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In the present work, we report a comprehensive analysis of shell-model
results for high-spin states of 87Sr and 87Zr for recently available experi-
mental data within the full f5/2pg9/2 model space using JUN45 and jj44b
effective interactions developed for this model space. In this work, we
have compared the energy levels, electromagnetic transition probabilities,
quadrupole and magnetic moments with available experimental data. We
have confirmed the structure of high-spin states of these two nuclei which
were tentatively assigned in the recent experimental work. In the case of
87Sr, for positive-parity states up to ∼ 7.5 MeV, both interactions predict
very good agreement with experimental data, while negative-parity states
are slightly suppressed in jj44b calculation. For the 87Zr nucleus, the jj44b
interaction predicts higher energies for the negative-parity states beyond
J ≥ 27/2−. The configuration, which have one hole in νg9/2 orbital, is
responsible for generating the states in 87Sr. In the case of 87Zr, low-lying
positive-parity states come with the configuration having three holes in the
νg9/2, while the odd-parity states have configuration ν(f−1

5/2g
−2
9/2).

DOI:10.5506/APhysPolB.47.2151

1. Introduction

Experimental information on low-lying single-particle excited states is
available for many nuclei. Because of the advancement in experimental tech-
niques, now it is possible to populate high-spin states of nuclei beyond Ni.
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These experimental results are stringent test for the predicting power of shell
model for high-spin excited states. It is possible to test two-body matrix
elements for predicting the high-spin states which are generated by aligning
the angular momenta due to broken nucleon pairs. The nuclei in Sr–Zr re-
gion show many interesting features, such as spherical shell, isomeric states,
candidates of double and neutrinoless double beta decay [1–12].

High-spin states of 88Zr have been recently populated up to ∼ 20~ and
an excitation energy of 10 MeV was measured in 80Se(13C,5n)88Zr fusion-
evaporation reaction [13]. Similarly, the high-spin states of 89Zr were popu-
lated using the fusion-evaporation reaction 80Se(13C,4n)89Zr. The observed
high-spin states up to 10 MeV excitation energy and spin ∼ 37/2~ are re-
ported in Ref. [14]. The dominance of single-particle excitations is shown
for both positive- and negative-parity states. The high-spin band struc-
ture of 85Sr was populated in the reaction 76Ge(13C,4n)85Sr [15]. The spin
and parity of different levels up to the spin of ∼ 35/2~ and an excitation
energy ∼ 7.5 MeV were established. Here, shell model explains various fea-
tures, such as the odd–even staggering, very well. In the case of 86Sr, the
high-spin states were populated using 76Ge(13C,3n)86Sr reaction. The level
scheme up to 10.9 MeV excitation energy and maximum spin of ∼ 19~ have
been reported in Ref. [16].

Experimentally, the high-spin structure of 87Sr was previously studied
in [17, 18]. Recently, using the fusion-evaporation reaction 82Se(9Be,4n)87Sr,
the states were populated up to an excitation energy of 7.4 MeV at spin 31/2~
reported in Ref. [19]. The structure of high-spin states using in-beam γ-ray
spectroscopic method 87Zr was studied through the 59Co(32S,3pn)87Zr reac-
tion [20], the level scheme was established up to spin (37/2+) and (43/2−).

Motivated by the success of our shell-model results in this region for re-
cently measured high-spin states of 88Zr [13], 89Zr [14], 85Sr [15] and 86Sr [16],
in the present work, we will be focusing on the shell-model study of recently
populated high-spin states of 87Sr and 87Zr.

2. Shell-model calculation

In the present shell-model calculations, 56Ni is taken as the inert core
with the spherical orbits 1p3/2, 0f5/2, 1p1/2 and 0g9/2. We have performed
calculation with the jj44b and JUN45 effective interactions. The jj44b in-
teraction was fitted with 600 binding energies and excitation energies from
nuclei with Z = 28–30 and N = 48–50 available in this region. Here,
30 linear combinations of JT coupled two-body matrix elements (TBME)
are varied, giving the r.m.s. deviation of about 250 keV from the experi-
ment. The single particle energies (s.p.e.) are taken to be −9.656, −9.287,
−8.269 and −5.894 MeV for the p3/2, f5/2, p1/2 and g9/2 orbitals, respec-
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tively [21]. For the JUN45, the single-particle energies for the 1p3/2, 0f5/2,
1p1/2 and 0g9/2 orbitals are −9.828, −8.709, −7.839, and −6.262 MeV, re-
spectively. The JUN45 [3] interaction is based on Bonn-C potential, the
single-particle energies and two-body matrix elements were modified em-
pirically with A = 63 ∼ 69 mass region. We have performed calculations
using the shell-model code Antoine [22]. The maximum matrix dimension in
M-scheme > 30 millions for 87Zr.

