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We study a class of percolation models in complex networks in which
nodes are characterized by changed hidden variables reflecting the vari-
ational properties of nodes, and the occupied probability of each link is
determined by the hidden variables of the end nodes at each time. By the
mean field theory, we find analytical expressions for the phase of percolation
transition. It is determined by the distribution of the hidden variables for
the nodes and the occupied probability between pairs of them. Moreover,
the analytical expressions obtained are checked by means of numerical sim-
ulations on a particular model. Besides, the general model can be applied
to describe and control practical diffusion models, such as disease diffusion
model, scientists cooperation networks, and so on.
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1. Introduction

Over the past years, the study of complex networks has emerged as an im-
portant tool to better understand many social, technological, and biological
real-world systems ranging from communication networks like the Internet
to cellular networks [1–7]. An important question regarding networks is the
percolation phenomenon [8–13] which is motivated by many applications in
real networks such as epidemic spreading in social networks [14, 15].

The theory of percolation applied to random networks has been proven
to be one of the greatest advances in complex network science [16–20]. A
network may undergo a phase transition as nodes or links are successively
occupied [13, 16]. When the fraction of occupied nodes or links is greater
than a threshold value, the occupied nodes or links form a giant component
† Corresponding autor: hli_cufe@cufe.edu.cn
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of the network. On the contrary, the giant component disappears when the
fraction of occupied nodes or links is less than the threshold value. The
statement of the percolation phenomenon [21] is simple: in node percola-
tion, every node is independently either occupied with probability p, or not
occupied with probability 1−p. The occupied nodes form continuous compo-
nents which have some interesting properties in real networks. In particular,
the system shows a continuous phase transition at a finite value of p which
is characterized by the formation of a component large enough to span the
whole system from one node to the others in the limit of infinite system size
or the scale of the component is almost as the scale of the whole system,
O(N). We say that such a system percolates for this value of p or the per-
colation transition takes place in this system. As the percolation transition
is approached from small values of p, the average component size diverges
in a way reminiscent of the divergence of fluctuations in the approach to
a thermal continuous phase transition and, indeed, one can define correla-
tion functions and a correlation length in the obvious fashion for percolation
models, and hence measure critical exponents for the transition [22–24].

Besides, there is a deep link percolation in which the links of the lattice
are occupied (or not) with probability p (or 1 − p). This system shows
qualitatively similar behavior though different in some details from node
percolation. That is, the occupied links form a giant component when the
occupied probability p is greater than a threshold value. In the opposite
case, the giant component disappears and all occupied links disintegrate
into small components.

In the past several years, explosive percolation in networks has been pro-
posed and heavily studied [25, 26]. Potential edges, sampled uniformly at
random from the complete graph, are considered one at a time and either
added to the graph or rejected provided that the fraction of accepted edges
is never smaller than a decreasing function asymptotically approaching the
value of α = 1/2. It is shown that multiple giant components appear si-
multaneously in a strongly discontinuous percolation transition and remain
distinct. Furthermore, tuning the value of α determines the number of such
components with smaller α leading to an increasingly delayed and more
explosive transition [27–29].

In these examples, the occupied probability is the same for every node
or link. However, it is not necessarily the same for the nodes or links.
As an example, in the disease diffusion process, the probability of person
infected is different for the immunity of persons, and so on. Then, how to
control the diffusion process with different occupied probabilities for different
links, which is decided by the properties of the end nodes of links, is utmost
important to control the diffusion process in real networks, such as to control
disease diffusing in social networks.
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In this paper, we investigate a class of percolation models with changed
hidden variables on nodes in complex networks. In this percolation model,
each node is assigned according to its property with a hidden variable of
time, which is independently drawn from some probability distribution, and
each link is occupied with some probability related to the hidden variables
(or the properties) of the end nodes. Armed with the mean field theory, the
analytical expressions for the phase transition of this percolation model is
obtained, which is determined by the distribution of the hidden variables of
nodes and the occupied probability for the links. In the end, the theoretical
expressions for the phase transition of this percolation model are checked by
means of numerical simulations on a particular networks.

The paper is organized as follows. In Sec. 2, we introduce the percolation
with changed hidden variables on nodes in complex networks and deduce
the theoretical condition for the percolation transition model. In Sec. 3,
we simulate the model on some special networks and obtain the numerical
results which dovetail into the theoretical results perfectly. The conclusion
is given in Sec. 4.

2. Percolation with hidden variable model on complex networks

We define the class of percolation transition model in complex networks
with changed hidden variables on nodes as follows. Let us consider a con-
nected undirected network with N nodes, where N � 1. The percolation
model in this network is generated by the following rules.

(1) Each node is assigned with a hidden variable hi(t) at time t, which is
independently drawn from a probability distribution ρ(h) with h ≥ 0.

