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In this paper, we employ the multiscale multifractal analysis (MMA)
method to investigate the fractal properties of wind speed records depend-
ing on their magnitude of the fluctuations and the timescale. The MMA
results show that the high-frequency wind speed records appear to be far
more complex and contain abundant information, which cannot be detected
by the popular scaling analysis method, i.e., multifractal detrended fluctu-
ation analysis (MF-DFA). Comparing the Hurst surfaces of nine groups of
wind speed data, we find that for the negative qs, all the surfaces exhibit
intensive fluctuations and significant differences. In addition, the distribu-
tion histograms of Hurst surfaces for the positive qs reveal that the large
fluctuations of all wind speed data depend on the spatial positions, which
is further illustrated by the wind roses. Subsequent analysis of shuffled and
surrogate series reveals that the multifractality of wind speed time series is
mainly stemming from the long-range correlation, while has less to do with
broad probability density function. Finally, the effect of sampling period is
discussed. The results suggest that a sampling period of 20min is sufficient
to characterize multiscale multifractal properties of high-frequency wind
speed data.
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1. Introduction

Knowledge about the nature of wind speed records has far reaching im-
pact on diverse fields of research, such as energy generation [1], air pollution
control [2], civil engineering [3], aeolian sediment transport [4], etc. Within
the atmospheric boundary layer, due to the interplay among many com-
plex factors including pressure gradient, turbulence, temperature and to-
pography [5], the near-surface wind speed variations exhibit highly irregular
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fluctuations and complex behaviors. Thus, traditional simulation models
accompanied with implicit assumptions, e.g., wind tunnel simulations [6],
computational fluid dynamics (CFD) approaches [7], have quite limitations
as applied to reveal complex dynamic behaviors of wind field. In this regard,
it is imperative for us to get a deeper insight into the fluctuation mecha-
nisms of wind speed for the purpose of modeling, prediction, simulation and
design.

The characterization of wind speed records elicits a great deal attention
from various research fields. The statistical analysis [8], chaotic time series
analysis [9], wavelet analysis [10], power spectral density [11], Hilbert–Huang
transform [12], and complexity analysis [13] have been implemented to the
investigation of wind fields. In particular, the technique of fractal analy-
sis has already proven its great potential for uncovering scaling properties
of wind speed records [14–20]. Kavasseri et al. [14, 15] systematically ana-
lyzed hourly wind speed data from different wind-generation sites in North
Dakota, using the detrended fluctuation analysis (DFA) [21], and its ex-
tension, multifractal detrended fluctuation analysis (MF-DFA) [22]. Their
results suggest that the hourly wind speed data exhibit similar long-range
correlations and a characteristic broad multifractal spectrum irrespective of
the geographical location and topography. These features of wind speed
records are further confirmed at extensive regions of the world using dif-
ferent station densities and periods by Koçak [16] and Santos et al. [17].
Feng et al. [18] reported that non-universal multifractal behaviors exist in
the long daily wind speed time series from China. Telesca et al. [19] ana-
lyzed the height dependence of the informational and multifractal properties
of hourly wind data. More recently, Telesca et al. [20] applied the MF-DFA
and power spectrum to six high-frequency records of 10min averages of wind
speed measured in Switzerland, and in all examined cases, they found that
the wind speed is persistent and multifractal at larger timescales and an-
tipersistent and monofractal (or weakly multifractal) at smaller ones.

Despite the existing contributions, significant challenges in the study of
wind fields remain. Note that the majority of the studies concerning fractal
properties of wind speed series were focused on hourly or daily averages of
wind speed. However, there is no guarantee that the information available
for hourly or daily wind speed records can be extended to high-frequency
(secondly or less) wind data. It is partly due to instrument constrains. We
find that data sets in most previous works are recorded by conventional
instruments, e.g., cup or propeller anemometers, which are incapable of
measuring turbulence in the natural high-frequency wind speed signals [23].
Using higher frequency sampled data would allow to uncover the complex
dynamical behaviors of wind speed at timescales lower than those that have
been generally investigated so far [20]. Furthermore, from the methodol-
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ogy perspective, in spite of the successful applications of (MF-)DFA noted
in the literature [14–20], in the (MF-)DFA method still exist some limita-
tions, which may not be suited for the study of high-frequency wind field,
and is in need of further study and refinement. It is partly because the
(MF-)DFA method has strict requirements for the data to be investigated
and requires basic assumptions, such as the range of timescale and an ac-
ceptable level of noise in the signal, which may have difficulty in getting
the accurate results [24]. Based on the abovementioned analysis, employ-
ing an efficient approach to quantitatively characterize complex dynamical
behaviors of high-frequency wind speed would be particularly helpful and
necessary.

