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We study the decay law for a moving unstable particle. The usual
time-dilatation formula states that the decay width for an unstable state
moving with a momentum p and mass M is Γ̃p = ΓM/

√
p2 +M2 with

Γ being the decay width in the rest frame. In agreement with previous
studies, we show that in the context of QM as well as QFT, this equation
is not correct provided that the quantum measurement is performed in a
reference frame in which the unstable particle has momentum p (note, a
momentum eigenstate is not a velocity eigenstate in QM). We then give,
to our knowledge for the first time, an analytic expression of an improved
formula and we show that the deviation from Γ̃p has a maximum for p/M =√
2/3, but is typically very small. Then, the result can be easily generalized

to a momentum wave packet and also to an arbitrary initial state. Here,
we give a very general expression of the non-decay probability. As a next
step, we show that care is needed when one makes a boost of an unstable
state with zero momentum/velocity: namely, the resulting state has zero
overlap with the elements of the basis of unstable states (it is already
decayed!). However, when considering a spread in velocity, one finds again
that Γ̃p is typically a very good approximation. The study of a velocity
wave packet represents an interesting subject which constitutes one of the
main outcomes of the present manuscript. In the end, it should be stressed
that there is no whatsoever breaking of special relativity, but as usual in
QM, one should specify which kind of measurement on which kind of state
is performed.
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1. Introduction

Time dilatation is one of the most striking and beautiful consequences of
special (and also general) relativity. It is experimentally precisely verified,
yet it still fascinates us because it is so much different from our common
sense: it shows the inexistence of a ‘present’ for all the observers and it gen-
erates many ‘paradoxes’, such as the renowned twins’ one. Its formulation
is now a part of textbooks. Two observes, Alice (A) and Bob (B), move
away from each other with a constant velocity v. The relation among the
coordinates of Bob and Alice is given by a Lorentz transformation. Alice has
a clock (of whatever type) in her hands. The clock makes a ‘click’ after a
certain time T which links the events (0, 0) and (T, 0) in her reference frame.
Then, the time interval between the two events as measured by Bob is γT
with γ = 1/

√
1− v2. This is the usual time dilatation.

Another fascinating — and in a certain sense even more astonishing —
part of modern physics is Quantum Mechanics (QM), in which randomness
plays a central role: when a measurement is performed, the wave function
of a quantum state instantaneously collapses to one of the eigenstates of
the measured observable. An unstable quantum state, such as an unstable
elementary particle, is one of the best examples to show the features of QM:
the state of the system is a superposition of decayed and undecayed, and —
upon measurement through an appropriate apparatus — a collapse to either
decayed or not decayed takes place. Indeed, Schrödinger [1] had chosen
the decay of a radioactive atom to trigger his sadistic but fortunately only
ideal cat-killing machine, in such a way to put also the state of the cat into a
superposition of alive and dead (unless, of course, the cat itself is regarded as
a measuring device). The merging of special relativity and QM is Quantum
Field Theory (QFT), which is the correct theoretical framework to describe
the creation and annihilation of particles and thus — in ultimate analysis
— to describe decays.

Now, Alice can use unstable particles as a clock. She prepares at t = 0
a box of N0 unstable states which have zero velocity, i.e. they are all at rest
with Alice. She performs measurements and finds that the number of states
decreases as N(t) = N0Pnd(t), where Pnd(t) is the non-decay probability as
measured by Alice. In the exponential limit [2, 3],

Pnd(t) = e−Γt , τ = Γ−1 ‘lifetime’ . (1)

It is now theoretically [4–11] and experimentally [12, 13] established that
deviations from the exponential decay exist, but they are usually small. We
shall consider at first this limit in our numerical examples, but we will also
present general expressions which naturally take into account departures
from the exponential decay.
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Now, what about Bob? The usual answer is that Bob ‘sees’ the unstable
particles living longer. This is because of time dilatation. Thus, Bob should
‘see’ an increased lifetime of τB = γτ > τ. In other words, the decay width
as measured by Bob is given by the standard ‘Einstein’ formula

Γ

γ
≡ ΓM√

p2 +M2
= Γ̃p , (2)

where M is the rest mass of the unstable particle. This is, indeed, the usual
explanation behind the famous expression ‘the long lifetime of the muons’.
Namely, the muons produced in the atmosphere manage to reach detectors
located on the earth because of time dilatation: they move fast enough so
that, in the earth reference frame, the decay width is sizably smaller and the
decay time larger (see also the direct experimental verification in Ref. [14]).
But what does it mean to ‘see’? We need to be precise in this respect.

