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We present in this paper how the single-photon wave function for trans-
versal photons (with the direct sum of ordinary unitary representations
of helicity 1 and −1 acting on it) is subsumed within the formalism of
Gupta–Bleuler for the quantized free electromagnetic field. The rigorous
Gupta–Bleuler quantization of the free electromagnetic field is based on our
generalization (published formerly) of the Mackey theory of induced repre-
sentations which includes representations preserving the indefinite Krein-
inner-product given by the Gupta–Bleuler operator. In particular, it follows
that the results of Białynicki-Birula on the single-photon wave function may
be reconciled with the causal perturbative approach to QED.
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This short account is a commentary on the single-photon wave function
as advocated by Białynicki-Birula [1] and references therein. His works on
the subject enjoy a considerable attention and popularity. This is because
on the one hand, the single-photon wave function is a concept which is
accompanied with controversial opinions. Some authors, e.g. [2], even claim
that position wave function for photon does not exist. But on the other
hand, the subject being of fundamental importance is still not systematically
explored.

We agree e.g. with [3] and [1] and the authors cited there that the single-
photon wave function is already implicitly present in quantum field the-
ory: generally, a free quantum field is constructed by the application of the
symmetrized/antisymmetrized tensoring and direct sum operations (the so-
called second quantized functor) to a specific representation of the double
covering of the Poincaré group acting in a space, which may be identified
with the space of single-particle wave functions, and which depends on the
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specific quantum field. At the level of the free electromagnetic field, one
can start at the Hilbert space of transversal single-photon states acted on
by the direct sum of the unitary zero mass helicity 1 and −1 representa-
tions, respectively (in the language of the classical by now Wigner–Mackey–
Gelfand–Bargmann classification of irreducible unitary representations of
the Poincaré group). In more physical terms, the representation has been
described e.g. in [1] together with its relation to the Riemann–Silbertstein
vector wave function. It is true that the (free) quantum electromagnetic field
has its own peculiarities making some differences in comparison to massive
and non-gauge fields which still serve as a source of misunderstandings and
still are not well-understood.

The first peculiarity of a zero mass quantum (free) field, even non-gauge
field (as we assume for a while in order to simplify situation), is that now,
the representation of the Poincaré group to which we apply Segal’s functor
of second quantization, although being unitary in ordinary sense, is spec-
ified within the Wigner–Mackey classification scheme by the orbit in the
momentum space which is the light cone (without the apex), contrary to
the massive case, where the orbit is the smooth sheet of the two-sheeted
hyperboloid. The apex being a singular point of the cone (in the sense
of the ordinary differential structure of the cone as embedded into the
R4-manifold) causes serious difficulties of infrared character. This is because
the quantum field is, in fact, an operator-valued distribution (as motivated
by the famous Bohr–Rosenfeld analysis [4] of the measurement of the quan-
tum electromagnetic field) which needs a test function space. It is customary
to use the standard Schwartz space of rapidly decreasing functions as the
universal test space even for zero mass fields, and this is not the correct test
space for zero mass field. Recall that the construction mentioned above of a
free quantum field achieved by the second quantization functor Γ applied to
a representation specified by a fixed orbit allows to construct creation and
annihilation families of operators in the Fock space. In order to construct
the field as operator valued distribution, we have to proceed slightly further
along the construction given by Streater and Wightman in their well-known
monograph [5, Ch. 3]. In the construction of Wightman, we consider the
restrictions of Fourier transforms (i.e. functions in the momentum space) of
the test functions to the orbit in question. The construction works if the
restriction is a continuous map from the test function space in R4 to the
test function space in R3 which is really the case in the massive case as the
orbit is a smooth manifold in that case. Unfortunately, it seems that it has
escaped due attention of physicists that the correct test function space in the
momentum representation for the zero mass field is the closed subspace S0 of
the Schwartz space S of those functions which vanish at zero together with
all their derivatives and the test function space S00 in the position represen-
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tation is given by the inverse Fourier image of the space S0. This, in turn,
causes additional difficulties concerned with exploring and correct use of the
principles of locality character, because, in particular, the space S00 does
not contain any function of compact support (except the trivial zero func-
tion) which immediately follows from the generalized Paley–Wiener theorem.
Fields have to be carefully extended outside the test space S0 on functions
whose derivatives up to only a finite order vanish at zero (similarly as the
creation and annihilation families of operators, which make sense outside
the test space) in order to account for the locality-type principles correctly
in the zero mass case.

