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Quark–hadron phase transition at the end of evolution of the dense mat-
ter created in heavy-ion collisions is studied with particular attention given
to the fluctuation of spatial patterns that is expected in a second-order
phase transition, as found in the Ising model. Since QCD thermodynamics
cannot easily be applied at low temperature and density, an event genera-
tor is constructed to simulate the dynamical properties of contraction due
to confinement forces, and randomization due to the thermal behavior of a
large quark system on the edge of hadronization. Fluctuations of the po-
sitions of emitted pions in the (η, φ) space are analyzed using normalized
factorial moments in a wide range of bin sizes. The scaling index ν is found
to be very close to the predicted value in the Ginzburg–Landau formalism.
The erraticity indices µq are determined in a number of ways that lead to
the same consistent values. They are compared to the values from the Ising
model, showing significant difference in a transparent plot. Experimental
determination of ν and µq at the LHC are now needed to check the reality
of the theoretical study, and to provide guidance for improving the model
description of quark–hadron phase transition.

DOI:10.5506/APhysPolB.48.23

1. Introduction

Critical phenomenon is a subject of interest in many areas of physics
because of its universality. It has been exhaustively studied for condensed
matters at low temperature, but hardly considered at high temperature,
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such as for cosmic phase transition in the early universe, due to the scarcity
of data. The Large Hadron Collider (LHC) provides a unique opportunity
to study the properties of quark–hadron phase transition at high tempera-
ture because the Pb–Pb collision energy is high enough to produce not only
quark–gluon plasma (QGP) on the one hand, but also thousands of hadrons
on the other to allow severe cuts in data analysis to isolate fluctuation pat-
terns that characterize critical phenomena. It is well-known that the tension
between collective interaction and thermal randomization near the critical
temperature results in clusters of all sizes. The observation of such patterns
that are scale-independent is, therefore, the primary objective of a search
for revealing signatures of critical behavior.

Specific measures for detecting the scaling properties in heavy-ion col-
lisions were proposed many years ago [1–3]. They involve the use of the
Ginzburg–Landau (GL) theory of second-order phase transition (PT) [4]
and of the Ising model [5] to simulate spatial patterns. The results obtained
in such theoretical studies will be useful in interpreting experimental results
from analyzing heavy-ion collision data. However, the GL description is a
mean-field theory and the Ising model provides only static geometrical pat-
terns. They lack the dynamical content of how quarks turn into hadrons,
as the QGP becomes dilute enough for the confinement force to come into
play. Having just mentioned hadronization of quarks, it is immediately nec-
essary to caution the inadequacy of the usual mechanisms (such as Cooper–
Frye [6], parton fragmentation or recombination) for treating the problem
of PT, because what we need is a description of the global properties of a
two-dimensional surface through which the quarks inside emerge at some
places as hadrons at certain times, but remain unconfined at other places
until a later time when confinement occurs. If such fluctuations are the con-
sequences of the dynamics of PT, then on the one hand, we expect by virtue
of the universality of critical phenomena that the results from GL and Ising
considerations are still relevant, while on the other hand, it is desirable to
have a model that incorporates the confinement dynamics in the final stage
of the evolution of the quark system. It is the aim of this paper to discuss
both of these two aspects of the problem so that what can be measured at
the LHC can shed light on the traditional treatment of PT, and vice versa.
It should be emphasized that the transition we are concerned with here is
from quarks to hadrons at the end of evolution, not from hadrons to quarks
at the beginning, as studied by the beam energy scan experiments. The
difference is significant both theoretically and experimentally, an overview
of that difference is presented in Sec. 2.

The study of scaling behavior of fluctuations in geometrical configura-
tions in multiparticle production is usually done by the use of the factorial
moments [7] and recognized in terms of a phenomenon referred to as inter-
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mittency [8]. Such studies have been carried out earlier by experiments at
CERN, Brookhaven and JINR [9, 10], but no definitive conclusions could be
drawn on critical behavior because collision energies were not high enough
to facilitate selection of relevant events that could clearly exhibit crucial
characteristics without being smeared out by the averaging procedures ne-
cessitated by inadequate statistics. At the LHC, the particle multiplicities
are so high that narrow pT intervals can be chosen while still allowing bin size
in the (η, φ) space to vary over a large range so as to reveal scaling prop-
erties. When this is done experimentally, the burden of further progress
shifts to the theoretical side in search for pertinent measures that go beyond
intermittency. Erraticity is such a measure constructed from moments of
the factorial moments [11–15]. The relationship between intermittency and
erraticity is analogous to the relationship between the mean and width of a
peaked probability distribution. The model that we shall describe is capa-
ble of probing the detailed properties of erraticity, thereby offering a view
of critical behavior that has never been considered before in the traditional
treatment of such phenomena.