Quite recently, Gieraltowski et al. [24] introduced a method called multi-
scale multifractal analysis (MMA), which allows us to extend the description
of the properties if the fluctuations of a signal depending on their magni-
tude and the timescale using the generalized dependence of the local Hurst
surface. This method provides a new way of measuring the non-linearity of
signals, and has been successfully applied to diverse fields, such as physio-
logical series [24], traffic series [25] and economic series [26].

In this paper, aiming to uncover the non-linear dynamical mechanism
underlying high-frequency wind fields, we first systematically carry out an
experiment to record nine groups of wind speed data within the atmosphere
boundary by using high-precision 2D ultrasonic anemometers. Then, we
apply the MMA method to the collected multi-points wind speed data to
obtain abundant information about the fractal properties among the entire
timescales. Furthermore, we discuss the generating mechanism of multifrac-
tality in wind speed time series and the effect of sampling period on the
results of MMA. This paper is organized as follows. In Sec. 2, we describe
the MF-DFA and MMA methods. In Sec. 3, we briefly introduce the wind
speed data used in this study. The results of MMA and some discussions
are provided in Sec. 4. Finally, the conclusions are presented in Sec. 5.

2. Methodology

2.1. MF-DFA method

The multifractal detrended fluctuation analysis (MF-DFA) method, de-
veloped by Kantelhardt et al. [22], is the multifractal extension of the de-
trended fluctuation analysis (DFA) method [21]. The MF-DFA method is a
fairly robust and powerful tool for identifying multifractal characterization
of non-stationary time series, and has been widely applied to different fields,
such as biology [27], geology [28], economics [29–31], meteorology [14–20].
The MF-DFA algorithm can be briefly described as follows.
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Firstly, we consider a time series x(k), k = 1, 2, . . . , N , where N is the
length of the series. Then, we calculate the integrated series (also called
profile)

Y(i) =
i∑

k=1

(xk − x) , i = 1, 2, . . . , N , (1)

where x = 1
N

N∑
k=1

xk is the mean of x(k).

Next, we divide the integrated series into Ns = int(N/s) non-overlapping
segments of equal length s. A short part of the new series Y (i) will remain in
most cases because the length N of the series does not have to be a multiple
of the considered timescale s. In order not to discard this part of the series,
the same procedure is repeated from the other end of the time series. Thus,
2Ns segments are obtained altogether.

For each of the 2Ns segments, we calculate the local trends by using the
k-order polynomial yv(i) fitting

yv(i) = a0 + a1i+ . . .+ aki
k , k = 1, 2, . . . , (2)

where ak is the polynomial coefficient, k is the order of polynomial fitting.
Generally, polynomial detrending of the order of k is capable of eliminating
trends up to the order of k−1 [22]. The detrended variance function can be
calculated using

F 2(s, v) =
1

s

s∑
i=1

{Y [(v − 1)s+ i]− yv(i)}2 (3)

for each segment of v = 1, 2, . . . , Ns and

F 2(s, v) =
1

s

s∑
i=1

{Y [N − (v −Ns)s+ i]− yv(i)}2 (4)

for each segment of v = Ns + 1, Ns + 2, . . . , 2Ns.
According to the above detrending segments, the q order fluctuation

function can be obtained by averaging the detrended variance over all seg-
ments

Fq(s) =

{
1

2Ns

2Ns∑
v=1

[
F 2(s, v)

]q/2}1/q

, (5)

where q can take any real value except zero. For q = 2, the conventional
DFA [21] method is retrieved. For q = 0, the fluctuation function F0(s) can
be calculated by
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F0(s) = exp

{
1

2Ns

2Ns∑
v=1

ln
[
F 2(s, v)