Namely, it is important to stress from the very beginning the following
point: if Alice performs the decayed/undecayed measurement in her refer-
ence frame, then Bob confirms formula (2) exactly. The question here is
slightly but crucially different: what happens if the detector is in the rest
frame of Bob who performs the decayed/undecayed measurement? In other
words, is there a difference if it is Alice or Bob who is making the experi-
ment?

We study the problem in four different steps. First (Sec. 2), we con-
sider the case in which the unstable state has a definite momentum p w.r.t.
the measuring device. Here, we review previous existing works on the sub-
ject [17–25]: the general outcome is that Eq. (2) does not hold for such a
system, even if it is a very good approximation. Moreover, we also present
an analytical formula for the decay width Γp in the Breit–Wigner limit. At
the same time, we quantify the deviations in Fig. 1 and give further analytic
expressions for the deviations from Eq. (2). In this context, it is important
to stress that in QM and QFT, an unstable state with definite momentum
does not have a definite velocity, thus this situation does not correspond
to a boost but rather to a momentum translation of a zero-velocity unsta-
ble state. Then, strictly speaking, this is not what Bob would measure,
but it represents a very well-defined theoretical setup (for instance, for a
‘momentum translated’ observer Charlie).

The second step (Sec. 3) is the generalization to a momentum wave
packet. Here, a subtle but very important point concerns the definition of
the basis of unstable states: we shall argue that the non-decay probability
of a generic state |Ψ〉 is not the survival probability

∣∣〈Ψ ∣∣e−iHt∣∣Ψ〉∣∣2, but
that one should project onto a suitable basis. We also argue that the only
consistent choice of such a basis is to use the set of unstable states with
definite momentum (which can be obtained from the zero-velocity unstable
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state by momentum translations). Then, in the end of this section, we also
study the non-decay probability for a fully arbitrary initial state, leading to
the most general result of the present paper.

As a third step (Sec. 4), we study — by using the formalism developed
in Sec. 3 — a boost of a zero-velocity unstable state and thus obtain an
eigenstate of velocity (this is what Bob would measure). Quite surprisingly,
the boosted state is already decayed: the boosted muon consists — for Bob
and for his measuring apparatus — of an electron and two neutrinos; a
boosted pion consists of two photons, and so on and so forth. This result is
in agreement with Ref. [23], where it was called ‘decay caused by boost’. In
this respect, Eq. (2) is completely wrong. In this section, we also discuss the
survival probability of a state with definite velocity, which — as presented
in Refs. [21, 23, 26] — shows a quite amusing Lorentz contraction of time
instead of dilation. This problem does not arise if the definition of Sec. 3
concerning the decayed/undecayed assessment is used.

The result of Sec. 4 is, however, very ‘delicate’ as we describe in the
fourth and last step (Sec. 5): it is strictly valid only if we perform a boost
on a state which has exactly zero momentum (or velocity). If a more realistic
velocity wave packet is considered, we find again that the decay law is well-
approximated by Eq. (2). Namely, using again Sec. 3, there is a non-zero
overlap with the set of undecayed states as soon as a velocity spreading
is implemented. The results, which are depicted in Fig. 2, constitute one
of the main contributions of the present paper. Finally, we summarize the
manuscript in Sec. 6.

2. Decay law of a state with definite momentum

We consider a spacial one-dimensional system described by the Hamil-
tonian H, whose eigenstates are denoted as

|m, p〉 = Up |m, 0〉 ,

where Up is the unitary operator associated to the translation in momentum
space. The state |m, p〉 has definite energy, H |m, p〉 =

√
p2 +m2 |m, p〉,

definite momentum, P |m, p〉 = p |m, p〉 , as well as a definite velocity: (P/H)
|m, p〉 = (p/γm) |m, p〉 . The normalization is given by: 〈m1, p1|m2, p2〉 =
δ(m1 −m2)δ(p1 − p2).