Because the body of this work deals with multiplicity fluctuations of
observed hadrons and not with QGP itself, it is necessary to explain the
extent to which our study is relevant to quark–hadron PT. In Sec. 2, we
describe the general background of our problem and the relationship between
our model and the transition from quarks to hadrons. Then in Sec. 3, we
compare the results from GL, Ising and our event generator, the details of
which is given in Sec. 4. Erratic fluctuations are described in Secs. 5 and 6,
before the conclusion in the final section.

2. General comments on the problem and our method of study

In the beginning of the program on heavy-ion collisions, the primary
aim was to verify whether a quark–gluon plasma (QGP) can be created.
Experiments at low energy,

√
sNN < 50 GeV (low relative to higher RHIC

and LHC energies), and theories for hot and dense systems were quite ap-
propriate for such studies, notably QCD thermodynamics and relativistic
hydrodynamics. At very high energies available in this millennium, ques-
tions have shifted to other problems, such as jet production and its effect
on the QGP. Our concern in this paper belongs to the latter category; more
specifically, we ask about the nature of the transition from QGP to hadrons
at lower temperature and density at the end of the expansion process. The
problem is on the opposite end relative to the earlier concerns about the
transition from hadrons to QGP during formation at high temperature or
density. Asymptotic freedom is not valid at low temperature, so perturba-
tive QCD cannot be applied to the deconfinement-to-confinement transition.
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High transverse-momentum (pT) jets can be treated by pQCD, but low-pT

minijets cannot, and because they are copiously produced, their effects on
the medium due to energy loss over a significant portion of the life-time of
the medium may invalidate the rapid-thermalization hypothesis of hydro-
dynamics. Thus, one may raise various questions on the meaningfulness of
the traditional theoretical tools in treating the medium before it gets to the
stage ready for hadronization.

We limit our investigation to a domain that is outside of QCD thermo-
dynamics and hydrodynamical flow. We need not even mention quarks in
the context of QCD, such as the case of the Ising model [2]. Thus, what we
shall study cannot strictly be regarded as quark–hadron PT. Nevertheless,
we want to address this question: can the predictions of Ginzburg–Landau
and Ising models be verified by, or at least be compared to, experimental
results in multiparticle production at very high collision energies? It should
be mentioned that the subject of multiparticle production has been studied
for nearly 50 years, as reviewed in Refs. [9, 10], but only recently have refined
theoretical methods been applied to some aspects of the problem [16].

In finding an answer to the question raised above, one can pose the
problem in a different way, this time from the experimental point of view.
Beyond the usual observable quantities in heavy-ion collisions that have been
investigated exhaustively in recent years, such as pT distributions, azimuthal
anisotropy, nuclear modification factor RAA, etc., what features of the data
have largely been ignored? Of course, data analyses are usually coordinated
with theoretical expectations, so the two questions are mirror images of one
another. If average quantities are calculated in theories, they are measured
in experiments; if fluctuations from averages have theoretical significance,
they can be measured too. In the Ising model, it is the fluctuation of spatial
patterns that is of interest; thus, one should examine such fluctuations in
the data on where the particles are produced before averaging is done.

