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This work attempts to investigate the influence of a minimal length
scale on the statistical aspects of the paramagnetic system. The angular
momentum operator and the magnetostatic field in 3-dimensional space
described by the Kempf algebra is studied in the special case of α′ = 2α
up to the first order over the deformation parameter α. The modified
thermodynamical characteristics of the paramagnetic system such as mean
energy, entropy, magnetization are obtained. It is shown that the relative
magnetization approximately depends on the deformation parameter and
orbital angular momentum. The upper limit of the deformation parameter
is estimated.
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1. Introduction

In the recent years, theoretical physicists have tried to find the unifi-
cation between the general relativity and the Standard Model of particle
physics [1]. Today, it is widely accepted that perturbative string theory
and loop quantum gravity lead to a minimal length scale in nature [2]. The
minimal length appears due to a modification of the usual Heisenberg uncer-
tainty principle. The modified uncertainty principle is known as Generalized
Uncertainty Principle (GUP) [3, 4]. This generalized uncertainty principle
can be written as

∆X∆P ≥ ~
2

[
1 + α(∆P )2

]
, (1)

where α is a positive parameter [5, 6]. It is obvious that in Eq. (1), ∆X is
always larger than (∆X)min = ~

√
α. Kempf and his collaborators showed

that finite resolution of length can be obtained from the deformed Heisenberg
algebra [7–9]. The Kempf algebra leading to the existence of a minimal

(2225)
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length in a D-dimensional space is characterized by the following deformed
commutation relations:[

Xi, P j
]

= i~
[(

1 + α~P 2
)
δij + α′P iP j

]
,[

Xi, Xj
]

= i~
(2α− α′) + (2α+ α′)α~P 2

1 + α~P 2

(
P iXj − P jXi

)
,[

P i, P j
]

= 0 , (2)

where α, α′ are two positive deformation parameters. In Eq. (2), Xi and
P i are position and momentum operators in the GUP framework and it is
easy to find that a minimal length scale equals ~

√
(Dα+ α′). There are

many papers about the effects of minimal length on various problems such
as harmonic osillator, hydrogen atom, gravitational quantum well, Lamb’s
shift and particles scattering [10–14]. In the recent years, reformulations
of quantum mechanics, quantum field theory and statistical mechanics in
the presence of a minimal measurable length have been studied [15–20]. It
seems that the thermodynamical characteristics of the physical systems such
as the mean energy, partition function and entropy in the deformed space
will be changed. In this work, we investigate the statistical properties of
the paramagnetic system in the presence of a minimal length. This paper is
organized as follows: In Sec. 2, the angular momentum operator and magne-
tostatic field in three spatial dimensions described by the Kempf algebra is
introduced. In Sec. 3, thermodynamical characteristics of the paramagnetic
system in the presence of a minimal length scale are obtained up to the order
of α. Our calculations are found for arbitrary total angular momentum J .
We obtain also the modified magnetization of the paramagnetic system at
both high and low temperatures. Our conclusions are presented in Sec. 4.
We use SI units throughout this paper.

2. Angular momentum operator and magnetostatic field in the
presence of a minimal length based on the Kempf algebra

In this section, we obtain the modified angular momentum operator and
the modified magnetostatic field. For this aim, it is essential to introduce the
representation of modified position and momentum operators satisfying the
Kempf algebra in Eq. (2). Stetsko and Tkachuk used the approximate repre-
sentation fulfilling the Kempf algebra in the first order over the deformation
parameters α and α′ [21]

Xi = xi +
2α− α′

4

(
~p 2xi + xi~p 2

)
,

P i = pi
(

1 +
α′

2
~p 2

)
, (3)
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where the operators xi and pi = i~ ∂
∂xi

are position and momentum operators
in the ordinary Heisenberg algebra. It is emphasized that in the special case
of α′ = 2α, the position operators commute in linear approximation over
the deformation parameter α, i.e. [Xi, Xj ] = 0. Considering this linear
approximation, we can write the Kempf algebra in Eq. (2) as follows:[

Xi, P j
]

= i~
[(

1 + α~P 2
)
δij + 2αP iP j

]
,[

Xi, Xj
]

= 0 ,[
P i, P j

]
= 0 . (4)

Brau showed that the following representations satisfy (4) in the first order
in α [22]

Xi = xi , (5)
P i = pi

(
1 + α~p 2

)
. (6)

2.1. The modified angular momentum operator

We know that in quantum mechanics the angular momentum operator
is defined as follows [23]:

~L = ~x× ~p , (7)

where ~x and ~p are ordinary position and momentum operators. For obtaining
the modified angular momentum operator based on the Kempf algebra, we
must replace the usual position and momentum operators with the deformed
position and momentum operators according to Eqs. (5) and (6), and we have

~L = ~X × ~P . (8)

If we substitute Eqs. (5) and (6) into Eq. (8), we obtain the following angular
momentum in the deformed space

~L =
(
1 + α~p 2

)
~L , (9)

where ~L is the ordinary angular momentum operator.

