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A hypothetic Hidden Sector of the Universe, consisting of sterile fer-
mions (“sterinos”) and sterile mediating bosons (“sterons”) of mass dimen-
sion 1 (not 2!) — the last described by an antisymmetric tensor field —
requires to exist also a scalar isovector and scalar isoscalar in order to
be able to construct electroweak invariant coupling (before spontaneously
breaking its symmetry). The introduced scalar isoscalar might be a res-
onant source for the diphoton excess of 750 GeV, suggested recently by
experiment.
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1. Introduction

In the previous decade, we have introduced a specific Hidden Sector of the
Universe, consisting of sterile fermions (with mass dimension 3/2) and sterile
mediating bosons (of mass dimension 1) described by an antisymmetric-
tensor field Cµν (denoted before by Aµν) [1, 2]. In addition to the familiar
structure of the Standard Model, we have postulated the existence of an
extra scalar isovector (ϕ1, ϕ2, ϕ3) (i = 1, 2, 3) or

ϕ+ =
ϕ1 + iϕ2√

2
, ϕ− =

ϕ1 − iϕ2√
2

, ϕ0 = ϕ3 (1)

and also a scalar isoscalar ϕ. While the former triplet is conserving, the
latter singlet is presumed to break spontaneously the electroweak symme-
try, 〈ϕ〉vac 6= 0, acting beside the popular Higgs scalar, 〈h0〉vac 6= 0. The
introduced sterile fermions ψ and sterile mediating bosons Cµν we will call,
for convenience, “sterinos” and “sterons”, respectively. The term “hiddons”
might be used for hypothetic vector bosons χµ of the hidden sector.
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If the tensor field Cµν is gauged, Cµν = ∂µχν−∂νχµ, by a vector field χµ
of mass dimension 0, while this field χµ turns out to be absent outside Cµν ,
then the Lagrangian density is gauge invariant, trivially. In this case, the
mass-dimension-0 vector χµ(x) might play tentatively a fundamental role in
the creation of gravitational metric gµν(x) as a specific condensate of matter

gµν(x) = ηµν + 〈χµ(x)χν(x)〉con (2)

with the Coulomb-like gauge ∂νχν = 0 giving 2χµ = ∂νCµν , where Cµν =
∂µχν − ∂νχµ. Here, Cµν is represented later by matrix (10), and a special
structure of Cµν can be investigated. If e.g., C(E)2

i = C
(B)2
i (i = 1, 2, 3) or

only
∑

iC
(E)2
i =

∑
iC

(B)2
i , then (1/4)M2CµνC

µν = 0 (see Eq. (11)) and so,
tensor Cµν is effectively massless.

In Eq. (2), there is (ηµν) = diag(1,−1,−1,−1) due to the normalization
of gravity metric gµν → ηµν , when 〈χµ(x)χν(x)〉con → 0. If we have to do
with static approximation, then the Yukawa-type equation (∆−m2

χ)χµ(x) =
∂ρCµρ(x) holds for hiddons, providing local attraction forces in the case of
negative r.h.s.

Since the equation 2χµ(x) = ∂ρCµρ(x) implies

χµ(x) = 2−1∂ρCµρ(x) = 2−1
(

div ~C(E)(x)

rot ~CB(x)− ∂0 ~CE(x)

)
µ

for µ =

{
0
1, 2, 3

, (3)

because of Eq. (10), the gravity metric formula could be given bona fide as

gµν(x)− ηµν = 〈χµ(x)χν(x)〉con

=

〈(
div ~C(E)(x)

rot ~CB(x)− ∂0 ~CE(x)

)
µ

2−2
(

div ~C(E)(x)

rot ~CB(x)− ∂0 ~CE(x)

)
ν

〉
con

. (4)

Here, −2 = ∂20 − ∆, ~∂ = (∂k), ~C
(E) = (−C(E)

k ), ~C (B) = (−C(B)
k )(k =

1, 2, 3) and div ~C(E) = ~∂ · ~C (E), rot ~C(B) = ~∂ × ~C (B). The relevant conden-
sation mechanism has yet to be discovered.