In heavy-ion collisions, the produced medium is generally regarded as
occupying a cylindrical volume that expands rapidly in the longitudinal di-
rections and significantly slower in the transverse directions. Thus, the 2D
cylindrical surface at mid-rapidity is a good candidate for the study of pat-
tern structure in each event, if the cylinder is described in the (η, φ) variables
with pT being normal to the surface. For any given resolution of analyzing
the (η, φ) space, a pattern is defined by the occupied cells in which particles
are emitted. That, of course, depends on the pT of the particles and the sizes
of each cell. We suggest choosing a narrow interval in pT in a way to be
discussed below. On the cell size, our suggestion is to first choose a uniform
region in (η, φ) and then divide it into M bins. It is the scaling behavior of
observables in M that is to be examined; those observables are moments of
multiplicities to be described in the following section.
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The thousands of particles produced in each event in a heavy-ion col-
lision are emitted from the medium at various times of its evolutionary
history. For the purpose of studying PT, it is clearly desirable to examine
the patterns formed by particles emitted at approximately the same time.
However, it is not possible experimentally to make cuts in the time of emis-
sion — at least, no such cuts have ever been made so far. We then make
use of the general understanding that high-pT particles are emitted early
because they are associated with high-pT jets produced by hard scattering
near the surface, while low-pT particles are emitted much later, near the
end of the medium expansion. Soft hadrons of the latter type may include
the remnants of recoil hard partons that traverse the whole medium, losing
most of their energies and enhancing the thermal partons in the medium. In
studying the quark–hadron PT, it should not matter what the origins of the
various quarks and antiquarks are, so long as they are in close proximity to
be under the confinement force for hadronization. Note that for two partons
that are far apart, other partons in between screen the color forces. Since
low-pT partons have more time to interact and equilibrate, it is, therefore,
best to consider low-pT hadrons. Selecting an interval ∆pT that is narrow
and in the low-pT region, however, does not guarantee a narrow interval of
emission time, since particles emitted at any time can have a pT distribution.
An event generator is more realistic if it allows layers of q and q̄ to move
from just below the surface of the medium to the interface with vacuum so
as to allow confinement forces to interact and rearrange their positions in
(η, φ), while allowing hadronization to occur with momentum conservation.
In the approximation that ~pT is normal to (η, φ), the transverse-momentum
magnitude pT should be the sum of those of the q and q̄, if the (η, φ) coordi-
nates of the pion that is formed are assigned to the values at the mid-point
between those of the coalescing partons whatever their piT may be. Exper-
imentally, one simply selects a narrow range in pT and examines the (η, φ)
coordinates of all particles in that range.

We are now at a point where we can explain why the analyses we propose
can be best done at the LHC energies. In order to explore the scaling
behaviors of multiplicity fluctuations event-by-event, we need to have enough
particles to populate as many bins as possible when the 2D (η, φ) space is
divided into many bins (of the order of 104). Since we suggest making narrow
∆pT cuts at low pT, it is necessary for dNch/dη to exceed at least 103, which
is a multiplicity density that is achievable only at the LHC.

The aim of this paper is to explore the type of measure that can, on the
one hand, be determined by appropriate analysis of the experimental data,
and on the other hand, reveal properties of PT that can be compared to
the results of studies in the Landau–Ginzburg and Ising models. To achieve
that, we need an event generator that can simulate the relevant physics even
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though there exists no known method to express non-perturbative QCD in
a framework useful for the study of fluctuation properties during transition
to confinement. The physics encapsuled in the generator is the contraction–
randomization processes due to confinement forces in competition with ther-
malization. Without realistic long-range QCD forces, we employ an algo-
rithm of contraction of dense occupied sites, and without attempting to
determine the temperature of a state, we redistribute randomly the occu-
pied sites after hadronization. We do not claim that this represents a real
attempt to model QCD thermodynamics, but we do claim that the events
generated contain the features characteristic of a system that has undergone
the tension between ordered and disordered motions, and are, therefore,
quite suitable for analysis in search for fluctuation properties. What we in-
vestigate here corresponds to the critical case among the various possibilities
explored in Ref. [17], where it is found that contraction is necessary to result
in criticality.

The analysis that we do illustrates what can be extracted from the gen-
erated data, and thus also from the experimental data. To be able to serve
as a guide for the experimental analysis is our present goal, independent
of whether our results in this paper turn out to agree or disagree with the
real data. Changes of the event generator to fit the experimental data is
a project for the future after the reality of true nature can be put in some
concrete form.