The situation for the electromagnetic field is still more delicate as the
field is accompanied by the gauge freedom and the ordinary unitarity is un-
tenable and has to be replaced with a weaker condition of preservation of
the indefinite Krein-inner-product — which is the second main peculiarity
of the electromagnetic field, shared with the other zero mass gauge fields of
the Standard Model. This requires, however, the theory of non-unitary rep-
resentations of the Poincaré group which preserve indefinite inner product
defined by the Gupta–Bleuler operator, which should allow us to work ef-
fectively with tensor products of such representations, Frobenius reciprocity
theorem, imprimitivity system theorem, etc. Such a theory had not existed
until 2015, compare [6] where it appears for the first time.

Therefore, the construction of the field by the second quantization func-
tor Γ applied to a single-particle representation should be extended on rep-
resentations which are not unitary but only Krein-isometric.

The Gupta–Bleuler quantization (or generally the BRST method) is the
only known quantization of gauge fields compatible with the causal per-
turbative approach of Stuckelberg–Bogoliubov (compare [7]), this is a well-
established fact, compare e.g. [8] or [9] and references therein. The point
is that causal approach allows us to avoid completely the UV divergences
(so that we can dispense completely with UV renormalization), but requires
the local transformation law for Aµ. Importance of this method for un-
derstanding of UV divergences is well-known. The problem of mathemati-
cally rigorous construction of the (free) quantum electromagnetic potential
is therefore an important problem, and it was pointed out by many special-
ists that the indefinite character of the metric makes the problem difficult,
compare e.g. [10]. Using our previous results [6], we give the solution to
this problem which allows the solution within causal perturbative approach.
From the point of view of causal method, the work of Białynicki-Birula on
single-photon wave function, although important, is not entirely complete,
giving the construction of the single-particle subspace of the Fock space of
the quantum Riemann–Silberstein vector. First, because we need Aµ with
local transformation and not the electric or magnetic fields themselves to
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construct (perturbatively) interacting fields. And second: although we can,
of course, appeal to the Coulomb gauge, the additional gauge term in the
transformation formula for Aµ, saving relativistic invariance is non-local to-
gether with non-local Coulomb interaction (which is, of course, well-known),
the infinite UV divergences and the UV renormalization are unavoidable in
this approach, [8] or [9]. We construct here the quantum Aµ with local
transformation (within the Gupta–Bleuler scheme) which allows us the ap-
plication of the causal method and which allows to avoid completely UV
divergences, then we show that the physical subspace of the single-particle
states is exactly the same as the single-particle state space in the Fock space
of the quantum Riemann–Silberstein vector of Białynicki-Birula paper [1].
The lack of a rigorous construction of the quantum Aµ with local trans-
formation (which appears for the first time in this paper) was heavily felt,
and was raised by many prominent specialists, compare e.g. [10]. For exam-
ple, for the construction of the quantum field Aµ, an extension of spectral
theorem for class of operators in the Krein space was needed as well as an
extension of unitary representations to Krein-isometric representations [6].
This extension problem was open and only a partial solution has been given
by a well-known and prominent mathematician Neumark, but in a form
which is not sufficient for the needs of QFT, as he analysed Krein-unitary
representations in the so-called Pontriagin spaces, with the strong simplifi-
cation that the subspace on which the inner product is negative has finite
dimension, compare e.g. [11].