2.2. The modified magnetostatic field

The Lagrangian density for a magnetostatic field with an external current
density ~J(~x ) = (J1(~x ), J2(~x ), J3(~x )) in three spatial dimensions can be
written as follows [24]:

L = − 1

4µ0
Fij(~x )F ij(~x )− J i(~x )Ai(~x ) , (10)
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where Fij(~x ) = ∂iAj(~x )− ∂jAi(~x ) and ~A(~x ) = (A1(~x ), A2(~x ), A3(~x )) are
the electromagnetic field tensor and the vector potential respectively. If
we replace the usual position and derivative operators with the deformed
position and derivative operators according to Eqs. (5) and (6), that is

xi −→ Xi = xi , (11)
∂i −→ Di :=

(
1− α~2∇2

)
∂i , (12)

we will obtain the electromagnetic field tensor in the presence of a minimal
length as follows [25]:

Fij

(
~X
)

= Fij(~x )− α~2∇2Fij(~x ) =
(
1 + αp2

)
Fij(~x ) . (13)

The three-dimensional magnetic induction vector ~B(~x ) is defined as fol-
lows [26]:

Fij = −εijkBk , F ij = εijkBk . (14)

If we insert Eq. (14) into Eq. (13), we obtain the following magnetostatic
field in the presence of a minimal length

~bML(~x ) =
(
1− α~2∇2

)
~B(~x ) =

(
1 + α~p 2

)
~B(~x ) . (15)

In the above equation, the term (α~p 2) ~B(~x ) can be considered as a minimal
length effect.

3. Paramagnetic system in the presence of a minimal length scale

An especially interesting application of statistical mechanics is the para-
magnetic behavior of substances. It is well-known that the atoms of many
substances have a permanent magnetic dipole moment ~µ [27]. If such a
substance is subject to an external magnetostatic field ~B, then the dipoles
try to align in the direction of the field, so that the potential energy can be
shown as follows [28]:

U = −~µ · ~B . (16)

We consider that a paramagnetic system of unit volume contains N atoms
which we treat as distinguishable. We denote the total angular momentum
of the nth atom by ~Jn, and its magnetic moment is given by

~µn = −gµB

(
~Jn
~

)
, (17)
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where g is the Lande factor, and µB the Bohr magneton. The atoms are
assumed to interact only with an external magnetostatic field ~B. Hence, the
Hamiltonian describing the system is

H = −
N∑

n=1

~µn · ~B . (18)

It should be noted that the nth atom must be in a simultaneous eigenstate
of J2

n and Jnz, which we denote |J,mn〉 or simply |mn〉, because J is the
same for all atoms. Hence, the energy eigenvalue of the quantum state |mn〉
is obtained by acting on |mn〉 with the Hamiltonian operator of Eq. (18).
Since B = Bẑ, we have

H = −B
N∑

n=1

µnz = gµBB

(
J1z
~

+
J2z
~

+ · · ·+ JNz

~

)
. (19)

Since J1z|m1〉 = m1~|m1〉, we find that the energy eigenvalues are given by

EJ = gµBB(mJ) , (20)

where mJ is the component of J in Z-direction and we have

mJ = −J,−(J − 1), . . . , 0, 1, . . . , (J − 1), J . (21)

The magnetic moment of atoms is caused by electrons moving around the
nucleus; i.e., it is a quantum mechanical quantity. Therefore, we want to
perform the same considerations once again for quantum mechanical dipole.
In quantum mechanics, ~µ is an operator which is defined by [27]

~µ = −gJµB ~J = −gJµB
(
~L+ ~S

)
, (22)

where ~L is the angular momentum operator and ~S is the spin operator. Then,
~µ is no longer proportional to the total angular momentum ~J = ~L + ~S. It
should be emphasized that the Lande factor gJ , can be written as follows:

gJ =

(
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)

)
. (23)
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3.1. Modified thermodynamical parameters

Now, we obtain the total energy, partition function, entropy and the
magnetization of the paramagnetic system in the presence of a minimal
length scale. For this purpose, let us write the modified Hamiltonian system
as follows:

HML = −
N∑

n=1

(~µn)ML ·
(
~b
)
ML

, (24)

where (~µn)ML = −(gJ)MLµB( ~Ln + ~Sn), and ~bML is the modified magneto-
static field. Here, we consider the uniform magnetostatic field. From Eqs. (9)
and (15), the modified Hamiltonian in Eq. (24) can be obtained as

HML = (gJ)MLµB

N∑
n=1

[(
1 + α~p 2

)
~Ln + ~Sn

]
·
(
1 + α~p 2

)
~B

= (gJ)MLµB

N∑
n=1

[(
1 + α~p 2

)2 ~L · ~B +
(
1 + α~p 2

)
~S · ~B

]
. (25)

Assuming again a magnetostatic field ~B in Z-direction, the energy eigenval-
ues in the presence of a minimal length is

εML = (gJ)MLµBB
N∑

n=1

[(1 + 2αf(l))Lz + (1 + αf(l))Sz]

= (gJ)MLµBB
N∑

n=1

[(1 + αf(l))mJ + (αf(l))mL] , (26)

where mJ , mL are the quantum numbers and they vary from −j to +j and
−l to l, respectively. In Eq. (26), f(l) is equal to ~2l(l+1)

r20
when we use the

following definition for the operator ~p 2

~p 2 = −~2
(
∂2

∂r2
+

2

r

∂

∂r
−

~L2

~2r2

)
. (27)

It should be noted that in Eq. (26) the terms of the order of α2 and higher
are neglected. If we consider the simple case of atoms with spin 1

2 , we find
that the orbital angular momentums are zero. According to Eq. (26), the
modified energy levels are

εML = gSµBBmS . (28)

It is interesting to note that the modified energy levels in Eq. (28) is equal
to the usual energy levels. Therefore in this case, the modified thermody-
namical parameters are not changed.



Statistical Aspects of the Paramagnetic Systems in the Presence . . . 2231

3.2. Atoms with arbitrary J in the presence of a minimal length

Now, we want to calculate the modified thermodynamical characteristics
of the paramagnetic systems when J is arbitrary. The partition function is
obtained by summing the Boltzmann factor exp(−βEr) over all the quantum
states |r〉, where β = 1

KT and K is the Boltzmann factor and T denotes the
temperature. Therefore, the partition function in the presence of a minimal
length can be written as follows:

(Z)ML =

j∑
mJ=−j

exp(−βεML) . (29)

If we insert Eq. (26) into Eq. (29), we will obtain

(Z)ML(T,B,N) = [(Z)ML(T,B, 1)]N =

 j∑
mJ=−j

exp(ymJ)
l∑

mL=−l
exp(xmL)

N

=

[
exp

{(
j + 1

2

)}
− exp

{
−
(
j + 1

2

)}
exp

(y
2

)
− exp

(
−y

2

) exp
{(
l + 1

2

)}
− exp

{
−
(
l + 1

2

)}
exp

(
x
2

)
− exp

(
−x

2

) ]N
,

(30)

where we have introduced the characteristic parameter y = β(gJ)MLµB(1 +
αf(l)), and x = β(gJ)MLµBαf(l). Using the hyperbolic sine, Eq. (30) can
be rewritten as

(Z)ML(T,B,N) =

(
sinh

(
j + 1

2

)
y

sinh
(y
2

) sinh
(
l + 1

2

)
x

sinh
(
x
2

) )N

. (31)

The modified mean energy of the paramagnetic system can be found using
the following equation

UML = − ∂

∂β
ln(ZML) . (32)

Substituting Eq. (31) into Eq. (32), we have

UML = −N
[
∂ lnZJ

∂y

∂y

∂β
+
∂ lnZL

∂x

∂x

∂β

]
, (33)

where ZJ =
sinh(j+ 1

2
)y

sinh( y
2
)

, and ZL =
sinh(l+ 1

2
)x

sinh(x
2
) . After simplification, the modi-

fied mean energy in Eq. (33) leads to

UML = −N [(gJ)MLµBBj(1 + αf(l))BJ(y) + (gJ)MLµBBl(αf(l))BL(x)] ,
(34)
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where BJ(y) and BL(x) are the Brillouin functions with the index J and L
and they are defined as follows:

BJ(y) =
1

j

[(
j +

1

2

)
coth

(
j +

1

2

)
y − 1

2
coth

(y
2

)]
,

BL(x) =
1

l

[(
l +

1

2

)
coth

(
l +

1

2

)
x− 1

2
coth

(x
2

)]
.