(2) At time t, for each pair of nodes (i, j) whose hidden variables are hi(t)
and hj(t), the edge (i, j) is occupied with probability r(hi(t), hj(t))
(the occupied probability), where r(hi(t), hj(t)) ≥ 0 is a symmetric
function of hi and hj .

That is, given a probability distribution ρ(h) and the symmetric occupied
probability function r(x, y), the percolation transition model with hidden
variables is determined.

For the generated mechanism, the average number of occupied edges on
a node at time t with hidden variable h is [30]

kh(t) = N

∞∫
0

ρ
(
h′(t)

)
r(h(t), h′(t))dh′(t) , (1)
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and the average number of occupied edges on a node globally is

〈k(t)〉 =

∞∫
0

kh(t)ρ(h(t))dh(t)

= N

∞∫
0

∞∫
0

ρ(h(t))ρ(h′(t))r(h(t), h′(t))dh′(t)dh(t) , (2)

which illustrates that at time t, the average degree is directly determined by
the probability distribution of hidden variables on nodes and the occupied
probability for each link.

To reveal the size distribution of the occupied component at time t,
we start with a single occupied vertex by revealing its occupied neighbors
following occupied edges, then go with their neighbors, etc. [31]. Let nl be
the number of nodes exposed for the first time in step l of this revealing
process. Given the previous numbers n0 = 1, n1, . . . , nl−1, the distribution
of nl is

P (nl) =

(
N −

∑l−1
l=0 ns

nl

)
(1− qnl−1)nl(qnl−1)N−

∑l
s=0 ns , (3)

where q is the probability that a node is disconnected to the nl−1 nodes
which are exposed in step l − 1 on average, and that

q = p (x is disconnected to y| the hidden variables of
node in nl, nl−1 is x, y respectively at time t)

=
∫ ∫

ρ(x)ρ(y)(1− r(x, y))dxdy

=
∫ ∫

ρ(x)ρ(y)dxdy −
∫ ∫

ρ(x)ρ(y)r(x, y)dxdy

= 1− 〈k(t)〉N .

(4)

In the large N limit with fixed 〈k(t)〉, p(nl) tends to e−nl−1〈l〉(nl−1〈k〉)nl/nl!.
Thus, the revealing process reduces to a Poisson branching tree model, with
each node independently branching to a number of new nodes, where this
number is a Poisson random variable with average 〈k〉. The distribution
pn over the order n of the resulting tree is conveniently analyzed by the
generating function F (z) =

∑
n pnz

n, which satisfies

F (z) = z exp [〈k〉(F (z)− 1)] . (5)

In Ref. [31], we get that the transition point for this model is

〈k〉 = 1 . (6)
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Thus, when 〈k〉 > 1, the occupied links and nodes form a giant component
of the network, while when 〈k〉 < 1, the giant component disappears.

For

〈k(t)〉 = N

∞∫
0

∞∫
0

ρ(h(t))ρ
(
h′(t)

)
r
(
h(t), h′(t)

)
dh(t)dh(t) ,

we have

N

∞∫
0

∞∫
0

ρ(h(t))ρ
(
h′(t)

)
r(h(t), h′(t))dh′(t)dh(t) = 1 . (7)

So if N
∫∞
0

∫∞
0 ρ(h(t))ρ(h′(t))r(h(t), h′(t))dh′(t)dh(t) > 1 at time t, the

giant component of the occupied edge takes place and the percolation hap-
pens; while if N

∫∞
0

∫∞
0 ρ(h(t))ρ(h′(t))r(h(t), h′(t))dh′(t)dh(t) < 1 at time t,

the occupied edges are all small clusters whose scales are far smaller than
the size of the whole network.

3. Numerical simulations on networks

For applications, we simulate the model on a network with N = 5000
nodes. In this model, each node is assigned with a hidden variable h, which
is independently drawn from the probability distribution ρ(h(t)) = λte−λht

with exponent parameter λ for h ≥ 0. For each pair of nodes (i, j) whose
hidden variables are hi(t) and hj(t), respectively, at time t, the edge (i, j) is
occupied with probability r(hi, hj) = Θ(hi + hj − c), where

Θ(x) =

{
1 , x > 0 ,
0 , otherwise .

In this model, at time t, the degree distribution p(k) is [32]

p(k) = Ne−λct
1

k2
θk

(
Ne−λct, N

)
+ e−λctδ(k −N) ,

where δ(x) is the Dirac function, θx(a, b) is

θx(a, b) =

{
1 , a ≤ x ≤ b ,
0 , otherwise .