One final remark on our approach is to note the lack of overlap between
what we do and what is generally regarded as the conventional wisdom.
Our emphasis on the contraction–randomization part of the hadronization
process may lead one to think that we consider only the thermal distribution
without flow. In reality, we do not consider the whole evolutionary process
from the beginning to the end as described by hydrodynamics. This is
not the place for us to give reasons for our view (which can be found, in
part, in Refs. [18, 19]), save only the remark that the strong effects due to
minijets produced at the LHC are totally ignored in hydrodynamical studies.
More importantly, the nature of the transition from quarks to hadrons as
quantified by the measures discussed in the following section is independent
of the history of the medium, analogous to the problem of condensation of
water vapor where the transition is independent of how hot the vapor has
previously been heated to.

3. Ginzburg–Landau, Ising and quark–hadron phase transition

In heavy-ion collisions, it is usual to regard the QGP at a particular
time in the late stage of its evolution as being contained in a cylinder whose
surface is in the (η, φ) space of the emitted hadrons. The transverse mo-
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mentum, pT, is orthogonal to (η, φ) and is the only observable that can in
some approximate, though certainly not unique, way be related to the time
of hadronization. That is based on the premise that the thermalized plasma
with high pressure gradient emits intermediate-pT hadrons earlier than the
more dilute plasma emitting the low-pT hadrons near the end of its hydro-
dynamical expansion. We shall make cuts in pT at low pT with small ∆pT

interval to examine the fluctuation patterns in a square lattice, which can
be mapped to the (η, φ) space through the use of cumulative variable [20].
The unit square is divided into M1×M2 bins, and we shall use M to denote
the total number of bins, M1M2.

The normalized factorial moment Fq is defined by

Fq =

〈
fq
f q1

〉
v

, fq =
∞∑
n=q

n!

(n− q)!
Pn , (1)

where n is the number of particles in a bin and Pn is its distribution over
all M bins. Thus, fq = 〈n(n− 1) · · · (n− q + 1)〉h is the average over all
bins of a given event, where the subscript ‘h’ implies horizontal in the sense
that different events are stacked up vertically. Fq is then the vertical average
over all events. As has been pointed out in Ref. [7, 8] and later reviewed
in [3, 10], Fq has the important property that statistical fluctuations in Pn
are filtered out so that only non-trivial dynamical fluctuations can result in
Fq being different from unity. Intermittency refers to the scaling behavior

Fq ∝Mϕq . (2)

That behavior has been observed in many experiments [10, 21–24].
To examine the effects of quark–hadron PT on the observable patterns

in the (η, φ) space, it is illuminating to apply the Ginzburg–Landau formal-
ism [4] to the calculation of Fq. Without giving the details that can be found
in [1, 3], we state here the result; i.e., Fq has the scaling behavior, referred
to as F -scaling,

Fq ∝ F
βq
2 , (3)

for a wide range of M . The exponent βq satisfies

βq = (q − 1)ν , ν = 1.304 . (4)

Although the GL parameters are dependent on the temperature T , the in-
dex ν is independent of the details of the GL parameters so long as T is
less than the critical temperature Tc. To have a numerical value for ν is
highly desirable, especially in view of the fact that T is not a variable under
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experimental control in heavy-ion collisions. The beauty of the uniqueness
of ν in the GL theory is also its drawback in that it does not inform us about
the nature of the physical system if a measurement of ν yields a value that
is in the proximity of 1.3, but not exactly at the value in Eq. (4). Being
independent of T , it means that ν is a value averaged over all T at which
the PT can take place. This point will be made visually non-trivial in Fig. 4
below.

The spatial pattern of where hadrons are produced in the (η, φ) space can
best be simulated in the 2D Ising model, which is known to exhibit second-
order PT [5, 25]. The model has near-neighbor interaction that generates
collective ordered behavior and thermal motion that generates random dis-
ordered behavior. It is known that the Ising model leads to intermittency
behavior at the critical point [26]. The application to hadron production in
heavy-ion collisions has been carried out in Ref. [2], in which the net spin up
in a small cell in the Ising lattice is identified with the presence of hadrons
and net spin down with no hadrons, where spin up or down is defined with
reference to the overall magnetization of the whole lattice. More precisely,
the hadron multiplicity is proportional to the absolute square of the local
mean magnetic field of the cell; the proportionality constant λ is a scale
factor that relates the quark density of the plasma at Tc to the lattice site
density in the Ising model. Since λ relates a physical space to a mathemat-
ical space, any observable consequences implied by the model calculation
should be insensitive to the value of λ. In the model, one can vary T so
that at T < Tc more spins are aligned due to the dominance of the collective
force that is ordered, while at T > Tc, the lattice spins are more likely to
be misaligned due to the disordered nature of thermal randomization. It
is found in [2] that the value of Tc can be well-determined by studying the
M -scaling behavior in Eq. (2), which occurs over the widest ranges of M
and λ at T = Tc. In terms of J/kB, where J is the strength of interaction
between nearest neighbors of spins on the Ising lattice and kB the Boltzmann
constant, Tc is found to be 2.315, only slightly higher than the analytical
value of 2.27 for infinite lattice [5].