2.1. Shell-model results for 87Sr

Experimental data are available from the earlier works [17, 18] and recent
work [19], where the states are populated up to the excitation energy of
7.4 MeV with 31/2~ spin. Useful structural information can be extracted
through the study of this nucleus since both number of protons and neutrons
are near closed shells and in this region spherical and collective behaviors of
nuclei are important. In Fig. 1, the comparison of our shell-model calculation
with the experimental data are shown, where we have used two different
JUN45 and jj44b interactions.

The ground state 9/2+
1 , which comes from the ν(g−1

9/2) configuration, is
predicted correctly by both calculations. In the JUN45 calculation, the val-
ues of 5/2+

1 and 7/2+
1 energy levels are only 65 keV lower and 3 keV higher

than in the experiment, respectively. In the jj44b calculation, they are 86 keV
lower and 351 keV higher than in the experiment, respectively. The 1/2+

1 ,
3/2+

1 , 5/2
+
2 and 9/2+

2 levels are closer to the experiment in the jj44b calcu-
lation. The 3/2+

2 level is far from experiment almost at the same amount in
the both calculations. The 13/2+

1 level comes from the π(f−1
5/2p

1
1/2)⊗ ν(g

−1
9/2)

configuration. It is predicted 163 keV and 178 keV lower than in the exper-
iment in the JUN45 and jj44b calculations, respectively.

As it is seen from Fig. 1, all the 17/2+
1 –31/2

+
1 levels are predicted lower

than in the experiment in the JUN45 calculation. In the jj44b calcula-
tion, these levels are a little bit lower than even in the JUN45 calculation
up to 27/2+

1 , but 29/2+
1 and 31/2+

1 levels are well-predicted by this calcu-
lation. According to the both shell-model calculations, these states come
from π((p3/2f5/2p1/2)

−2(g2
9/2)) ⊗ ν(g−1

9/2) configuration. Probabilities vary
within 35%–60% and 24%–49% in the calculations with the JUN45 and
jj44b interactions, respectively. The JUN45 calculation predicts 17/2+

2 and
25/2+

2 levels in the experiment only with 71 keV and with 279 keV differ-
ences, respectively. In the jj44b calculation, they are comparatively low.

The negative-parity 1/2−, 3/2−, 5/2−, 9/2−1 and 11/2−1 levels, which
are due to the neutrons in pf shell, are better predicted by the JUN45
calculation. The 7/2− level which appears in both calculations is not mea-
sured yet in the experiment, although experimentally the doublet of levels
(5/2−,7/2−) is supposed to be at 2656 keV. The negative-parity 13/2−1 –
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Fig. 1. Comparison of the theoretical and experimental energy levels of the 87Sr.

23/2−1 states are due to π((p3/2f5/2p1/2)
−1(g1

9/2)) ⊗ ν(g−1
9/2) configuration,

with 35%–64% and 33%–53% probabilities, in the calculations with JUN45
and jj44b interactions, respectively. As it is seen from Fig. 1, though the
distance between 13/2− and 15/2− is larger and those of between the pair
of levels 17/2− and 19/2−, and 21/2− and 23/2− are more compressed, in
general, the negative-parity states are described reasonably well by JUN45
calculation. In jj44b calculation, all negative-parity levels, except 19/2−2 ,
are lower than in the JUN45 calculation.

2.2. Shell-model results for 87Zr

The structure of high-spin states of 87Zr was studied using in-beam γ-ray
spectroscopic method through the 59Co(32S,3pn)87Zr [20]. Positive-parity
level scheme was established up to spin (37/2+) and the negative-parity
level scheme up to (43/2−).