An unstable state with definite momentum p is denoted as |S, p〉 = Up
|S, 0〉

|S, p〉 =
∞∫
0

dmaS(m) |m, p〉 . (3)
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The quantity dS(m) = |aS(m)|2 is the mass distribution: dS(m)dm is the
probability that the unstable particle S has a mass between m and m+dm.
As a consequence,

∫∞
0 dmdS(m) = 1. The normalization 〈S, p1|S, p2〉 =

δ(p1 − p2) follows. Note, Eq. (3) is not a state with definite velocity. This
is due to the fact that each state |m, p〉 in the superposition has a different
velocity p/ (γm). The theory of decays is discussed in great detail for the
case of p = 0 in Refs. [7, 15, 16] and references therein. Moreover, as shown in
Ref. [11], QFT at the one-loop resummed level can be also described within
such formalism. Thus, our discussions includes from the very beginning not
only QM but also QFT.

A very useful, although not exact, approximation both in QM and in
QFT is the Breit–Wigner (BW) formula, dBW

S (m)= Γ
2π

[
(m−M)2+Γ 2/4

]−1.
By starting from a properly normalized state with zero momentum, |S, 0〉 /√
δ(p = 0) and upon extending the integral to negative masses (this is

strictly speaking unphysical, but the induced error is very small if the ratio
Γ/M � 1), we obtain the amplitude

a(t, 0) =
1

δ(p = 0)

〈
S, 0

∣∣e−iHt∣∣S, 0〉 ' ∞∫
−∞

dmdBW
S (m)e−imt = e−iMt−Γt/2 ,

(4)
ergo, the survival probability of the state |S〉 is Pnd(t) = |a(t, 0)|2 = e−Γt,
which is the usual decay law already introduced in Eq. (1).

As mentioned in Introduction, it is now well-known that deviations from
the exponential decay exist. They stem from the fact that any realistic
distribution dS(m) should be zero below a certain energy threshold m0 ≥ 0,
thus the integral in the r.h.s. of Eq. (4) should extend from m0 upward (e.g.,
in a two-body decay, the threshold energy is given by the sum of the rest
masses produced in the decay, see also Ref. [20] for the study of the useful
case m0 = 0). Moreover, dS(m) should also fall down faster than 1/m2 for
large m due to form factors [7]. Both properties lead to long-time and short-
time deviations from the exponential decay law Pnd(t) = |a(t, 0)|2 = e−Γt,
respectively. Yet, these deviations are usually small and occur in a very
short time interval at the beginning of the decay and at a very late decay
times (typically, of the order of 10Γ−1). Thus, there is a long time interval
in which the exponential decay is very well-realized. In this work, we aim
to concentrate on the study of decays in relation with special relativity.
Thus, in the present paper, we shall limit our numerical investigations to
the Breit–Wigner limit. The reason is that, as we shall see, there are —
even in this limit — interesting aspects which need further investigations
and clarifications. Yet, general expressions valid beyond the Breit–Wigner
limit are presented in the next section.
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We now turn to the calculation of the non-decay probability of a state
with definite but non-vanishing momentum and present a derivation similar
to the works of Refs. [18–25]. To this end, we consider a (normalized) state
|S, p〉 /

√
δ(p = 0) with a generic momentum p, we find the following non-

decay amplitude

a(t, p) =
1

δ(p = 0)

〈
S, p

∣∣e−iHt∣∣S, p〉 = ∞∫
−∞

dmdS(m)e−i
√
m2+p2t

'
∞∫
−∞

dmdBW
S (m)e−i

√
m2+p2t = e−i

√
(M−iΓ/2)2+p2t . (5)

For the investigation of similar equations, we refer also to Refs. [20, 22, 25].
In the BW limit, the non-decay (survival) probability reads

Pnd(t) = |a(t, p)|2 = e−Γpt (6)

with
Γp = 2 Im

[√
(M − iΓ/2)2 + p2

]
. (7)

Quite interestingly, Γp can be recasted in the analytic expression

Γp =
√
2

√√√√[(M2 − Γ 2

4
+ p2

)2

+M2Γ 2

]1/2
−
(
M2 − Γ 2

4
+ p2

)
. (8)

One realizes that Γp differs from the standard formula of Eq. (2): Γp 6= Γ̃p =

ΓM/
√
p2 +M2. Deviations were already discussed in Refs. [17–25]. We

thus confirm those results and present — to our knowledge for the first time
— the analytic expression (8) for the decay width of an unstable particle with
definite momentum p. One can, indeed, easily prove that for Γ/M � 1 one
reobtains, as expected, that Γp ' Γ̃p. Notice that while our Eq. (8) is only
valid in the (typically very good) exponential limit, we feel that it is always
useful to have — whenever possible — an analytic expression, especially in
the context of connecting Quantum Mechanics and Special Relativity.