After establishing a connection between the Ising model and hadron
counting through the use of Fq, it is then meaningful to examine F -scaling
for the Ising configurations for a range of T < Tc. It is found in [2] that
the scaling exponent βq satisfies the power-law behavior in Eq. (4), but with
the index ν being dependent on T . That dependence, shown in Fig. 11
of [2], provides an interpretation of the observable quantity ν in heavy-ion
collisions in terms of an aspect of quark–hadron PT that depends on T . As
we shall exhibit in Fig. 4 below, the GL value of ν = 1.304 is an average of
the Ising values ν(T ) between ν = 1.04 at T = Tc = 2.315 and ν = 1.56 at
T = 2.2.
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To summarize what we have reviewed above, the GL description of
second-order PT is a mean-field theory, in the framework of which the
F -scaling properties are independent of T . The Ising model exhibits ex-
plicitly spatial configurations at any T ; thus, the scaling index ν calculated
from those configurations depends on T . The variation of ν(T ) for T < Tc is
consistent with the GL value and provides an insight into the temperature
of a system that undergoes a PT with a specific value of ν.

To proceed further, it is clear that we need a model that contains, in
some way, the specific nature of QCD dynamics that can give rise to quark–
hadron PT when the QGP is dilute enough for hadrons to form. Because
of the complexity of the system both at the global level where cooperative
phenomenon occurs and at the local level where specific process of hadroniza-
tion takes place, in addition to the problems of time evolution of average
density, on the one hand, and fluctuations from the average, on the other,
drastic approximations shall be made to construct an event generator that
can capture the essence of the characteristics responsible for PT of the quark
system. We shall describe such an event generator in the next section. It will
be referred to as SCR. Using it to generate configuration in a square lattice,
as has been done in the Ising model, we can subdivide the unit square into
M = M1M2 bins as described in the first paragraph of this section, and then
calculate Fq in accordance to Eq. (1). Without digressing to describe the
details of the event generator, we show in Fig. 1, the dependence of Fq onM
for q = 2, . . . , 5, and for pT = 0.2 GeV/c with an interval ∆pT = 0.1 GeV/c
around it. We note that there are two scaling regions separated by a tran-
sition region between M = 5× 102 and 4× 103. The corresponding plot of
F -scaling is shown in Fig. 2, in which the upper region is very short. The
major scaling region is on the low side, exhibiting sustained linear behavior
in the log–log plot. From their slopes, we determine the exponents βq in
Eq. (3). The power-law dependence of βq on q− 1 is shown by the solid line
in Fig. 3 with the index ν determined to be

ν = 1.30 . (5)

The upper scaling region, though short, nevertheless has also a power-law
behavior, as shown by the dashed line in Fig. 3. The corresponding value of
the ν-index is

ν ′ = 1.75 . (6)

These are the first results on ν based on a model treatment of quark–hadron
PT due to confinement forces.



32 R.C. Hwa, C.B. Yang

M10
2

10
3

10
4

F
q

10
0

10
1

10
2

10
3

10
4

q=5

q=4

q=3

q=2

Fig. 1. Scaling behavior of Fq(M).

F
2

1.5 2 2.5 3 3.5 4

F
q

10
1

10
2

10
3

10
4

q=5

q=4

q=3

Fig. 2. F -scaling behavior of Fq versus F2.

q-11 2 3 4

β
q

1

2

4

8

16 ν=1.30

ν
′
=1.75

Fig. 3. Log–log plot of βq versus (q − 1). ν and ν′ are the values of the slopes.