]}
. (6)

Finally, we determine the scaling behavior of fluctuation function by
analyzing the log–log plots Fq(s) versus s for each q

Fq(s)∞sh(q) . (7)

The exponent h(q) is called the generalized Hurst exponent. A constant
h(q) indicates monofractality, while multifractality is associated with a wide
range of values of h(q). For stationary series, h(2) coincides exactly with the
Hurst exponent H, i.e., h(2) = H [22]. For non-stationary series but with
stationary increments, the relation between h(2) and the Hurst exponent H
is H = h(2) − 1 [20, 32]. Hurst exponent H is the well-known parameter
used to discriminate between persistent/antipersistent/random signals. In
particular, H ∈(0, 0.5) indicates antipersistency of the time series; H = 0.5
indicates uncorrelated noise; H ∈(0.5, 1) indicates persistency of the time
series.

2.2. MMA method

In previous works, the fluctuation scaling of monofractal series can be
characterized by a single exponent, and in most cases, the scaling behavior of
multifractal series is described using two-coefficients model. More recently,
however, it has been demonstrated many times that the fractal properties
vary from point to point along the series and the different scaling exponents
are usually required for different parts of the series. Therefore, it is not
adequate to illustrate the internal dynamics of signals by using the DFA or
MF-DFA method. In order to avoid errors due to improperly predefined
scaling ranges, and to obtain all information among the entire timescales,
Gieraltowski et al. [24] calculated a multifractal spectrum with variable scale
ranges and proposed the MMA method. The new technique allows us to
investigate not only the multifractal properties but also dependence of these
properties on the timescale.

The MMA method is the extension of the MF-DFA method [22]. The
process goes like this, after calculating all the q order fluctuation func-
tions Fq(s) by MF-DFA method, we use a moving fitting window, sweeping
through all range of the scale s along the Fq(s) plot and obtain a series of
overlapped windows. Then, we conduct a fit for points only currently falling
into the moving fitting window. In this way, we can study quasi-continuous
changes of the h(q) dependence versus the range of scale s. For clarity,
we visualize this relationship by the Hurst surface and the points on the
surface represent the generalized dependence h(q, s). Since the fluctuation
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functions Fq(s) are presented in log–log coordinates, the moving fitting win-
dow should expand logarithmically so that it seems to be of constant width.
In the original MF-DFA measure, for very small scale, s < 10 may result
in an arithmetic underflow, for too large scale, usually results in the divi-
sion of the time series into a too small number of window, which causes the
Fq(s) curves to converge at the scale of saturation [24]. Therefore, in this
paper, we set the usable scale range for Fq(s) in the MF-DFA procedure
to be s ∈ [10, 720]. Next, we set the starting window as scale s ∈ [10, 20],
then move this window at a step of 10, meanwhile expanding the width of
the window logarithmically. The ratio between the right endpoint and left
endpoint of each expanded window is 2. Thus, we obtain the second win-
dow s ∈ [20, 40], the third window s ∈ [30, 60], and up to the final window
s ∈ [360, 720], respectively. At last, we calculate the local scaling exponent
for each of these windows at different q. The Hurst surface is presented using
three linear axes, i.e., order axis (q), scale axis (s), and scaling exponent axis
(h(q, s)), and the points of the Hurst surface graph are connected to form a
colored surface. Note that in the Hurst surface, the scale axis is calibrated
so as to show the beginning of each fitting window, that is, it starts from
s = 10 (i.e., the beginning of the first window [10, 20]) and ends at s = 360
(i.e., the beginning of the last window [360, 720]).

Moreover, for multifractal series, the small and large fluctuations scale
differently, and there will be a significant dependence of h(q, s) on q. Simply
speaking, for positive q, the h(q, s) describes the scaling behavior of the
segments with large fluctuations. On the contrary, for negative q, the h(q, s)
describes the scaling behavior of the segments with small fluctuations. For
monofractal series, the small and large fluctuations scale uniformly and the
h(q, s) is independent of q.