As it is well-known, the four local functions, one divergence and three
components of rotation, play constructive role in physics of spacetime con-
tinua [3]. We may expect their importance in the case of gravity metric
related hypothetically to sterons and hiddons.
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2. Coupling of Hidden Sector and Standard Model

The new scalars ϕ+, ϕ−, ϕ0 and ϕ with 〈ϕ〉vac 6= 0 enable us to define
electroweak-symmetry invariant coupling of Hidden Sector to the Standard
Model world in the following form

−1
2

√
f
(
ψ̄σµνψ + ξ ϕiW

µν
i + η ϕBµν

)
Cµν . (5)

Here, f and ξ or η are massless unknown coupling constants. Form (5) is a
subject of spontaneously electroweak-symmetry breaking by 〈ϕ〉vac 6= 0, in
addition to the Higgs mechanism 〈h0〉vac 6= 0 giving Weinberg–Salam mixing

Zµ = cos θWW
0
µ + sin θWBµ ,

Aµ = − sin θWW
0
µ + cos θWBµ , (6)

where Zµν = ∂µZν − ∂νZµ and Fµν = ∂µAν − ∂νAµ. Then, if we put
tentatively ξ = η, form (5) implies (after breaking) the following neutral
part of the electroweak-hidden coupling:

−1
2

√
f
[
ψ̄σµνψ + ξ

(
ϕ(F )Fµν + ϕ(Z)Zµν

)]
Cµν (7)

with (valid for ξ = η):

ϕ(Z) = cos θW ϕ0 + sin θW ϕ ,

ϕ(F ) = − sin θW ϕ0 + cos θW ϕ . (8)

Recall that in contrast to Fµν = ∂µAν − ∂νAµ, the antisymmetric tensor
field does not get gauging Cµν = ∂µχν − ∂νχµ with mass dimension 2, when
χµ has mass dimension 0.

Naturally, the kinetic Lagrangian density is now

−1
4

[
(∂λCµν)

(
∂λCµν

)
−M2CµνC

µν
]
. (9)

A convenient way to represent the antisymmetric tensor field Cµν reads
as the electromagnetic-type matrix [2]

(Cµν) =


0 C

(E)
1 C

(E)
2 C

(E)
3

−C(E)
1 0 −C(B)

3 C
(B)
2

−C(E)
2 C

(B)
3 0 −C(B)

1

−C(E)
3 −C(B)

2 C
(B)
1 0

 . (10)

The trace of its square is equal to

−1
4 (CµνC

µν) = 1
4 (CµνC

νµ) = 1
2

∑
i

(
C

(E)2
i − C(B)2

i

)
. (11)
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A practical formula is the square of the matrix Cµν that becomes equal to

−1
4

(
CµλC

νλ
)

= 1
4

(
CµλC

λν
)

=


~C
(E) 2
1

(
~C(E)×~C(B)

)
1

(
~C(E)×~C(B)

)
2

(
~C(E)×~C(B)

)
3

−
(
~C(E)×~C(B)

)
1
C

(E)2
1 −C(B)2

2 −C(B)2
3 C

(E)
1 C

(E)
2 +C

(B)
1 C

(B)
2 C

(E)
3 C

(E)
1 +C

(B)
3 C

(B)
1

−
(
~C(E)×~C(B)

)
2
C

(E)
1 C

(E)
2 +C

(B)
1 C

(B)
2 C

(E)2
2 −C(B)2

3 −C(B)2
1 C

(E)
2 C

(E)
3 +C

(B)
2 C

(B)
3

−
(
~C(E)×~C(B)

)
3
C

(E)
3 C

(E)
1 +C

(B)
3 C

(B)
1 C

(E)
2 C

(E)
3 +C

(B)
2 C

(B)
3 C

(E)2
3 −C(B)2

1 −C(B)2
2

 ,

(12)

where ~C(E) =
(
−C(E)

i

)
and ~C(B) =

(
−C(B)

i

)
(i = 1, 2, 3).

Note that the mass term (1/4)M2 (CµνC
µν) = 0 of the field Cµν vanishes

when
∑

iC
(E)2
i =

∑
iC

(B)2
i . Here, C(E)

i and C
(B)
i are intrinsic degrees of

freedom for a steron described by the field Cµν (in analogy to the spin of a
sterino or of another Dirac bispinor field).

3. Fermionic versus bosonic coupling

In particle physics, a fundamental role is played by 16 independent Dirac
matrices building up 5 Lorentz covariant forms:

Sµν ≡
1

2
{γµ, γν} ≡ ηµν , S(p) ≡ γ5 ≡ γ0γ1γ2γ3 ,

Vµ ≡ γµ =

{
β for µ = 0
βαk for µ = k

, V (p)
µ ≡ γµγ5 ,

Tµν ≡ σµν =
i

2
[γµ, γν ] =

 iαl for µ = 0 , ν = l
εklmσm for µ = k , ν = l
−iαk for µ = k , ν = 0

, (13)

where {γµ, γν} = 2ηµν , (µ, ν = 0, 1, 2, 3) and [σk, σl] = 2iεklmσm, (k, l,m =
1, 2, 3).