It should be stressed that the mathematically rigorous construction of
the free gauge fields (e.g. quantum free electromagnetic potential) is not
merely a matter of pedantry. In the case of QED, the ultraviolet problem is
fully solved by the extension of the Bogoliubov–Epstein–Glaser method [7]
to QED, compare [9]. The infrared divergences are controlled by the adi-
abatic switching of the interaction. However, the infrared problem is only
partially solved for QED in this way. One aspect is that charged particles
cannot be eigenstates of the mass operator. The other aspect are the diver-
gences which appear in the adiabatic limit. Here, we comment shortly the
second aspect (although it seems that these two aspects are interconnected).
These divergences are logarithmic in QED and cancel out in the cross sec-
tion, at least at lower order terms of the perturbative series [9]. Blanchard
and Seneor [12] extended only partially on QED the result of Epstein–Glaser
of the existence of the adiabatic limit for scalar massive field and proved the
existence of the adiabatic limit for Wightman and Green functions for QED
(for non-Abelian gauge fields, the situation is still less explored). In the
Epstein–Glaser proof (for the scalar massive field), spectral condition is cru-
cial, and essentially means that the orbit of the representation determining
the single-particle space is separated from zero and the only behaviour of
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the test function which plays a role goes through the restriction to the orbit
of its Fourier transform (the test functions are just the Schwartz rapidly
decreasing functions S). Because the orbit for the free electromagnetic field
is not separated from zero being just the light cone, then the Epstein–Glaser
proof does not work in QED with the test function space S. But in the treat-
ment of QED (and the other non-Abelian gauge fields), we have not been so
much pedantic in the construction of the free field, because we have many
relatively simple methods for making the correct guess as to the shape of
distribution functions giving the pairings of free fields plying the immediate
role in computation of the cross section. Here enters our rigorous construc-
tion, because our construction of the zero mass gauge fields revealed at least
one point which must have been missed at the heuristic level of the con-
struction of the free field. Namely, the test function space has to be changed
for the zero mass gauge fields, and in the momentum picture, it is just S0.
This, in particular, means that we have a God-given infrared cut-off assured
by the very existence of the zero mass gauge field as a well-defined oper-
ator valued distribution. In particular, the method of Epstein–Glaser for
the proof of the existence of the adiabatic limit should be revisited, because
the fact that the light-cone orbit is not separated from zero is compensated
for by the infrared cut-off of the elements of S0. Another infrared problem
which can be solved by the use of our rigorous construction is the strict
proof of the Bogoliubov–Shirkov quantization hypothesis for free fields, as
stated in their monograph. This problem lies among the problems which
were unsolved and are concerned with the existence of integrals of local
conserved currents corresponding to conserved symmetries [13]. In the case
of zero mass gauge fields, any endeavour of proving the existence of these
integrals and their eventual equality to the generator of the corresponding
one-parameter subgroup have permanently been accompanied by infrared
divergences. Our rigorous method allows to solve these problems without
encountering any divergences.

After this general introduction, let us concentrate on the main theme of
our commentary and give some details of the single-photon Krein-isometric
representation and the closed subspace of transversal photon states. Let us
start with a brief description of the Krein-isometric single-photon represen-
tation in the momentum picture, which we call Łopuszański representation.
We give at once the form of the representation which has the multiplier inde-
pendent of the momentum, so that the Fourier transform of the momentum
functions, i.e. position wave functions, have local transformation formula.
Namely, the representation acts in a Krein space1 (H′, J′), i.e. an ordinary
Hilbert space H′ endowed with the fundamental symmetry J′2 = I, J′∗ = J′,

1 We use the notation of [14].
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and the Krein-isometric representation preserves the Krein-inner-product
(·, J′·), but for detailed definition compare Sect. 2 of [6] as the peculiarities
like unboundedness (with respect to the ordinary Hilbert space product)
cannot be excluded from the outset here in contrast to the ordinary unitary
representations and indeed, our representation is unbounded. The Hilbert
space H′ consists of all measurable four-component functions ϕ̃ on the light
cone Op̄ in momentum space, which we may naturally regard as the functions
of the spatial momentum components p ∈ R3 with p0(p) = r(p) =