As a next point, it is natural to ask how good Eq. (2) is. For small Γ/M ,
the difference

∆ =
Γp − Γ̃p
M

(9)

has a maximum for
pmax

M
=

√
2

3
' 0.816 . (10)
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The value of the difference at the maximum scales as

∆max =
Γpmax − Γ̃pmax

M
' 3

100

√
3

5

(
Γ

M

)3

. (11)

As an example, in Fig. 1, we plot ∆ as a function of p/M for the numerical
choice Γ/M = 1/100.

Fig. 1. Difference between our result of Eq. (8) and the standard formula of Eq. (2)
as a function of p for the ratio Γ/M = 1/100. The position of the minimum
pmax/M =

√
2/3 is constant for decreasing Γ/M. The height of the maximum

scales as given in Eq. (11), thus the deviation decreases very fast for decreasing
Γ/M.

Equation (2) turns out to be an extremely good approximation. For in-
stance, in the case of the muon (M = 105.6583MeV, Γ = 2.99×10−16 MeV),
we get an astonishingly small deviation: Γpmax− Γ̃pmax ' 5.598×10−53 MeV.
The deviation increases only very slightly with increasing decay width. For
the neutral pion (M = 134.9766 MeV, Γ = 7.72 × 10−6 MeV), we get
Γpmax−Γ̃pmax ' 5.81×10−22 MeV. Only for strong decays, the deviations be-
come somewhat larger. For the ρmeson (M = 775.26MeV, Γ = 147.8MeV),
we get Γpmax − Γ̃pmax ' 0.125 MeV (all numerical values are from Ref. [27]).

A direct experimental verification of this deviation seems at present dif-
ficult because of the very small departure (a very high precision is required,
much beyond the one in Ref. [14]). However, it is a very interesting deviation
from a fundamental point of view.

One may wonder if there is a conflict with the usual textbook QFT
results in which the decay width in QFT is expressed in a covariant form,
see, for example, Refs. [27, 28] for the two-body decay
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dΓ =
(2π)4

2M
|M|2 δ (p− k1 − k2)

d3k1
(2π)32E1

d3k2
(2π)32E2

, (12)

where ki = (Ei,~ki) is the four-momentum of the outgoing particle i with
i = 1, 2. The amplitudeM is a Lorentz scalar. Then, the kinematic factors
reproduce Eq. (2) exactly. The reason is that this derivation of QFT is
based on the S-matrix formalism, which is designed to deal with scattering of
asymptotic stable states. It can be applied to decays, but with due care [28].
Namely, Eq. (12) is only valid in the limit of Γ �M in which the unstable
state can be approximately considered as stable (in this limit, the mass and
the momentum of the unstable state are uniquely defined). Thus, the usual
textbook QFT expression is also an (typically very useful) approximation.
Indeed, for the very same reason, also deviations form the exponential decay
law cannot be obtained in the S-matrix formalism of QFT but need more
advance approaches, see Refs. [10, 11].

3. Spreading of momentum (wave packet) and generalization

An initial state with definite momentum is a (useful) idealization. A
more realistic initial state is expressed by a superposition of different states
of the type of |S, p〉

|Ψ〉 =
+∞∫
−∞

dpB(p) |S, p〉 with
+∞∫
−∞

dp |B(p)|2 = 1 . (13)

Which the non-decay probability is associated to this state? This point is
delicate: the quantity

〈
Ψ
∣∣e−iHt∣∣Ψ〉 is not what we are looking for. Namely,

this is the probability’s amplitude that the state is still in the very same
initial form, but it does not take into account the possibility that the state
has evolved into a different non-decayed state (a dephasing, but not a de-
cay, may occur). In order to obtain the non-decay probability, we have to
project onto the basis of undecayed states |S, p〉. Thus, we first calculate
the amplitude that at the time t, the state is given by |S, p〉 , expressed by〈
S, p

∣∣e−iHt∣∣Ψ〉 = B(p)a(t, p), and then, we square the modulus and inte-
grate over p. In the end, the non-decay probability reads

Pnd(t) =

+∞∫
−∞

dp
∣∣〈S, p ∣∣e−iHt∣∣Ψ〉∣∣2 . (14)

In other words, the space of undecayed states is not one-dimensional but is
spanned by all states |S, p〉, where p is a continuous variable. Only when the
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wave packet is sufficiently narrow, we recover Eq. (5), see also the discussion
in Ref. [17]. Moreover, only for a very narrow wave packet, the quantity∣∣〈Ψ ∣∣e−iHt∣∣Ψ〉∣∣2 coincides with the non-decay probability of Eq. (14). Ex-
plicitly, the non-decay probability associated to the wave packet of Eq. (13)
reads (in the Breit–Wigner limit)

Pnd(t)=

+∞∫
−∞

dp |B(p)|2 |a(t, p)|2=
+∞∫
−∞

dp |B(p)|2 e−Γpt'
+∞∫
−∞

dp |B(p)|2 e−Γ̃pt .