That is, the networks simulated by this model exhibit a scale-free degree dis-
tribution, with degree exponent γ = 2, for degrees in the range of Ne−λct ≤
k ≤ N , with an accumulation point at k = N , given by the δ function, with
weight e−λct.
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Substituting ρ(h(t)) and r(h, h′) into equation (6), we get

N

∞∫
0

∞∫
0

λte−λhtλte−λh
′tΘ
(
h+ h′ − c

)
dh′dh = 1 ,

that is

〈k(t)〉 = N

∞∫
0

∞∫
0

λte−λhtλte−λh
′tΘ
(
h+ h′ − c

)
dh′dh .

Integrating it, we have

〈k(t)〉 = Ne−λct(1 + λct) .

The transition point for this model is

〈k(t)〉 = Ne−λct(1 + λct) = 1 ,

hence, we can get the relationship among the exponential distribution pa-
rameter λ, the window parameter c and time t.

In the following, we give the numerical simulations of this model.
Especially, given c = lnN , the percolation transition point for λ satisfies

〈k(t)〉 = Ne−λt lnN (1 + λ lnN) = 1 .

That is
N1−λt(1 + λ lnN) = 1 .

In Fig. 1, with c = lnN , t = 1, the scale of the largest component as a
function of the mean value 1

λ of the exponent distribution ρ(h, t) = λte−λth

is shown. It indicates that percolation takes place in the network when
the average value 1

λ of the exponent distribution ρ(h) exceeds a certain
value. For the fixed window parameter c = lnN , as the mean value of the
hidden variables for nodes increases, the occupied probability for each link
is increasing, and then the number of nodes in the largest component is
increasing. Besides, as the mean value exceeds a threshold value, the giant
component takes place, as it is shown by the subgraph in Fig. 1. From the
detail in the subgraph of Fig. 1, we know that the percolation transition
point λz belongs to the interval [0.6, 0.9] in this model.

In Fig. 2, with c = lnN , t = 1, we give the average degree 〈k〉 as a
function of the mean value 1

λ of the exponent distribution ρ(h, t) = λte−λth.
It shows that the average degree 〈k〉 is increasing with the increase of the
mean value 1

λ of the exponent distribution. It is because the increase of
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Fig. 1. The largest component as a function of the exponent parameter λ is shown
in the main graph, and the details for 0.4 ≤ λ ≤ 1.2 are shown in the subgraph.
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Fig. 2. The average degree 〈k〉 as a function of the exponent parameter λ is shown
in the main graph, and the subgraph shows the details for 0.4 ≤ λ ≤ 1.2.
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mean value of the hidden variables for nodes results in the increase of the
average degree of the network. Furthermore, from the subgraph in Fig. 2, we
find that the transition point is 〈k〉 = 1 with λz ∈ [0.6, 0.9], which matches
the numerical simulations in Fig. 2 perfectly.

Actually, since
N1−λ(1 + λ ln(N)) = 1 ,

we know that λ < 1 must be satisfied.
In Fig. 3, fixing λ = 1, t = 1, we give the scale of the largest component as

a function of the window parameter c. According to our rule, when the time t
is fixed, the distribution of node’s hidden variable is fixed. With the increase
of the parameter c, the occupied probability for each link is decreasing, and
then the number of nodes in the largest component is decreasing. Besides,
as the window parameter c exceeds a threshold value, the giant component
disappears, which is shown in the subgraph of Fig. 3. From the details in the
subgraph of Fig. 3, we know that the percolation transition point cz belongs
to the interval [8, 14].
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Fig. 3. The largest component as a function of the window parameter c is shown
in the main graph, and the subgraph shows the details for 8 ≤ c ≤ 14.

In Fig. 4, for λ = 1, t = 1, we give the average degree 〈k〉 as a function of
parameter c. As increase of the window parameter c results in the decrease of
the occupied probability according to r(hi, hj) = Θ(hi+hj− c), the average
degree 〈k〉 decreases with the increase of c. Furthermore, from the subgraph
in Fig. 4, we find that the transition point is 〈k〉 = 1 with cz ∈ [8, 14], which
matches the numerical simulations in Fig. 4 perfectly.
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Fig. 4. The average degree 〈k〉 as a function of the window parameter c is shown
in the main graph, and the subgraph shows the details for 8 ≤ c ≤ 14.

From the above numerical simulations, which match the theoretical ex-
pressions perfectly, we know that the percolation transition takes place in
our new class of percolation model.

4. Conclusion

In summary, we study a new class of percolation model in complex net-
works with hidden variables on nodes. In this model, each node is assigned
with hidden variable which represents the property of the node, and each
link is occupied with some probability based on the hidden variables of the
end nodes. With the mean field theory, we derive the theoretical condition
for the appearance percolation transition for this model above which the
occupied edges form a giant component of the network, while below it, the
giant component disappears and all occupied links disintegrate into small
components. As applications, we take a special hidden variable distribu-
tion and a special occupied function as an example to check our model. It
matches the theoretical results perfectly.

This work is supported by the National Natural Foundation of China,
grant Nos. 71503292, 11401602, and 11472315.
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