3. Experiments and data acquisition
In this paper, the atmospheric boundary-layer turbulence wind speed

records, including wind velocity and wind direction, are collected at an open
space in the Tianjin University, located at N39.0◦, E117.09◦. In order to
capture the dynamic information of the wind field more comprehensively,
nine high-precision 2D Ultrasonic Anemometers (UAs) (WindSonic, Gill In-
struments Ltd, sample rate 4 Hz, sound path 0.10m) are deployed with 5m
interval in a square area and oriented towards the west. The ground sur-
face is flat with smaller roughness. Figure 1 shows the deployment of nine
2D UAs. The measurement height is set as 0.6m above ground and the
recording duration for each measuring location is one hour. Thus, the total
number of data points for each UAs is 14 400. These data are applied to
analyze the scaling behaviors of the wind speed in the atmospheric boundary
layer. Figure 2 illustrates nine groups of wind speed time series recorded at
UAA–UAI.
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Fig. 1. Deployment of nine 2D ultrasonic anemometers with 4 Hz sampling fre-
quency.

Fig. 2. Nine groups of wind speed time series collected at UAA–UAI.
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4. Results and analysis

As an example, we first provide MF-DFA results for wind speed time se-
ries recorded at UAA to illustrate the necessity of discussing the multifractal
properties within variable scale ranges. Next, the MMA method is applied
to characterize the multiscale multifractal properties of nine groups of wind
speed data recorded at UAA–UAI. Furthermore, the generating mechanism
of multifractality of turbulent wind speed is analyzed using shuffling and
surrogate techniques. Finally, the effect of sampling period on the MMA
results is discussed.

4.1. The necessity of investigation within variable scale ranges
for wind speed time series

Figure 3 (a) shows the log–log plot fluctuation functions Fq(s) versus s
for the data collected at UAA. Note that the slopes of the log–log fits to the
family of Fq(s) curves determine the Hurst exponent h(q). Therefore, the
details of the fitting procedure are crucial to the final results. Instead of the
whole scales (s ∈ [10, 720]) used in MF-DFA method, we observe the trend
of h(q) with q at different timescales respectively. Figure 3 shows three cases
of Hurst curves h(q) for small scales s ∈ [10, 20], medium scales s ∈ [80, 160]
and large scales s ∈ [360, 720], respectively. It is obvious that there are
different shapes of the h(q) curves for different scale ranges. The values of
h(q) for large scales s ∈ [360, 720] are smaller than those of h(q) for medium

Fig. 3. The multifractal properties of wind speed time series of UAA. (a) The log–
log plot of fluctuation functions Fq(s) versus scale s. The multifractal parameter q
is from −5 to 5 with a step of 1 from bottom to top, respectively. The gray areas
show three examples of the fitting windows for small scale s ∈ [10, 20], medium scale
s ∈ [80, 160] and large scale s ∈ [360, 720]. (b) The h(q) curves for s ∈ [10, 20],
s ∈ [80, 160] and s ∈ [360, 720], respectively.
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and small scales. This analysis indicates that the fractal properties of wind
speed records have a relationship with the range of scale s. Likewise, the
similar analyses are also performed on the other eight groups of wind speed
time series and similar results can be found, which are not shown in this
paper for simplicity.

Quite recently, the MMA method has already proven its great potential
for obtaining the richer scaling information in time series along the scale
ranges and the dynamics of the correlation more fully. Therefore, we employ
this state-of-art method, i.e., MMA method, to quantitatively distinguish
and uncover the dynamic behaviors underlying high-frequency wind speed
time series.

4.2. MMA analysis for high-frequency wind speed data

We first provide the MMA results, i.e., Hurst surface h(q, s), for the
data of UAA as shown in Fig. 4. Compared with the standard MF-DFA,
the Hurst surface h(q, s) contains abundant information in which the results
of standard MF-DFA can be represented by a single line: a cross section
of h(q, s) at a constant s [24]. Furthermore, we find that the Hurst surface
h(q, s) of UAA shows some oscillation at small scales and gradually goes
down at large scales. Besides, from the values of h(2, s), we can obtain two
timescale ranges of h(2, s): in the higher timescale range (s > 180 s), the se-
ries is stationary and the values of h(2, s) ∈ (0.89, 0.99) (which are identical
to the Hurst exponent H) indicate that it is characterized by strong persis-