High-spin Structure of 87Sr and 87Zr Nuclei: Shell-model Interpretation 2155

As in the case of 87Sr, ground-state spin of the 87Zr is also 9/2+ since still
neutrons in the g9/2 orbital play major role for the ground state. Now, we
see that less energy is needed to excite nuclei to 13/2+

1 state. This is reason-
able since now neutrons are a little bit further from the filling g9/2 orbital
as compared to the 87Sr nucleus. In the calculation with JUN45 interac-
tion, the 9/2+

1 , 13/2
+
1 , 11/2

+
1 , 21/2

+
1 , 25/2

+
1 , 29/2

+
1 , 31/2

+
1 , 33/2

+
1 , 35/2

+
1

and 37/2+
1 states have the configuration π(g9/2)

2⊗ ν(g9/2)
−3 with probabil-

ities 12%–31%. The 7/2+
1 , 17/2

+
1 and 29/2+

2 states have the configuration
π[(p3/2f5/2p1/2)

−2(g9/2)
2] ⊗ ν(g9/2)

−3. Here, the lower proton orbitals con-
tribute to the configuration of these states. In the calculation with jj44b
interaction, the 9/2+

1 , 7/2
+
1 , 13/2

+
1 , 11/2

+
1 , 25/2

+
1 and 29/2+

2 states have
π[(p3/2f5/2)

−2(g9/2)
4]⊗ ν(g9/2)

−3 configuration.
From Fig. 2, we can see that between the pair of levels 9/2+

1 and 13/2+
1 ,

there are 7/2+
1 and 7/2+

2 levels and between the 13/2+
1 and 17/2+

1 levels,
there are 11/2+

1 and 11/2+
2 levels in the experiment. In both calculations,

the 5/2+
1 and 7/2+

1 levels appear between the 9/2+
1 and 13/2+

1 levels, and
the 7/2+

2 level appears after the 11/2+
1 level. In Fig. 2, we have not shown

the levels for which spins are not assigned in the experiment. But in the
experiment, there exist spin not assigned levels with energies 523.7 and
589.7 keV [23] which are close to the calculated 5/2+

1 level. The 7/2+
1 is

close to the experiment in jj44b, but the 7/2+
2 level is much higher in both

calculations. In the JUN45 calculation, 11/2+
1 and 11/2+

2 levels are between
13/2+

1 and 17/2+
1 levels as in the experiment, but in jj44b calculation, 11/2+

2
level is located after 17/2+

1 level. The 1/2+
1 , 3/2

+
1 , 9/2

+
2 , and 19/2+

1 levels
can be spin not assigned levels observed in the experiment [23]. The levels
21/2+

1 and 25/2+
1 are only 22 and 79 keV higher than in the experiment in

the jj44b calculation, respectively. Between these levels, there are 19/2+
1

and 23/2+
1 levels which also appear in the JUN45 calculation and are not

measured in the experiment. In the JUN45 calculation, between the levels
25/2+

1 and 29/2+
1 , which are lower than in the experiment in both calcu-

lations, there are 25/2+
2 and 27/2+

1 levels. They are not measured in the
experiment. In the jj44b calculation, only the 27/2+

1 level appears between
the levels 25/2+

1 and 29/2+
1 . The sequence of levels 29/2+

1 and 29/2+
2 is

the same as the experimental one in both JUN45 and jj44b calculations.
Though the distance between the levels is quite similar to the experiment,
in the JUN45 calculation, they are a little bit lower than in the experiment.
In the jj44b calculation, the first of these levels is only 79 keV higher and
the second one is 208 keV lower than in the experiment and the distance
between the levels is a little bit compressed as compared to the experiment
and the JUN45 calculation.
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Fig. 2. Comparison of the theoretical and experimental energy levels of the 87Zr.

For I ≥ 29/2+
1 states, the π[(p3/2f5/2)

−1(g9/2)
3] ⊗ ν[(f−1

5/2g
−2
9/2] configu-

ration dominates. Agreement of the calculated 31/2+ level with the exper-
imental one is approximately the same in both calculations. However, the
33/2+ level is in better agreement with the experimental one in the jj44b
calculation and is lower in the JUN45 calculation. The 35/2+ level is located
higher than in the experiment in both calculations. In the JUN45 calcula-
tion, its value is closer to the experimental one than in the jj44b calculation.
The 37/2+ level is predicted lower than in the experiment in the JUN45
calculation and is predicted higher in the jj44b calculation.

The arrangement of lowest negative-parity levels of 87Zr is very similar to
those of 87Sr. As in the case of 87Sr, we have not shown the levels for which
spins are not assigned in the experiment. Therefore, 3/2−, 5/2−, 7/2− and
9/2− levels which appear in the calculations may be one of these spin not
assigned levels. Obviously, these levels are due to the neutrons in pf shell.
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In jj44b, the 1/2− level is predicted much lower than in the experiment.
In the JUN45 calculation, it is predicted only 26 keV higher than in the
experiment.

