the free energy, the total
energy, the entropy, and the specific heat, have been determined. Moreover,
this study leads to a minimal length in the interval of 10−16 < ∆x < 10−14

m with the following physically acceptable condition β > β0 = 1
m2

0c
2 . We

show that this condition is obtained directly through the properties of the
Epstein zeta function, and the minimal length ∆x coincide with the reduced
Compton wavelength λ̄ = ~

m0c
.
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1. Introduction

The Dirac relativistic oscillator is an important potential both for theory
and application. It was for the first time studied by Itô et al. [1]. They con-
sidered a Dirac equation in which the momentum ~p is replaced by ~p− imβω~r,
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with ~r being the position vector, m the mass of particle, and ω the frequency
of the oscillator. The interest in the problem was revived by Moshinsky and
Szczepaniak [2], who gave it the name of Dirac oscillator (DO) because,
in the non-relativistic limit, it becomes a harmonic oscillator with a very
strong spin-orbit coupling term. Physically, it can be shown that the (DO)
interaction is a physical system, which can be interpreted as the interaction
of the anomalous magnetic moment with a linear electric field [3, 4]. The
electromagnetic potential associated with the DO has been found by Ben-
itez et al. [5]. The Dirac oscillator has attracted a lot of interest both because
it provides one of the examples of the Dirac’s equation exact solvability and
because of its numerous physical applications (see [6] and references therein).
Recently, Franco-Villafane et al. [7] exposed the proposal of the first exper-
imental microwave realization of the one-dimensional DO. Quimbay et al.
[8, 9] show that the Dirac oscillator can describe a naturally occurring physi-
cal system. Specifically, the case of a two-dimensional Dirac oscillator can be
used to describe the dynamics of the charge carriers in graphene, and hence
its electronic properties. This idea has been also proved in the calculations
of the thermal properties of graphene using a method base on zeta function
[10]: this method allowed Adra et al. [11] to determine the thermodynam-
ics functions for the Dirac equation with a Lorentz scalar and inverse-linear
potential in the range of all temperatures.

The unification between the general theory of relativity and the quan-
tum mechanics is one of the most important problems in theoretical physics.
This unification predicts the existence of a minimal measurable length of
the order of the Planck length. All approaches of quantum gravity show
the idea that near the Planck scale, the standard Heisenberg uncertainty
principle should be reformulated. The minimal length uncertainty relation
has appeared in the context of the string theory, where it is a consequence of
the fact that the string cannot probe distances smaller than the string scale
~
√
β, where β is a small positive parameter called the deformation parame-

ter. This minimal length can be introduced as an additional uncertainty in
position measurement, so that the usual canonical commutation relation be-
tween position and momentum operators becomes [x̂, p̂] = i~(1 +βp2). This
commutation relation leads to the standard Heisenberg uncertainty relation
∆x̂∆p̂ ≥ i~(1 + β(∆p)2), which clearly implies the existence of a non-zero
minimal length ∆xmin = ~

√
β. This modification of the uncertainty relation

is usually termed the generalized uncertainty principle (GUP) or the mini-
mal length uncertainty principle [12–15]. Investigating the influence of the
minimal length assumption on the energy spectrum of quantum systems has
become an interesting issue primarily for two reasons. First, this may help
to set some upper bounds on the value of the minimal length. In this con-
text, we can cite some studies of the hydrogen atom and a two-dimensional
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Dirac equation in an external magnetic field. Moreover, the classical limit
has also provided some interesting insights into some cosmological prob-
lems. Second, it has been argued that quantum mechanics with a minimal
length may also be useful to describe non-point-like particles, such as quasi-
particles and various collective excitations in solids, or composite particles
(see Ref. [16] and references therein). Nowadays, the reconsideration of the
relativistic quantum mechanics in the presence of a minimal measurable
length has been studied extensively. In this context, many papers were pub-
lished where different quantum systems in space with Heisenberg algebra
were studied. They are: the Abelian Higgs model [17], the thermostat-
ics with minimal length [18], the one-dimensional hydrogen atom [19], the
Casimir effect in minimal length theories [20], the effect of minimal lengths
on electron magnetism [21], the Dirac oscillator in one and three dimensions
[22–26], the solutions of a two-dimensional Dirac equation in presence of an
external magnetic field [27], the non-commutative phase space Schrödinger
equation [28], Schrödinger equation with harmonic potential in the presence
of a magnetic field [29], and finally, the two-dimensional Dirac oscillator in
both commutative and non-commutative phase space [30, 31].