Fig. 4. The Hurst surface h(q, s) dependence calculated for the wind speed records
of UAA. The gray (red) dots show the Hurst curve h(q, s) for q = 2, and the black
thick line at the right of the plot corresponds to h(q) calculated with the standard
MF-DFA method.
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tence; in the lower timescale range (s < 180 s), the series is non-stationary
(h(2, s) ∈ (1.02, 1.39)), and H is H = h(2, s) − 1 ∈ (0.02, 0.39), which
indicates that the series is weakly antipersistent or antipersistent at lower
timescales. For a fixed negative q, the curves of h(q, s) experience two rising
stages and three dropping stages at small scales and then a stable stage in
large scales, while for a fixed positive q, the curves of h(q, s) go through
a dropping stage and then a stable stage. It is clear that the fluctuations
for negative qs are stronger than those for positive qs. The abovementioned
analysis indicates that the MMA method outperforms the MF-DFA tech-
nique to characterize the wind speed data.

Next, we turn to focus on the MMA results for nine groups of wind
speed data, which are collected simultaneously by nine 2D UAs deployed
in the square area with adjacent spacing of 5m (Fig. 1). Although the
nine groups of wind speed data (Fig. 2) look similar, whether multiscale
multifractal behaviors for the wind speed data recorded at different positions
have spatiotemporal context, it needs further study. Figure 5 provides the
Hurst surfaces calculated for nine groups of wind speed data. Note that
the Hurst surfaces are placed consistently with the deployment of 2D UAs
(Fig. 1).

Fig. 5. The Hurst surface h(q, s) dependences calculated for UAA–UAI wind speed
time series.
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Figure 5 shows that the nine Hurst surfaces are dependent upon the or-
der q and timescale s, indicating the necessity of investigating wind speed
records from the multiscale perspective. In details, we analyze the curves of
h(q, s) from the view point of q and s, respectively. For any fixed scale s,
the values of all Hurst surfaces vary with the q, indicating the existence of
multifractal properties in all the considered wind speed signals. Meanwhile,
all the wind speed series show a more or less intense antipersistence in the
lower timescale range and persistence in the higher timescale range, which
are deduced by the values of h(2, s). For the positive qs, all the shapes of
Hurst surfaces are flat, while for the negative qs, all the surfaces exhibit
intensive fluctuations. As mentioned in Sec. 2, for q > 0, the h(q, s) de-
scribes the scaling behavior of the segments with large fluctuations, while
for q < 0, the h(q, s) describes the scaling behavior of the segments with
small fluctuations. Thus, we can obtain that compared with their large fluc-
tuations behaviors, the small fluctuations of nine groups of wind speed data
exhibit more complicated multiscale structure features. Furthermore, for
q < 0, there are significant differences in all Hurst surfaces, for q > 0, all
the surfaces look similar, which makes it difficult to distinguish the spatial
relationship of UAA–UAI wind speed time series.

Fig. 6. The histograms of h(q, s) for the nine groups of wind speed time series when
q is positive.
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In order to further reliably describe the similarities and differences of nine
Hurst surfaces for the positive q, we focus on the distribution histograms
of Hurst surfaces to quantify the scaling behaviors (Fig. 6). It is obvious
that the histograms of Hurst surfaces for the first line (i.e., UAA, UAD

and UAG) exhibit similar shapes, indicating similar peaks around h = 0.9,
however, the histograms for second and third lines show similar behaviors,
indicating the similar peaks around h = 1.2. These results suggest that the
large fluctuations of all wind speed data depend on the spatial positions,
which is further illustrated by using the wind roses (Fig. 7). From the wind
roses, we can find that the prevailing wind directions are westerly wind,
which explains well horizontal not vertical direction similar behaviors in
the wind speed records. These interesting findings indicate that the MMA
method is very useful for the wind-related researches, including wind field
reconstruction and modeling. For example, if we only consider the large
fluctuations of nine groups of wind speed data, we can use two 2D UAs to
reconstruct the wind field (Fig. 1).