Observable Properties of Quark–Hadron Phase Transition at the Large . . . 33

The lower scaling region (for which M < 500) exhibits the properties of
spatial fluctuations when examined in coarse-grain analysis without going
into the details of sharp spikes at high resolution. Those fluctuations cor-
respond very well to the fluctuating patterns of the Ising configurations in
which the net spin in the direction of the overall magnetization in a small
cell consisting of several lattice sites is identified with a presence of a hadron.
The scale-independent spatial patterns in the extended coordinate space do
not require a large number of bins to isolate narrow peaks in small bins.
Thus, the lower scaling region is a true measure of the quark–hadron PT
that corresponds to the Ising fluctuations, and the value ν = 1.3 agrees
excellently with the GL result.

The higher scaling region suggests the presence of sharp spikes in small
bins that would not show up in a mean-field theory such as GL. It turns
out to be rich in physics content and will be investigated in detail in Sec. 5
below. For the present purpose, we postpone all discussions on that subject
until later.

We remark that different scaling behaviors were observed in different
regions two decades ago [24], which were interpreted as possible evidence for
non-thermal phase transition [9, 10, 27, 28] that is different from the usual
one [29–31]. Due to the drastically different collision energies, multiplicities,
bin numbers, dimensions and methods of analyses, it is not clear whether
there is any parallelism in the phenomena found there and here, apart from
the recognition that both have multiple scaling behaviors.

It is now opportune to put together the results from GL, Ising and SCR
by showing in Fig. 4 the various values of ν. The solid (black) line is adapted
from Fig. 11 of Ref. [2]; it is calculated in the framework of the Ising model,
where T is a control parameter. The scale factor λ that relates the quark
density to the Ising lattice site density is not shown in Fig. 4 for clarity’s sake,
since the result is essentially independent of λ. The curve ν(T ) provides a
model-dependent interpretation of the value of ν in terms of temperature in
the sense that: (a) critical behavior can occur only at T < Tc = 2.315 in
Ising units; (b) at T progressively less than Tc, the dynamical fluctuations
measured by Fq become more dominant, resulting in larger ν, and (c) the
dominance of collective behavior cannot continue at ever-lower T because
critical phenomena depend on the balanced tension between the collective
and the random forces. The dashed/red line is the GL value in Eq. (4) and
is an average between 1.04 and 1.56, corresponding to 2.2 < T < 2.315. As
has been described in Ref. [1, 3], the ν value in the GL description of PT is
insensitive to the GL parameters (and thus to the temperature) so long as
T < Tc.
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Fig. 4. (Color online) Values of ν(T ) from three models: (a) Ising (solid/black),
(b) Ginzburg–Landau (dashed/red), (c) SCR (horizontal/blue). The critical tem-
perature in the Ising model is Tc = 2.315 in Ising units. The GL value in dashed/red
line may be regarded as the average of the Ising values between T = 2.2 and Tc.

Our value of ν in Eq. (5) from SCR is represented by the horizontal
(blue) line at 1.3 in Fig. 4. Although SCR keeps track of the inverse slope of
the pT distribution of the partons, the randomizing procedure in the event
generator does not depend on the plasma surface temperature at each time
step. Thus, we cannot meaningfully assign any T dependence or T interval to
our result on ν from SCR. It is, nevertheless, amazing that by incorporating
contraction and randomization subprocesses into SCR, the resultant ν = 1.3
can come so close to the GL value of ν = 1.304 that is not associated with
any specific dynamics.

It should be noted that there have been experiments at lower energies,
where ν is found to be higher than 1.3 [10, 32, 33]. Those results are based
on 1D analysis of fluctuations in the η space only without cuts in either φ
or pT. The maximum numbers of bins are not very high compared to what we
consider. It is unclear what features of the fluctuations have been smeared
out by the averaging process in φ and pT. Thus, their results cannot be
put in Fig. 4 to infer any conclusion about whether a QGP has been formed
or a second-order PT has occurred. As matters stand at this point on the
subject of scaling index ν for PT, Fig. 4 provides a satisfactory summary of
what are known theoretically, and needs only an experimental input from
LHC to shed light on their reality.