(15)
We thus have a decay law which emerges as the sum of more exponential
functions, each of them weighted with the corresponding probability |B(p)|2.
The condition Pnd(0) = 1 holds: the wave packet of Eq. (13) is a non-decayed
state at t = 0. For |B(p)|2 = δ(p − p0)/δ(0), we reobtain the decay law for
a definite momentum p0, see Eq. (8). The last expression on the right is
what one could intuitively write down by using Eq. (2). In general, if B(p)
is centered around a certain value p0, the non-decay probability can be very
well-approximated by Pnd(t) ' e−Γp0 t ' e−Γ̃p0 t.

For our discussion, it was not necessary to involve the space variable x.
Anyway, for completeness, the space-like wave function of the unstable state
|Ψ〉 can be easily obtained as

ψ(t, x) =
〈
x
∣∣e−iHt∣∣Ψ〉 = 1

2π

+∞∫
−∞

dpB(p)a(t, p)eipx . (16)

One has a wave packet that is moving in space and that is gradually loosing
its overall normalization because of the decay.

As a last step, we consider the most general form of an initial state |Θ〉
as given by

|Θ〉 =
∞∫
0

dm

+∞∫
−∞

dpβ(m, p) |m, p〉 with
∞∫
0

dm

+∞∫
−∞

dp |β(m, p)|2 = 1 .

(17)
Namely, being the states |m, p〉 a basis for the whole space (decayed and
non-decayed), |Θ〉 is the most general form of a ket. The wave packet |Ψ〉
of Eq. (15) is a special case obtained by setting β(m, p) = B(p)aS(m), i.e.
a factorization of momentum and mass parts is present (as in Ref. [17]).
The (normalized) state |S, p0〉 /

√
δ(0) is obtained for β(m, p) = aS(m)δ(p−

p0)/
√
δ(0). The non-decay probability associated to the most general initial
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state |Θ〉 reads

Pnd(t)=

+∞∫
−∞

dp
∣∣〈S, p ∣∣e−iHt∣∣Θ〉∣∣2=+∞∫

−∞

dp

∣∣∣∣∣∣
∞∫
0

dma∗S(m)β(m, p)e−i
√
m2+p2t

∣∣∣∣∣∣
2

.

(18)
Here, Pnd(0) ≤ 1: the initial state is not necessarily a non-decayed state.
Notice that the present form of Pnd(t) represents a generalization of the
discussion of Ref. [23] and Ref. [21]. We will use Eq. (18) also in Secs. 4
and 5 when studying boosts.

4. State with a definite velocity

The state |S, p〉 discussed in Sec. 1 has not a definite speed. We can,
however, construct a state with definite speed upon boosting the state |S, 0〉

Uv |S, 0〉 ≡ |S, v〉 =
∞∫
0

dmaS(m)
√
mγ3/2 |m,mγv〉 . (19)

In this way, |S, v〉 is an eigenstate of the velocity operator P/H with eigen-
value v. The additional factors are needed to obtain the normalization
〈S, v1|S, v2〉 = δ(v1 − v2). It is indeed a straightforward but subtle link
between different bases. Note, one immediately sees from Eq. (19) that m
needs to be positive. A normalized state with definite velocity is then given
by δ(v = 0)−1/2 |S, v〉; this state can be also obtained from the general ex-
pression (17) upon setting β(m, p) = δ(v = 0)−1/2

√
mγ3/2aS(m)δ(p−mγv).

This is indeed the state that Bob ‘sees’ if a normalized state with definite
momentum/velocity p = v = 0 is prepared by Alice. In order to evalu-
ate the non-decay probability associated to this state, we first calculate the
amplitude

[δ(v = 0)]−1/2
〈
S, v

∣∣e−iHt∣∣S, p〉 = [δ(v = 0)]−1/2 dS

(
p

γv

)√
p

v

1

v
e−iγmt .