These covariant forms determine couplings of mediating bosons (with
mass dimension 1) to fermionic pairs (with mass dimension 3/2 + 3/2 = 3).
The mass dimension of interaction Lagrangian density is then 1 + 3 = 4,
while kinetic Lagrangian density of mediating bosons gets the dimension
2 + 2 = 4.

For instance, electrons and photons are coupled according to the elec-
tromagnetic interaction Lagrangian density

eψ̄ γµψA
µ . (14)
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Here, Aµ and Fµν = ∂µAν−∂νAµ have mass dimension 1 and 2, respectively,
while −(1/4)FµνF

µν = (1/2)
∑

k (E2
k −B2

k) carries mass dimension 4 for the
kinetic Lagrangian density of photons.

All other fermionic couplings among those given by Eq. (13) are also
realized experimentally, except for the Pauli-type antisymmetric tensor cou-
pling

1
2

√
f ψ̄ σµνψC

µν , (15)

where a new antisymmetric tensor field is introduced (see Eq. (10))

(Cµν) =


C

(E)
l for µ = 0, ν = l,

εklmC
(B)
m for µ = k, ν = l,

−C(E)
k for µ = k, ν = 0

(16)

(k, l,m = 1, 2, 3). The mathematical existence of this tensor isoscalar sug-
gests an experimentally new scalar isovector and new scalar isoscalar.

Arguing for extending fermionic tensor coupling (15) to bosonic tensor
coupling, we obtain Eq. (5) as an electroweak-symmetry invariant coupling of
Hidden Sector to the Standard Model world (before spontaneously breaking
the symmetry).

An actual candidate for diphoton at 750 GeV, discussed recently [4–7],
might be a scalar isoscalar participating in the process

ϕ
(F )
phys → γC → γ

〈
ϕ(F )

〉
vac

γ → γγ , (17)

where ϕ(F ) = 〈ϕ(F )〉vac + ϕ
(F )
phys with 〈ϕ(F )〉vac 6= 0. Similarly, for ϕ(Z) =

〈ϕ(Z)〉vac + ϕ
(Z)
phys with 〈ϕ

(Z)〉vac 6= 0, we get the process

ϕ
(Z)
phys → ZC → Z

〈
ϕ(F )

〉
vac

γ → Zγ . (18)

In Ref. [2], we considered alternatively

CC → ϕ
(F )
physγ ϕ

(F )
physγ → γγ (19)

(here, we use the notation C instead of A).
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Appendix A

Free steron versus sterino

With the interaction and kinetic parts of steron Lagrangian density,
Eqs. (5) and (9), the Lagrangian field equation for Cµν reads(

2−M2
)
Cµν ≡ −

√
f
(
ψ̄σµνψ + ξϕiW

µν
i + ηϕBµν

)
. (A.1)

In the limit of f → 0, we obtain a free equation for Cµν , (2−M2)Cµν = 0,
getting the plane-wave solutions

Cµνa (x) =
1

(2π)3/2
1√
2k0

eµνa e−ik x , (A.2)

where
ke =

√
~k2 +M2 (A.3)

and

(eµνa ) = (eµν)a =


0 e

(E)
1 e

(E)
2 e

(E)
3

−e(E)
1 0 −e(B)

3 e
(B)
2

−e(E)
2 e

(B)
3 0 −e(B)

1

−e(E)
3 −e(B)

2 e
(B)
1 0


a

(A.4)

due to Eq. (10). Here, three independent polarizations ~e (E,B)
a =

(
e
(E,B)
k

)
a

(a = 1, 2, 3 and k = 1, 2, 3) are chosen ortonormal, separately for E and B

~e (E,B)
a · ~e (E,B)

b = δab ,

3∑
a=1

e
(E,B)
ka e

(E,B)
la = δkl . (A.5)

Now, we may impose a priori a hypothetic relation between polar and
axial polarizations, ~e (E)

a and ~e (B)
a , within solution (A.2), putting the con-

straint
~e
(E)
1,2,3 × ~e

(E)
3,1,2 = ~e

(B)
2,3,1 , (A.6)

besides the identity

~e
(E)
1,2,3 × ~e

(E)
2,3,1, = (+ or −)~e

(E)
3,1,2 (A.7)

(in the right- or left-handed frame of reference, respectively). Then, con-
straint (A.6) can be presented trivially as

~e (B)
a = (+ or −)~e (E)

a (A.8)
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and so,
~e (B)2
a = ~e (E)2

a (A.9)

(a = 1, 2, 3). Thus, from Eqs. (A.4) and (A.9), the trace of matrix eµνa
squared (minus) is

eµν ae
µν
a = 2

(
~e (B)2
a − ~e (E)2

a

)
= 0 , (A.10)

the last step being valid when one uses constraint (A.9). Then, we can infer
that the effective mass term (1/4)M2CµνC

µν of the steron field Cµν vanishes
(see Eq. (11)).