4. Event generator SCR

We now describe the event generator SCR, which stands for Successive
Contraction and Randomization. The general idea behind it is described in
Ref. [17], but because of some changes in parameters, we outline here the
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step-by-step procedure of the simulation algorithm, which corresponds to
the critical case in [17]. First, we give a thorough discussion of the physics
underlying the algorithm.

We consider the state of QGP at its final phase of existence just before
the quarks and antiquarks coalesce to form pions. Gluons have already been
converted to qq̄ and are not explicitly considered separately for hadroniza-
tion. The conventional approach of using the Cooper–Frye mechanism to
convert plasma medium to hadrons [6] addresses only the average quantity
(i.e., energy-momentum tensor) and not the fluctuations from average, so
such an approach is not suitable as our guide. We must introduce spatial co-
ordinates of the partons (generic term for quarks and antiquarks hereafter)
and allow them to change during the short time interval when hadronization
takes place. The coordinates are in the (η, φ) space covering the surface of
the plasma cylinder. They can be tracked only in a code for an event gener-
ator.

The QCD potential for confinement increases with distance and is unique-
ly different from electrical and gravitational potentials. Thus, contraction
of spatial separation of partons is characteristic of QCD even if no other
details are specified about the color force. Since there can be thousands of
partons interacting at any moment, we shall take the expedient approach
of contracting patches of densely populated regions without treating the
forces on each parton microscopically. In so doing, we may be subject to
the criticism that we are not strictly applying QCD dynamics. That is true,
but as mentioned above, contraction can only occur in a medium of colored
partons.

To create the tension between the collective and disorganized motions,
we introduce randomization of the parton coordinates between steps of con-
traction as a consequence of thermal interaction. However, to simplify the
algorithm, we do not assess the temperature of the medium and require
thermal equilibrium at each step of randomization. Thus, the temperature
is not a parameter in our code that is either determined or controlled.

We work on a unit square, which in theory is mapped onto a portion
of the (η, φ) space. Experimental analysis is to be performed on the latter,
while our analysis is done on the former. Clearly, the scaling behaviors of our
measures should be independent of the orientation of the mapping, so the
portion of the (η, φ) space to be studied should be uniform on the average.

The various steps of SCR are as follows.

4.1. Initial configuration

A unit square S is seeded initially with 1000 qq̄ pairs in the form of
clusters with probability distribution P (C) ∝ C−2 such that C pairs of qq̄
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are grouped together in a cluster centered at a random point in S. The
distribution within the cluster, with q and q̄ being independent, is Gaussian
around the center with a width

σ = 0.1C−1/2 . (7)

We stop the seeding process when the total qq̄ pairs reaches 1000. Since
the unit square S is mapped onto the (η, φ) space at mid-rapidity, we assign
an initial inverse slope of the pT distribution to the initial configuration at
T = 0.4 GeV, so that the q and q̄ can independently be given a value of pT

in accordance with the distribution exp(−pT/T ). This is the zeroth step at
t0 = 0. Further discussion of T is given at the end of Subsec. 4.5 below.

4.2. Pionization

If a q and q̄ are separated by a distance d that is less than d0 = 0.03,
we regard the confining force to be effective in recombining the pair to form
a pion regardless of color and flavor, whose attributes we ignore in this
study. We record the position in the square (midpoint of the pair) and the
momentum of the pion as pT = p1T + p2T (where piT are the momenta of
q and q̄) in accordance to the recombination rule, and remove the qq̄ pair
from S. A pion is thereby emitted from the cylindrical surface. This is
done for all pairs that are close enough for recombination. Since we work
only in S of dimensionless unit length on each side, the parameter d0 has
no dimension either, even though one expects the size of a pion to have the
dimension of length. We note that the portion in the (η, φ) space to which
S is mapped also has no dimensions. All equations and observables in Sec. 3
are dimensionless. We choose d0 = 0.03 because we seed the unit square
initially with 103 q and q̄ pairs, so the average distance between a q and the
nearest q̄ is roughly that distance; thus, the state is ready for hadronization
from the start. However, because of fluctuations in spatial locations, only a
pair separated by less than d0 can form a hadron.