The principal aim of this paper is to study the effect of the presence of
a non-zero minimal length on the thermal properties of the Dirac oscillator
in one and two dimensions. For this, we use the formalism based on the
Epstein zeta function to calculate the canonical partition function in both
cases. We expect that the introduction of a minimal length has important
consequences on these properties.

This paper is organized as follows: in Sec. 2, we propose a method based
on Epstein zeta function to calculate the canonical partition function of
the Dirac oscillator in one and two dimensions. Section 3 is devoted to
present the different results concerning the thermodynamics quantities of
this oscillator. Finally, Sec. 4 will be a conclusion.

2. Zeta thermal partition function of a Dirac oscillator
in one and two dimensions

2.1. Framework theory

The two-dimensional Epstein zeta function Z is defined for Re s > 1, by
[32–35]

Z(s) =

∞∑
n,m=−∞

1

(am2 + bmn+ cn2)s
, (1)
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where a, b, c are real numbers with a > 0 and D = b2 − 4ac. By defining
that D = 4ac− b2 > 0, then the following quantity

Q(m,n) = am2 + bmn+ cn2 (2)

is a positive-definite binary quadratic form of discriminant D. In this case,
we have

Z(s) =

∞∑
n,m=−∞

1

Q(m,n)s
. (3)

With substitutions

x =
b

2a
, y =

√
D

2a
, τ = x+ iy , (4)

equation (3) becomes

Z(s) =
∞∑

n,m=−∞

1

as | m+ nτ |2s
. (5)

Following the procedure used in [32], the final form of two-dimensional Ep-
stein zeta function is

Z(s) = 2a−sζ(2s) + 2a−sy1−2s
√
π
ζ(2s− 1)Γ

(
s− 1

2

)
Γ (s)

+
2a−sy

1
2
−sπs

Γ (s)
H(s)

(6)
with [32]

H(s) = 4
∞∑
k=1

σ1−2s(k)ks−
1
2 cos(2kπx)Ks− 1

2
(2kπy) , (7)

where σν(k) denotes the sum of the vth powers of the divisors of k, that is,

σν(k) =
∑
d/k

dν =
∑
d/k

(
k

d

)ν
. (8)

2.2. The zeta thermal function

We start with the following eigenvalues of a one-dimensional Dirac oscil-
lator in the presence of minimal length β [22]

εn = m0c
2

√
1 + 2

~ω
m0c2

n+ β
~2ω2

c2
n2 . (9)
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With substitutions

b = 2r , a = r2
β

β0
,

(
r =

~ω
m0c2

, β0 =
1

m2
0c

2

)
, (10)

we get
εn = m0c

2
√
an2 + bn+ 1 . (11)

In what follows, we choose r = 1. Given the energy spectrum, we can define
the partition function via

Z1D =
∑
n

e−β̃εn , (12)

where β̃ = 1
kBT

with kB is the Boltzmann constant. In our case, Z reads

Z1D =
∑
n

e−
1
τ

√
an2+bn+1 (13)

with τ = kBT
m0c2

. Now, when we put that

χ =
1

τ

√
an2 + bn+ 1 , (14)

and according the following relation [36]

e−χ =
1

2πi

∫
C

dsχ−sΓ (s) , (15)

the sum is transformed into∑
n

e−
1
τ

√
an2+bn+1 =

1

2πi

∫
C

ds

(
1

τ

)−s∑
n

{
an2 + bn+ 1

}− s
2 Γ (s)