√
p · p,

and which have finite Hilbert space norm
√
(·, ·). The Hilbert space inner

product (·, ·) in H′ is equal(
ϕ̃, ϕ̃ ′

)
=
(
ϕ̃, Bϕ̃ ′

)
L2(R3,C4)

,

where the self-adjoint positive operator B, regarded as operator, e.g. in
L2(R3,C4), is equal to the operator of point-wise multiplication by the ma-
trix operator

1

2r
B(p) , p ∈ Op̄

which is strictly positive and self-adjoint in C4 with

B(p) =


r−2+r2

2
r−2−r2

2r
p1 r−2−r2

2r
p2 r−2−r2

2r
p3

r−2−r2

2r
p1 r−2+r2−2

2r2
p1p1 + 1 r−2+r2−2

2r2
p1p2 r−2+r2−2

2r2
p1p3

r−2−r2

2r
p2 r−2+r2−2

2r2
p2p1 r−2+r2−2

2r2
p2p2 + 1 r−2+r2−2

2r2
p2p3

r−2−r2

2r
p3 r−2+r2−2

2r2
p3p1 r−2+r2−2

2r2
p3p2 r−2+r2−2

2r2
p3p3 + 1

 ,

again strictly positive self-adjoint on C4. For each p ∈ Op̄,

w1
+(p) =


0
p2√

(p1)2+(p2)2

−p1√
(p1)2+(p2)2

0

 , w1
−(p) =



0
p1p3√

(p1)2+(p2)2r

p2p3√
(p1)2+(p2)2r

−
√

(p1)2+(p2)2

r

 ,

w
r−2 (p) =



1√
2

1√
2

p1

r

1√
2

p2

r

1√
2

p3

r

 , w
r2 (p) =



1√
2

− 1√
2

p1

r

− 1√
2

p2

r

− 1√
2

p3

r


are the eigenvectors of the matrix B(p) which are orthonormal in C4, where
w1

+(p), w1
−(p) correspond to the eigenvalue equal +1, and w

r−2 (p), wr2 (p)

correspond to the eigenvalues r−2, r2, respectively.
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The fundamental symmetry J′ is equal to the operator of point-wise
multiplication by the matrix

J′p = Jp̄B(p) , p ∈ Op̄

with Jp̄ equal to the following constant matrix

Jp̄ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

being a fundamental symmetry in C4.
If for each α ∈ SL(2,C), we denote by α 7→ Λ(α) the natural antihomo-

morphism of SL(2,C) into the Lorentz group, and by U(α) the representors
of α ∈ SL(2,C) and by T (a), a ∈ R4 the representors of translations, then
we have

U(α)ϕ̃(p) = Λ
(
α−1

)
ϕ̃(Λ(α)p) ,

T (a)ϕ̃(p) = eia pϕ̃(p) , ϕ̃ ∈ H′ .

The inverse Fourier transforms ϕ

ϕ(x) = (2π)−3/2

∫
Op̄

ϕ̃(p)e−ip x dµ|Op̄
(p) , ϕ̃ ∈ H′

compose the single-photon Krein space (H′′, J′′) in the position picture with
the representation giving the local four-vector transformation law in the po-
sition picture. In the last formula, dµ|Op̄

(p) stands for the invariant measure
2−1r−1d3p on the cone Op̄.

Together with the Łopuszański representation (T,U), we consider the
conjugate representation ([T ]∗−1, [U ]∗−1) = (J′TJ′, J′UJ′) = (T, J′UJ′),
which likewise preserves the same Krein-inner-product (·, J′·).

We apply to this conjugate representation the functor of second quan-
tization obtaining the families a(ϕ̃), a(ϕ̃)+ of creation and annihilation op-
erators in the Fock space Γ (H′) ∼= Γ (H′′) with the Gupta–Bleuler operator
η = Γ (J′). We claim that η fulfils the correct commutation relations which
are to be expected for the Gupta–Bleuler operator.