(20)
Then, upon squaring and integrating over p, we find that Pnd(t) = 0 for any
time! Namely, even at t = 0, one has Pnd(0) = 0. This result can be also
obtained by using Eq. (18). In other words, a boost transforms an undecayed
particle into decayed ones. In the muon example, Bob already ‘sees’ from
the very beginning an electron and two neutrinos! This quite astonishing
result is a consequence of the fact that we ‘measure’ if a state is decayed or
not in relation to the states with definite momentum |S, p〉. In this context,
we refer also to Ref. [23] where this ‘decay via boost’ was discussed. The
physical correctness of this choice is reinforced by the following facts:
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(i) As noticed already in Refs. [21, 22, 26], the would-be survival prob-
ability of the state δ(v = 0)−1/2 |S, v〉 is given in the Breit–Wigner
limit by

δ(v = 0)−1
∣∣〈S, v ∣∣e−iHt∣∣S, v〉∣∣2 = e−iγΓ t , (21)

i.e. with an increased decay width γΓ instead of reduced one. This is
a quite counterintuitive result but, clearly, this is not what we mea-
sure. Indeed, there is nothing wrong in this expectation value, but
it simply does not correspond to our measurements of decayed/non-
decayed moving particle. Just as mentioned before, the amplitude〈
Ψ
∣∣e−iHt∣∣Ψ〉 is not what we are looking for.

(ii) Contrary to point (i), all physical results can be correctly described
if the non-decay probability of a generic state is calculated as the
probability of overlap with states |S, p〉 (the standard expression (2) is
reobtained to an astonishingly good approximation, see Fig. 1).

(iii) The momentum is a conserved quantity in QM and QFT and is natu-
rally as well as technically suited to serve as a preferred and physical
basis [29].

In conclusion, if Alice prepares in her reference frame a normalized state
[δ(v = 0)]−1/2 |S, v = 0〉 = [δ(p = 0)]−1/2 |S, p = 0〉 (with δ(v = 0)/δ(p =

0) = M), then for Bob the state is given by [δ(v = 0)]−1/2 |S, v〉 . But —
in Bob system — this state has a negligibly small overlap with the basis of
undecayed states |S, p〉 , i.e. it already consists of decayed particles.

5. Spread in velocity (second possibility for a wave packet)

A state of definite velocity is also an idealization. Let us now consider a
wave packet of the type

|Φ〉 =
+1∫
−1

dvC(v) |S, v〉 with
+1∫
−1

dv |C(v)|2 = 1 . (22)

It is obtained from Eq. (17) by choosing β(m, p) = m−1/2γ−3/2aS(m)C

(p/
√
p2 +m2), thus it is not in the factorized formB(p)aS(m) as Eq. (15); as

a consequence, Pnd(0) < 1. Explicitly, the non-decay probability amplitudes
associated to |Φ〉 are

〈
S, p

∣∣e−iHt∣∣Φ〉 = +1∫
−1

dvC(v)dS

(
p

γv

)√
p

v

1

v
e−iγmt , (23)



2146 F. Giacosa

and the non-decay probability by

Pnd(t) =

+∞∫
−∞

dp
∣∣〈S, p ∣∣e−iHt∣∣Φ〉∣∣2 . (24)

In addition to Pnd(0) < 1, one has also Pnd(0) > 0. The state |Φ〉 in Eq. (22)
is not a pure unstable state, but there is a non-zero overlap with the basis
of undecayed states |S, p〉. Let us consider for illustration a Gaussian form
C(v) = Ne−(v−v0)

2/(4σ2
v) (where N is such that the normalization is fulfilled.

To a very good approximation, for a not too wide wave packet, one has
N =

[
2πσ2v

]−1/4).