The 13/2−1 , 21/2
−
1 , 25/2

−
1 , 29/2

−
1 , 29/2

−
2 , 31/2

−
1 and 33/2−1 levels come

from π(g2
9/2)⊗ ν(f

−1
5/2g

−2
9/2) configuration with 6%–18% probabilities, respec-

tively. All these levels are lower than in the experiment in both calculations.
The 13/2−1 , 21/2

−
1 , 25/2

−
1 levels are better described by the JUN45 inter-

action. The quality of agreement of 29/2−1 and 29/2−2 levels is more or less
the same in both calculations. The 31/2−1 and 33/2−1 levels are closer to the
experiment in the calculation with jj44b interaction.

The 17/2−2 state comes from π(g2
9/2)⊗ν(p

−1
1/2) configuration which is close

to the experiment in the JUN45 calculation and the jj44 calculation differs
from the JUN45 only to 20 keV.

The states 17/2−1 , 19/2
−
1 , 19/2

−
2 , 27/2

−
1 , and 31/2−2 levels come from

π(p1
1/2g

1
9/2)⊗ν(g

−3
9/2) configuration with 16%–38% probabilities, respectively.

The 17/2−1 , 19/2
−
1 and 27/2−1 levels are in better agreement in the JUN45

calculation, while 19/2−2 , and 31/2−2 are better in the jj44b calculation.
The 27/2−2 , 35/2−1 , and 39/2−1 levels come from π(f−1

5/2g
3
9/2) ⊗ ν(g−3

9/2)

configuration with 24%–50% probabilities, respectively. These states are
described well by the calculation with jj44b interaction.

The experimental 43/2− level is measured at 10093 keV. The JUN45 and
jj44b calculations predict this level at 9716 keV and at 10527 keV, respec-
tively.

2.3. Occupancy of the orbitals

In order to look closely to the structure of the states, we show the oc-
cupancy of different protons and neutrons orbitals for 87Sr and 87Zr nuclei
with JUN45 interaction in Figs. 3 and 4, respectively. As it is seen from
Fig. 3, for the positive-parity states in 87Sr, the occupancy of the proton
orbitals are sensitive to the nuclear spin, including states up to high spins.
Here, the πg9/2 occupancy is increasing at the expense of πf5/2 and πp1/2

occupancy. For the negative-parity states, the dependence of the occupancy
of the proton orbitals from the spins still remains the same, however now,
the neutron occupancy at lower spins shows irregular pattern. For negative-
parity states, the occupancy of πg9/2 is increasing at the expense of the πp1/2

orbital occupancy only.
From Fig. 4, one can see that the proton occupancy becomes more stable

up to high spins in the positive-parity states of the 87Zr nucleus as compared
to the 87Sr nucleus. The visible changes in the occupancy with respect to
spins can be seen in g9/2 orbital, the increase in the occupancy is at the
expense of the πp1/2 orbital occupancy only, as in the case of 87Sr.
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87Sr
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Fig. 3. Occupancy of different protons and neutrons orbitals with JUN45 interac-
tion for 87Sr.
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3. Electromagnetic properties

In Table I, we have reported experimental versus calculated B(E2) and
B(M1) values in W.u. with different transitions. All the B(E2) values of
87Sr are in better agreement with the experiment in both calculations and
B(E2) values of 87Zr are predicted much larger than in the experiment in
both calculations. We have used the recommended ep = 1.5e, en = 1.1e
values of effective charges [3] in the JUN45 interaction. Larger neutron ef-
fective charge is more reasonable in this mass region which is adopted by
Honma et al. [3] from the least-squares fit to the 49 known experimental
values of quadrupole moments. With the (ep, en) = (1.5, 1.1) the agreement
between theory and experiment is very good. In the present work, large
B(E2) values are due to many nucleons in the valence shells and the agree-
ment may be improved by slightly reducing the effective charges. Quality
of the magnetic moment agreement with the experimental data is also like
quadrupole moments: the magnetic moments of 87Sr are better described
by the calculations.

TABLE I

Experimental and calculated B(E2) and B(M1) in W.u. for different transitions
with ep = 1.5e, en = 1.1e.