We must be careful in preparing the fields as Wightman operator-valued
distributions. This can be achieved by application of the Schwartz–Worono-
wicz kernel theorem [15] to the test function spaces S0 and S00 mentioned
above and to the operator valued distribution (quantum vector potential)

A(ϕ) = Aµ(ϕµ) = a
(
ϕ̃|Op̄

)
+ ηa

(
ϕ̃|Op̄

)+
η ,
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where ϕ ∈ S00(R4), its Fourier transform ϕ̃ belongs to S0(R4) and where
ϕ̃ 7→ ϕ̃|Op̄

is the restriction to the cone, which turns out to be, indeed, a
continuous map of nuclear spaces S0(R4)→ S0(R3).

It turns out that, indeed, the commutator

[A(ϕ), A(ϕ′)]

defines the kernel distribution equal to the Pauli–Jordan function multiplied
by the Minkowskian metric; in the proof, one can apply e.g. the kernel theo-
rem as stated in [15] (the ordinary Schwartz kernel theorem is not sufficient
for the construction of the Wick product); and it follows that A(ϕ) is the
Wightman field transforming locally as a four-vector field.

It should be stressed that, in general, the elements ϕ̃ of the single-particle
space of the Łopuszański representation (and its conjugation) in the momen-
tum picture do not fulfil the condition pµϕ̃µ = 0, so that their Fourier trans-
forms ϕ do not preserve the Lorentz condition ∂µϕµ = 0. This corresponds
to the well-known fact that the Lorentz condition cannot be preserved as
an operator equation. It can be preserved in the sense of the Krein-product
average on a subspace of Lorentz states which arise from the closed subspace
Htr of the so-called transversal states together with all their images under
the action of the Łopuszański representation and its conjugation. We are
now going to define the closed subspace Htr.

The closed subspace Htr ⊂ H′ consists of all functions of the form of

ϕ̃ = w1
+ f+ + w1

− f−

with f+, f− ranging over all pairs of measurable scalar functions on the light
cone Op̄ square integrable with respect to the invariant measure 2−1r−1d3p
on the cone. It follows that Hilbert space H′ inner product

(ϕ̃, ϕ̃) =

∫
Op̄

|f+(p)|2 2−1r−1d3p+

∫
Op̄

|f−(p)|2 2−1r−1d3p

of any element ϕ̃ ∈ Htr is equal to the Krein-inner-product (ϕ̃, J′ϕ̃), and
thus the Krein-inner-product is strictly positive on Htr.

We claim that the action of the Łopuszański representation and its con-
jugation generate modulo unphysical states of Krein-norm zero and Krein
orthogonal to Htr, exactly the same representation (T,U):

U(α)
(
f+

f−

)
(p) =

(
cosΘ(α, p) sinΘ(α, p)
− sinΘ(α, p) cosΘ(α, p)

)(
f+(Λ(α)p)
f−(Λ(α)p)

)
,

T(a)
(
f+

f−

)
(p) = eia·p

(
f+(p)
f−(p)

)



A Commentary on Single-photon Wave Function Advocated . . . 2171

on Htr, which is unitary for the strictly positive inner product on Htr in-
duced by the Krein-inner-product (·, J′·), for the proof compare [14]. There-
fore, (T,U) is an ordinary unitary representation of the Poincaré group,
which may be shown to be unitary equivalent to the direct sum [m = 0, h =
+1] ⊕ [m = 0, h = −1] of zero mass helicity +1 and of helicity −1 repre-
sentations [14]. For the concrete form of the phase Θ, we refer to [14]. The
representation (T,U), after a simple unitary transform on Htr, gives exactly
the single-photon representation of [1], §4.3, formulas (4.22) and (4.23) with
exactly the Hilbert space of §5.1 of [1], which can be identified with our Htr,
compare [14].

The author is indebted to Prof. A. Staruszkiewicz for helpful discussions.
I would like to express my gratitude to the referee for his suggestions which
make the paper more transparent.
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