=
1

2πi

∫
C

ds

(
1

τ

)−s
Z(s)Γ (s) , (16)

where Γ (s) and Z(s) are respectively the Euler and one-dimensional Epstein
zeta function [33], and with

Z(s) =
∑
n

1

Q(1, n)
s
2

, (17)

where
Q(1, n) = an2 + bn+ 1 . (18)
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Setting that

x =
b

2
, y =

√
D

2
, with D = 4a− b2 > 0 , (19)

we find the restriction on the deformation parameter β

β > β0 =
1

m2
0c

2
. (20)

Consequently, (17) is transformed into

Z(s) = 2a−
s
2 ζ(s)+

2a−
s
2 y1−s

√
π

Γ
(
s
2

) ζ(s−1)Γ

(
s

2
− 1

2

)
+

2a−
s
2 y

1
2
− s

2π
s
2

Γ
(
s
2

) H
(s

2

)
.

(21)
Thus, the final partition function is

Z1D =
1

2πi

∫
C

ds

(
1

τ

)−s
Z(s)Γ (s) (22)

or

Z1D =
1

2πi

∫
C

ds

(
1

τ

)−s
2a−

s
2 ζ(s)Γ (s)

+
1

2πi

∫
C

ds

(
1

τ

)−s 2a−
s
2 y1−s

√
π

Γ
(
s
2

) ζ(s− 1)Γ

(
s

2
− 1

2

)
Γ (s)

+
1

2πi

∫
C

ds

(
1

τ

)−s 2a−
s
2 y

1
2
− s

2π
s
2

Γ
(
s
2

) H
(s

2

)
Γ (s) . (23)

The first integral has two poles in s = 0 and s = 1, the second has three
poles in s = 0, s = 1 and s = 2, and finally, the third has a pole at s = 0.
By applying the residues theorem, we get

Z1D = 2ζ (0) +
2√
a
{ζ (1) + ζ (0)} τ +

2π

ay
τ2 . (24)

The last integral goes to zero because of the following relation

1

Γ (s)
= seγs

∞∏
n=1

{(
1 +

x

n

)
e−

x
n

}
, (25)
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where γ is Euler’s constant given by

γ = lim
n→∞

(
n∑
k=1

1

k
− log(n)

)
. (26)

In this stage, Elizalde [33, 34] mentioned that this formula is very useful and
its practical application quite simple: in fact, the first two terms are just
nice, while the last one is quickly convergent and thus absolutely useless
in practice. Finally, the partition function for the one-dimensional Dirac
oscillator becomes

Z1D(τ, α) =
2π

α
√
α− 1

τ2 +
1√
α
τ − 1 (27)

with α = β
β0
, a = α and y =

√
α− 1.

The two-dimensional case can be treated in the same way as one-dimen-
sional: starting with the following form of the spectrum of energy (see [30])

ε̄n = m0c
2

√
1 + 4

~ω
m0c2

n+ 4β
~2ω2

c2
n2 (28)

and by the same approach as used above, the wanted partition function of
a two-dimensional Dirac oscillator can be written as

Z2D (τ, α) =
π

4α
√
α− 1

τ2 +
1

2
√
α
τ − 1 . (29)

All thermal properties for both cases can be obtained using the following
relations

F ≡ F

mc2
= −τ ln(Z) , U ≡ U

mc2
= τ2

∂ ln(Z)

∂τ
,

S ≡ S

kB
= ln(Z) + τ

∂ ln(Z)

∂τ
, C ≡ C

kB
= 2τ

∂ ln(Z)

∂τ
+ τ2

∂2 ln(Z)

∂τ2
. (30)

3. Numerical results and discussions

Before presenting our results concerning the thermal quantities of one-
and two-dimensional Dirac oscillator, two remarks can be made: (i) in Ta-
ble I, we show some values of β0 together with the minimal length ∆x for
some fermionic particles.
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TABLE I

Some values of both β0 and minimal length ∆x =
√
β0.