The first term U0 = −NgJµBBjBJ(y) is the usual mean energy and the
second term is its correction due to the considered minimal length effect.
The mean energy shift can be obtained as

∆U

U0
= αf(l)

[
1 +

lBL(x)

jBJ(y)

]
. (35)

The modified entropy of the paramagnetic system from Eqs. (31) and (34)
can be found as follows:

SML =
UML

T
+K ln(ZML) = −N

T
[(gJ)MLµBBj(1 + αf(l))BJ(y)

+(gJ)MLµBBl(αf(l))BL(x)]

+NK ln

(
sinh

(
j +

1

2

)
y sinh

(
l +

1

2

)
x

)
−NK ln

(
sinh

(y
2

)
sinh

(x
2

))
. (36)

The magnetization in the presence of a minimal length is now obtained by
the following partial differentiation

MML =
1

β

∂ ln(ZML)

∂B
. (37)

If we substitute Eq. (31) into Eq. (37), we obtain the following result

MML = NKT
∂

∂B
[ln(ZJ) + ln(ZL)]

= NµB(gJ)ML[jBJ(y) + αf(l)(jBJ(y) + lBL(x))] . (38)

Now, let us find the modified magnetization of the paramagnetic system
first at high temperatures and second at low temperatures. For high tem-
peratures, y → 0 and x → 0, BJ(y) and BL(x) become linear functions as
follows:

BJ(y) ≈ y

3
(j + 1) ,

BJ(x) ≈ x

3
(l + 1) . (39)



Statistical Aspects of the Paramagnetic Systems in the Presence . . . 2233

Using Eqs. (38) and (39), the modified magnetization at high temperatures
up to the first order of α is given by

MML = N(gJ)2MLµ
2
Bj(j + 1)B

1 + αf(l)

3KT
. (40)

Also, the modified magnetic susceptibility can be written as

χ = N(gJ)2MLµ
2
Bj(j + 1)

1 + αf(l)

3KT
. (41)

Here, the first term M0 = Ng2Jµ
2
B
j(j+1)
3KT corresponds to the ordinary

magnetization of the paramagnetic system. The second term is the minimal
length effect. The relative modification of magnetization would be obtained
as follows:

∆M

M0
≈ 2αf(l) . (42)

For low temperatures, y →∞ and x→∞, BJ(y) and BL(x) are equal to 1.
Then, the modified magnetization at low temperatures is

MML = N(gJ)MLµB[j + αf(l)(j + l)] . (43)

It should be noted that for α → 0, the modified thermodynamical param-
eters in Eqs. (31), (34), (36) and (38) become the usual thermodynamical
parameters of the paramagnetic system. Now, let us estimate the deforma-
tion parameter α by using the modified magnetic susceptibility in Eq. (41).
According to Eq. (27), we can find Eq. (41) in the following form

χ = N(gJ)2MLµ
2
Bj(j + 1)

r20 + α~2l(l + 1)

3KTr20
, (44)

where r0 is the Bohr radius and l is the orbital angular momentum quantum
number. If we consider high temperature about T = 1000K and the exper-
imental value of magnetic susceptibility (magnetic susceptibility of water is
9.04× 10−6) and also l = 1, we can estimate the following upper bound for
deformation parameter α

10−5 ≈ α× 10−55

or
α ≤ 1050 . (45)

It should be noted that the upper bound in Eq. (45) is near to upper
bound that is set by Landau levels [5] and also the upper bound on the
deformation parameter in Eq. (45) is close to the value of upper bounds in
Ref. [32].
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4. Conclusions

Today we know that every theory of quantum gravity predicts the ex-
istence of a minimal length scale which leads to a GUP. An immediate
consequence of GUP is a generalization of position and momentum. Hence,
the GUP influences the basis of quantum mechanics and deforms Hamilto-
nian of any system. In the recent years, many attempts have been made to
compute the corrections of statistical mechanics in the presence of a minimal
length [29–31]. In this study, we have investigated the statistical character-
istics of the paramagnetic system in the framework of GUP. The modified
angular momentum operator and the modified magnetostatic field in three
spatial dimensions were obtained up to the first order over the deformation
parameter α. The modified thermodynamical quantities of the paramagnetic
system such as the mean energy, entropy, magnetization have been achieved
by using the modified energy eigenvalues. Our calculations were obtained
for arbitrary angular momentum J and total angular momentum J = 1

2 .
Also, we have found the magnetization of the paramagnetic system at both
high- and low-temperatures limits. We have shown that at high tempera-
tures, the relative magnetization depends on the deformation parameter and
orbital angular momentum. The upper limit on the deformation parame-
ter has been found. It is necessary to note that in the limit of α → 0, all
of modified thermodynamical parameters become the usual thermodynam-
ical parameters. The upper limit on the deformation parameter has been
estimated using the experimental value of magnetic susceptibility.
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