Nucleus Transition Exp. JUN45 jj44b
87Sr B

(
E2; 5/2+

1 → 9/2+
1

)
7.5 (23) 10.19 12.27

B
(
E2; 13/2+

1 → 9/2+
1

)
5.5 (17) 8.78 9.67

B
(
E2; 5/2+

2 → 9/2+
1

)
0.13+5

−13 0.34 0.60
B
(
E2; 7/2+

1 → 9/2+
1

)
1.9 (5) 3.63 4.46

B
(
E2; 11/2+

1 → 9/2+
1

)
> 2.0 4.48 7.45

87Zr B
(
E2; 7/2+

1 → 9/2+
1

)
3.25 (14) 17.68 16.48

B
(
E2; 13/2+

1 → 9/2+
1

)
> 0.36 22.17 38.92

B
(
E2; 21/2+

1 → 17/2+
1

)
> 2.19(22) 6.26 1.82

87Sr B
(
M1; 7/2+

1 → 9/2+
1

)
0.013 (3) 0.021 0.0173

B
(
M1; 11/2+

1 → 9/2+
1

)
>0.013 0.0489 0.057

B
(
M1; 3/2+

2 → 5/2+
2

)
0.09 (4) 0.009 0.0004

B
(
M1; 3/2−1 → 1/2−1

)
0.11 (5) 0.246 0.181

87Zr B
(
M1; 7/2+

1 → 9/2+
1

)
0.00095 (4) 0.003 0.0275

B
(
M1; 17/2−2 → 17/2−1

)
0.4+8

−4 0.044 0.084
B
(
M1; 19/2−2 → 17/2−1

)
0.0074 (21) 0.166 0.141
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We have listed in Tables II and III, respectively, the electric quadrupole
and magnetic moments. For the 87Sr nucleus, theQ(9/2+

1 ) value is+0.349 eb
according to the calculation with JUN45 interaction, which is closest to the
experimental +0.305(2) eb value. The jj44b predicts the value larger than
experimental one. In the case of 87Zr, the Q(9/2+

1 ) value is lower for JUN45,
while for jj44b, it is very large. Though, in general, quadrupole moments
are in excellent agreement with the experimental data, the agreement still
can be improved by reducing effective charges which is reasonable for these
nuclei. The shape of 87Sr is more spherical than 87Zr in the 7/2+

1 state
according to the quadrupole moment values calculated by both interactions
for this state.

TABLE II

Electric quadrupole moments, Qs (in eb), with the two different interactions (the
effective charges ep = 1.5e, en = 1.1e are used in the calculation).

87Sr 87Zr

Q
(
9/2+

1

)
Exp. +0.305 (2) +0.423 (48)
JUN45 +0.349 +0.341
jj44b +0.415 +0.649

Q
(
5/2+

1

)
Exp. N/A N/A
JUN45 +0.267 +0.202
jj44b +0.289 +0.474

Q
(
7/2+

1

)
Exp. N/A N/A
JUN45 +0.0129 +0.439
jj44b +0.0237 +0.484

Q
(
11/2+

1

)
Exp. N/A N/A
JUN45 +0.224 +0.606
jj44b +0.239 +0.597

Q
(
13/2+

1

)
Exp. N/A N/A
JUN45 +0.510 +0.583
jj44b +0.549 +0.835

For the calculation of magnetic moments, geff
s = 0.7gfree

s is used as rec-
ommended in Ref. [3]. The results of JUN45 interaction is in very good
agreement with experimental data. In the case of jj44b calculation, the
predicted value is slightly lower. Here, geff

s = gfree
s may improve the results.
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TABLE III

For magnetic moments µ (in µN ), here geff
s = 0.7gfree

s is used in the calculation.

87Sr 87Zr

µ
(
9/2+

1

)
Exp. −1.0928 (7) −0.895 (9)
JUN45 −1.0298 −0.9401
jj44b −0.9796 −0.7816

µ
(
7/2+

1

)
Exp. N/A N/A
JUN45 −0.9988 −0.7169
jj44b −0.4717 −0.5596

µ
(
1/2−1

)
Exp. +0.624 (4) +0.642 (7)
JUN45 +0.498 +0.437
jj44b +0.472 +0.395

4. Conclusions

Motivated by recent experimental results for high-spin states in 87Sr
and 87Zr, we performed shell-model calculations for these nuclei in f5/2pg9/2

model space using JUN45 and jj44b effective interactions. The results for
energy levels and electromagnetic transitions are presented. The high-spin
energy levels are described very well by the effective interactions for the
full f5/2pg9/2 model space. In general, both effective interactions show very
good agreement with the experimental data. For 87Zr, the jj44b interaction
predicts negative-parity states beyond J ≥ 27/2− higher in energy. The cal-
culated values of quadrupole moment are in good agreement with available
experimental data.
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