In a similar way, we get the sterino Lagrange field equation(
γµi∂µ − 1

2

√
f σµνCµν −mψ

)
ψ = 0 , (A.11)

when we apply the energy and kinetic parts of sterino Lagrangian density,
Eq. (5) and the term

ψ̄ (γµi∂µ −mψ)ψ , (A.12)

respectively. Due to the identity

1
2σ

µνCµν = i ~α · ~C (E) + ~σ · ~C (B) (A.13)

following from formulae (10) and (13), we can rewrite the sterino field equa-
tion (A.11) as[

γµi∂µ −mψ −
√
f
(
i~α · ~C (E) + ~σ · ~C (B)

)]
= 0 , (A.14)

where ~C (E,B) = (C
(E,B)
k ).

A physically interesting case might be a sterino ψ(x) embedded in the
uniform steron field ~C (E) =

−−−→
const = (0, 0, C) and ~C (B) =

−−−→
const = (0, 0, C ′).

Then, from Eq. (A.14) we infer that[
E − ~α · ~p− βmψ −

√
f γ3

(
iC + γ5C

′)]ψ = 0 (A.15)

for i∂µψ(~p ) = pµψ(~p ) with ~p denoting the momentum of sterino, while E(~p )
is its energy spectrum. Multiplying Eq. (A.15) on the l.h.s. by [E + α · ~p+
βmψ +

√
fγ3(iC + γ5C

′)], we get sterino quadratic spectrum[
E2 − ~p 2 −m2

ψ − f
(
C2 + C ′2

)
− 2
√
f C ′ (σ3mψ + iγ1p2 − iγ2p1)

]
ψ = 0 .

(A.16)
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We solve this spectrum in terms of sterino momenta p1, p2, p3, finding
the eigenvalues of the complete set of independent observables

1
2σ3ψ = msψ ≡ ±1

2ψ (A.17)

and

(iγ1p2 − iγ2p1)ψ = ±
√

(iγ1p2 − iγ2p1)2 ψ ≡ ±
√
p21 + p22 ψ (A.18)

with

E2 = ~p2 +mψ
2 + f

(
C2 + C ′

2
)

+ 2
√
f C ′

(
±mψ ±

√
p21 + p22

)
. (A.19)

Here, ~γ = β γ5 ~σ = β~α, (i~γ)† = i~γ and (iγ1)
2 = 1 = (iγ2)

2 as well as
{iγ1, iγ2} = 0. Thus,

[σ3 , {iγk , iγl}] = 2δkl[σ3 ,1] = 0 (A.20)

so, squares of iγ1 and iγ2 are independent of σ3.

Appendix B

Maxwell’s hidden equations

When sterons Cµν are Coulomb-like gauged,

Cµν = ∂µχν − ∂νχµ or

{
~C(E) = −∂0~χ− ~∂χ0

~C(B) = rot~χ
(B.1)

with ∂νχν = 0, when Cµν and χµ are of mass dimension 1 and 0, respectively,
then from Eq. (B.1) it follows that

rot~C(E) + ∂0 ~C
(B) = 0 ,

div ~C(B) = 0 . (B.2)

On the other hand, formula (3): ∂νCµν = 2χµ gives (see Eq. (10))

rot~C(B) − ∂0 ~C(E) = 2~χ ,

div ~C(E) = 2χ0 , (B.3)

when hiddons χµ through 2χµ are responsible for sources of sterons Cµν .



Coupling of Hidden Sector 2133

The four formulae (B.2) and (B.3) are Maxwell-type equations, acting on
sterons Cµν with mass dimensions 1 (“Maxwell’s hidden equations”), defining
“hidden electromagnetism”. In the world of Standard Model, electroweak
symmetry is actually active (plus hypothetic new scalar isovector and scalar
isoscalar fields recently introduced [1, 2]).

There is also a cross-coupling between the Hidden Sector and Standard
Model world, cf. Eq. (5), the latter being electroweak-symmetry invariant
(before spontaneously breaking the electroweak symmetry). As a result of
coupling (5), the conventional Maxwell’s equations (already electroweakly
unified) become extended (“Maxwell’s extended equations”).
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