Symbol Mass
[
MeV
c2

]
β0 = 1

m2
0c

2

[
s2

kg2m2

]
∆x ' ~

√
β0 [m]

Electron/positron e−/e+ 0.511 1.339109486× 1043 38.615926800× 10−14

Proton/antiproton p/p̄ 938.272 3.971566887× 1036 2.1030891047× 10−16

Muon µ−/µ+ 105.7 3.143705046× 1038 1.867594294× 10−15

Tauon τ−/τ+ 1777 1.105704217× 1036 1.11056× 10−16

This parameter has been determined through the properties of Epstein
zeta function, and this restriction leads to the minimal length ∆x ' ~

√
β0.

According to Table I, the minimal length lies in the interval of 10−16 < ∆x <
10−14 m. In addition, we can see that ∆x ' ~

√
β0 = ~

m0c
= λ̄, where λ̄ is

the reduced Compton wavelength: the minimal length has the same order
as the reduced Compton wavelength. (ii) In Fig. 1, we study the effect of
the presence of minimal length on the spectrum of energy. In this context,
the reduced spectrum of energy as a function of the quantum number n for
different values of α are depicted in Fig. 1. This figure reveals that the effect
deformation parameter β on the energy spectrum is significant.
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(a) 1D Dirac oscillator (b) 2D Dirac oscillator

Fig. 1. Energy spectrum ε
m0c2

versus quantum number n for different values of
α = β

β0
.

We note here that when we have determined the thermodynamics func-
tions of our oscillators in both one and two dimensions, we have only re-
stricted ourselves to stationary states of positive energy. The reason for
this is twofold [37]: (i) The Dirac oscillator possesses an exact Foldy–
Wouthuysen transformation (FWT): so, the positive- and negative-energy
solutions never mix. (ii) The solutions with infinite degeneracy do not cor-
respond to physical states since there is not Lorentz finite representation for
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them. Thus, according to these arguments, we can assume that only particles
with positive energy are available in order to determine the thermodynamic
properties of our oscillator in question.

Now, we are ready to present our numerical results on the thermal prop-
erties of the Dirac oscillator in one and two dimensions: in Fig. 2, we show
all thermal properties of the one-dimensional Dirac oscillator for different
values of α. According to this figure, we can confirm that the parameter β
plays a significant role in these properties, and the effect of this parameter is
very important for the thermodynamic properties. In particular, the curves
of the reduced specific heat, for different values of β, tend to the asymp-
totic limit at 2, and they separate in the range of the reduce temperature τ
between 0 and ∼ 10.
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Fig. 2. Thermal properties of a one-dimensional Dirac oscillator for different values
of α = β

β0
.

For the case of a two-dimensional oscillator, we conclude that the method
of determining the canonical partition function will be the same in both cases
(see Eqs. (9) and (28)). As a consequence, all thermal properties can be
found by the same manner as in the one-dimensional case. These properties
are depicted in Fig. 3 and all phenomena observed can be argued in the same
way as in the one-dimensional case.
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Fig. 3. Thermal properties of a two-dimensional Dirac oscillator for different values
of α = β

β0
.

4. Conclusion

In this work, we have study the influence of the minimal length on the
thermal properties of the Dirac oscillator in one and two dimensions. The
statistical quantities of both cases were investigated by employing the Ep-
stein zeta function method. All this properties such as the free energy, the
total energy, the entropy, and the specific heat, show the important effect
of the presence of minimal length on the thermodynamics properties of the
Dirac oscillator. Moreover, the formalism based on the properties of the
zeta Epstein function allows us to calculate the values of minimal length
∆x = ~

√
β for some fermionic particles as shown in Table I. These values

coincide well with the reduced Compton wavelength λ̄ of these particles.

The authors wish to thank Prof. Emilio Elizalde for his helpful comments
and discussions about the Epstein zeta function.
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