Fig. 2. Top: Pnd(0) as a function of the velocity wave packet spreading param-
eter σv. Bottom: Pnd(t) for the illustrative case σv = 0.015; after a transient
non-exponential part, the standard formula (2) (dashed line) is a good approxima-
tion.
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In Fig. 2, top panel, we plot Pnd(0) as a function of the spreading σv
for the particular choice v0 = 1/2, M = 10 [a.u.] and Γ/M = 1/100. The
smaller is the spreading, the smaller is also the initial probability Pnd(0). For
σv → 0, we reobtain a state with definite velocity and the overlap vanishes,
as in Eq. (20). However, for increasing σv, one gets very quickly a state
with Pnd(0) ' 1, which could be rewritten — to a very good approximation
— in the form given by Eq. (13). Thus, a state with definite velocity is an
idealization which must be regarded with great care. In Fig. 2, bottom panel,
we show also the behavior of Pnd(t) (solid line) for the representative case
σv = 0.015, in which Pnd(0) = 0.9. A part from a Zeno-like non-exponential
part at the beginning quickly reaches the expected behavior (dashed line)
e−Γpt ' e−Γ̃pt = e−Γt/γ0 with γ0 = (1−v20)−1/2, i.e. the standard formula is,
again, a very good approximation, as expected. In the end of this section, we
emphasize that the results depicted in Fig. 2 belong to the most important
ones of the present manuscript.

6. Discussions and conclusions

The study of the decay law of fast moving unstable particles represents an
interesting link between special relativity and QM and QFT. This is indeed
an important subject which has received attention from valuable pioneering
works [17–25] but which also needs further clarifications and investigations in
order to be accepted by a larger part of the scientific community. Moreover,
in view of the very recent revival of the subject (e.g. Refs. [25, 26, 30]), we
think that new interesting results can be obtained in the near future in this
interesting topic.

In the present work, we have thus reviewed — especially in Secs. 2 and 4
— some existing results, but we have also presented new (in some cases
analytic) formulas on the subject. Moreover, in Sec. 3 and especially in
Sec. 5, we have presented our main novel results. We briefly reports the
main points in the following paragraphs.

An unstable state with definite momentum p has a decay width given by
Eq. (8): it is slightly larger than the usual expression of Eq. (2). Thus, the
lifetime is actually slightly smaller than what the time dilatation expression
tells us. The standard ‘Einstein’ formula remains, however, a very good
approximation which can be used in all practical applications, see Fig. 1 for
the numerical quantification of the deviation. It is an open question if the
small deviation will be measured at some point in the future.

More realistically, an unstable state is a superposition of the form of
Eq. (13). The non-decay probability is not given by the probability that
the state is still the initial one, but one has to project onto the basis of
unstable states with definite momentum. The outcome is given in Eq. (15)
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and also can usually be very well-approximated by the Einstein formula.
We also generalize the expressions to the completely arbitrary initial state
of Eq. (17), whose associated non-decay probability is given by Eq. (18).
The various cases described in this work can be obtained by taking proper
limits of these general expressions.

A boost is a very subtle operation when applied to an unstable state
of zero momentum/velocity. Namely, the boosted state is an eigenstate of
velocity but has a zero overlap with the basis of undecayed states. Moreover,
the probability that such a state remains unchanged over time shows a quite
curious time-contraction feature, see Eq. (21), but this is not the non-decay
probability. When allowing for a realistic spread in velocity, there is indeed
a (usually large) overlap with the set of undecayed states, and the non-decay
probability can be again well-described by the usual expression of Eq. (2),
as expected, see Fig. 2.

In conclusion, as usual in QM and QFT, one should specify which ob-
server (if Alice or Bob) is making the measurement. The reference frame of
the detector is relevant.

In this work, we gave expressions for the non-decay probability in the
most general form, but we did not discuss numerical examples in which devi-
ations from the Breit–Wigner spectral function appear. We did so because
we wanted first to focus on the exponential limit and because deviations
are typically small. Moreover, the use of the exponential limit is also ad-
vantageous because the decay law is valid independently if and how many
measurements are performed [8, 31]. However, it must be stressed that
the study of non-Breit–Wigner distributions is indeed very interesting, e.g.
Ref. [25]. In this context, the study of numerical cases in which wave packets
of the most general type and the implementation of realistic distributions is
promising and constitutes an important outlook of the present work. More-
over, the investigations of decays of moving particles at late times might be
of interest in cosmological particle physics because unstable particles can be
very fast and may travel long distances for a long time.

In the future, one should also undertake the topic addressed in this
manuscript by using from the very beginning a QFT language, that is, by
starting from a Lagrangian formulation in terms of quantum fields. Indeed,
as shown in Ref. [11], the Lee Hamiltonian’s approach used in this work is
equivalent to the one-loop QFT. Yet, a genuine and full QFT calculation
is surely desirable to shed light on the topic of decays of moving unstable
particles.

I thank G. Pagliara, W. Florkowski, W. Broniowski, and J. Róg for useful
discussions.
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