Fig. 7. The wind roses calculated for UAA–UAI wind speed time series.
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4.3. The generating mechanism of multifractality of wind speed signals

In general, there are two different types of multifractality in the time se-
ries [22]: (i) Multifractality due to a broad probability density function for
the values of the time series. In this case, the multifractality cannot be re-
moved by shuffling the series. (ii) Multifractality due to different long-range
correlations for small and large fluctuations. In this case, the probability
density function of the values remains unchanged by shuffling the series,
while all long-range correlations are destroyed. Thus, the corresponding
shuffled series will exhibit monofractal scaling behavior with Hurst expo-
nent hshuf(2) = 0.5. If both kinds of multifractality are present, the shuffled
series will show weaker multifractality than the original series.

To investigate the generating mechanism of multifractality of wind speed
signals, we first shuffle the wind speed records (UAA) to generate a shuffled
series. Note that this shuffled series has the identical probability density
function with the original series but loses the long-range correlations.

Secondly, we perform a Fourier transform on UAA wind speed data, pre-
serving the amplitude of the Fourier transform but randomizing the phase,
and then perform an inverse Fourier transform. This procedure eliminates
non-linearities, preserving only the linear feature of the original series [33].
Thus, we can obtain the corresponding shuffled series and surrogate se-
ries [34], respectively. Next, we calculate the generalized Hurst exponent
h(q) using the traditional MF-DFA for original series UAA, shuffled series
and surrogate series (Fig. 8 (a) and (c)). One can find that the values of
hshuf(q) are independent of q with a constant value of 0.5, while the values
of hsur(q) have the same varying tendency as the h(q) of original series but
are smaller. This result implies that the multifractality of wind speed is due
to both long-range correlation and broad probability density function, but
is mainly from the long-range correlation.

Furthermore, we compare the Hurst surfaces h(q, s) for the original series
with the results of the corresponding shuffled series and surrogate series. We
present the average results of 100 realizations of the shuffled and surrogate
series (Fig. 8 (b) and (d)). We find that the shuffled procedure appar-
ently destroys the correlations (Fig. 8 (b)), and the Hurst surface h(q, s)
of shuffled series is flat (〈hshuf(q, s)〉 ≈ 0.5). However, the Hurst exponents
hsur(q) of surrogate series vary slightly both with the order q and timescale s
(〈hsur(q, s)〉 ≈ 1.19), as shown in Fig. 8 (d). These findings suggest that the
multifractality of wind speed records (UAA) is due to both long-range cor-
relation and broad probability density function, but the source of multifrac-
tality is mainly long-range correlation, which is consistent with the results
of MF-DFA. Similar results are obtained for other eight UAs.
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Fig. 8. Comparison of fractal properties for original series (UAA), shuffled series
and surrogate series: (a) and (c) show the results of the standard generalized Hurst
exponent h(q) calculated using MF-DFA for three kinds of series; (b) and (d) show
the Hurst surface h(q, s) calculated using MMA for shuffled and surrogate series,
respectively.

4.4. Effect of sampling period

The sampling period is an important consideration for defining the scales
of turbulence. This issue is easily overlooked and encountered during ex-
perimental planning and may affect the accuracy of measurement of flow
properties in complex, natural flows [23]. For instance, if the sampling pe-
riod is too short, the largest eddies may not be captured and included in
Reynolds stress estimates. Boxel et al. [35] suggested that for measurements
below 1.0m height, if the sampling period is taken too long (e.g. longer than
60min), the trends resulting from the daily course start influencing the re-
sults. Thus, in our work, the sampling period for all the UAs is one hour,
which is adequate both for eliminating daily trend and measuring turbu-
lence. To find out what effect has the sampling period on the MMA results,
we select four groups of test series in which the sampling periods are 30min,
20min, 15min and 10min. The starting points of the subseries are the same,
i.e., the first point of the original series. The corresponding results of Hurst
surfaces are provided in Figs. 9, 10, 11 and 12, respectively.
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Fig. 9. The Hurst surfaces calculated for UAA–UAI with 30min sampling period.

Fig. 10. The Hurst surfaces calculated for UAA–UAI with 20min sampling period.
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Fig. 11. The Hurst surfaces calculated for UAA–UAI with 15min sampling period.

Fig. 12. The Hurst surfaces calculated for UAA–UAI with 10min sampling period.
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Next, we employ the intersurface distance to reliably describe and quan-
tify the differences between original one-hour series and 30min, 20min,
15min, 10min series, respectively. The intersurface distance between h1(q, s)
and h2(q, s) can be calculated by using the following equations [24]:

h2s(q, s) = h2(q, s) + [〈h1(q, s)〉 − 〈h2(q, s)〉] , (8)

d =
{〈

[h1(q, s)− h2s(q, s)]
2
〉}1/2

[〈h1(q, s)〉]−1 , (9)

where h1(q, s) is a reference surface, d is a measure of the mean distance
between two Hurst surfaces h1(q, s) and h2(q, s), and 〈•〉 denotes the mean.
In this study, we set the threshold d = 0.10. If d ≤ 0.10, we consider the
shape of two surfaces to be similar, and if d ≥ 0.10, we consider them to be
different.

Table I shows that the intersurface distances between original one-hour
series and the series of 30min and 20min are below the threshold 0.1, indi-
cating that those three wind speed series possess similar scaling behaviors
(see Figs. 5, 9 and 10). However, all distances are larger than 0.1 when sam-
pling periods are set as 15min and 10min (Figs. 11 and 12). In addition,
one can see that the shapes of the nine Hurst surfaces look similar when the
sampling period is 10min (Fig. 12). These results suggest that in order to
obtain abundant scaling information of high-frequency wind speed records,
the sampling period should be not less than 20min, which is in agreement
with the result in [35].

TABLE I

Intersurface distances between original series of one-hour sampling period and
30, 20, 15 and 10min series.

Wind Distance

speed 30 min 20 min 15 min 10 min

UAA 0.0735 0.0944 0.1022 0.1642
UAB 0.0825 0.0970 0.1270 0.1924
UAC 0.0713 0.0942 0.1236 0.1863
UAD 0.0807 0.0927 0.2142 0.2972
UAE 0.0707 0.0736 0.1314 0.2147
UAF 0.0780 0.0986 0.1155 0.2273
UAG 0.0715 0.0949 0.2554 0.3237
UAH 0.0999 0.1000 0.1808 0.2420
UAI 0.0933 0.0956 0.1200 0.1992
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5. Conclusions

In this study, the high-frequency wind speed signals recorded at different
spatial positions are examined using the generalized dependence of the local
Hurst exponent on the scale: the surface h(q, s). We concentrate not only
on the fact that the high-frequency wind speed records have multifractal
properties but also these properties depend on the timescale.

The results of log–log plot fluctuation functions Fq(s) show that the mul-
tifractal properties of wind speed data have a relationship with the range
of scale s, indicating the limitation of traditional multifractal detrended
fluctuation analysis (MF-DFA) method using a fixed timescale. Then, we
systematically investigate the dynamic behaviors of the small fluctuations
and large fluctuations in nine groups of high-frequency wind speed data,
applying the MMA method. The results of Hurst surfaces reveal that for
the negative qs, all the surfaces exhibit intensive fluctuations and there are
significant differences. Meanwhile, the distribution histograms of Hurst sur-
faces for the positive qs suggest that the large fluctuations of all wind speed
data depend on the spatial positions, i.e., horizontal not vertical direction
similar relationship, which is further illustrated by the wind roses. Further-
more, it is demonstrated that the multifractality of wind speed time series is
due to both long-range correlation and broad probability density function,
but the long-range correlation is the main source, via comparing the original
series with their shuffled and surrogate series. Finally, we discuss the effect
of sampling period on the MMA results. It is observed that the MMA results
with sampling period of series from 30min to 20min are consistent with the
original series for one-hour sampling period, while some deviations occur
when the sampling period is lower than 20min. This result reveals that a
sampling period of 20min is sufficient to characterize multiscale multifractal
properties of high-frequency wind speed data.

However, there are still some issues that need further study. For example,
we can use the cross correlation analysis methods [36–38] to investigate
the spatiotemporal relationships of wind speed signals recorded at different
positions. Furthermore, some interesting findings can be used to develop
theoretical and computational models for various wind-related phenomena,
e.g., wind field reconstruction and wind pattern recognition.
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Fund of Ministry of Education of China under grant No. 20120032110068.
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