4.3. Contraction

To implement the global effect of confinement forces rather than just
between nearby color charges, we devise the contraction scheme that is cen-
tral to the collective behavior of an extended system. We divided S into
5× 5 bins and separate the 25 bins into two groups: dense and dilute. The
dense bins have more multiplicity per bin (counting q and q̄ independently)
than the average. If neighboring dense bins share a common side, they are
grouped together to form a cluster of dense bins. Let D refer to such a clus-
ter of connected dense bins, and ND the number of bins in D. Define ~rD to
be the coordinates in S that is the center of mass of D. A contraction of D
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is a redistribution of all q and q̄ in D, centered at ~rD, but with a Gaussian
width

σD = 0.05N
1/2
D . (8)

Since the redistribution puts the q and q̄ mostly under the Gaussian peak,
the process represents a contraction of the particular cluster D. There are,
however, many other clusters in S. The same procedure leads to contraction
of each and every one of them to their respective centers. That means there
will be more dilute bins before the next dynamical action. We first, however,
allow pionization to take place in the contracted configuration.

4.4. Randomization

Thermal randomization is the disordered motion that opposes the or-
dered collective motion. We implement that aspect of the opposing force
by requiring all q and q̄ in the dilute bins to be redistributed randomly
throughout S. Note that this step is not coordinated with the temperature
of the system, which is a procedure that seems more complicated than is
worthwhile at this stage. Since we do not rearrange the parton momenta,
randomization of the spatial coordinates is all we do to maximize entropy
at whatever T . After randomization, we return to the previous step of con-
traction and pionization. We continue this iterative process of contraction,
pionization and randomization until 95% of the qq̄ system is depleted. That
is regarded as the end of one time step in which nearly all the quarks on
the plasma surface have undergone a quark–hadron PT. The next layer of
quarks in the plasma interior then moves out to the surface, so we proceed
to the next time step.

4.5. Subsequent time steps

At each time step ti, i = 1, 2, . . ., we add 200 new pairs of qq̄ to S that
contains the remnants from the previous step. The new pairs are distributed
according to P (C) as before, and have pT distribution with an inverse slope

Ti = Ti−1 − 0.02 GeV . (9)

Thus, the average pT is lower at later time in keeping with the general notion
of hydrodynamical expansion. We then recycle the steps of contraction,
pionization, and randomization repeatedly until 5% of the q and q̄ remains
before moving on to the next time step. This process continues for 10 time
steps, so the total number of qq̄ pairs introduced to the system is 3000. The
final pT distribution for pT < 1 GeV/c is approximately exponential with
an inverse slope of 0.285 GeV/c. Our aim is not to fit the experimental pT

distribution, but to obtain configurations in the (η, φ) space for any sensible
cut in pT. That is what we have accomplished in SCR.
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The symbol T has been used in different contexts above following the
usual notations, but they have different meanings, which we now explain
explicitly to avoid any confusion. In Sec. 3 where we recall the results of
previous work on GL and Ising models, especially in connection with Fig. 4,
we have used T to denote temperature, since it is a control parameter in the
Ising model. However, at the end of Sec. 3 and in Eq. (9), we have carefully
referred to T as inverse slope of the pT distribution, not as temperature,
because SCR does not include a procedure to thermalize the medium and
to determine the corresponding temperature. Since exp(−pT/T ) is such a
canonical expression of the exponential distributionat low T , we have not
altered that expression by changing the symbol for the inverse slope.

5. Erratic fluctuations

We have seen in Sec. 2 that the factorial moments Fq can effectively
describe the fluctuations of spatial configurations through their scaling be-
haviors, when the system undergoes a second-order PT, whether the system
is a 2D Ising lattice or a simulated quark system near hadronization. In the
case of the Ising model, it is clear that each configuration involves clusters of
various sizes with spins pointing up or down (and we identify only spin-up
relative to the overall net magnetization with non-vanishing hadron density).
While all those configurations are different from one another, they are all
rather similar in their main characteristics. It means that the probability
distribution, Pn, of n particles in a bin introduced in Eq. (1) may be narrow
for the range of M studied. Alternatively, it may just be that the fq for
each event (i.e., configuration) is such that fq/f

q
1 in (1) does not fluctuate

too much from event to event.
To learn more about multiplicity fluctuations, we need a measure that

is sensitive to the width of Pn. To that end, we consider the moments-of-
moments. For an event e, the horizontal factorial moments are

F eq (M) = feq (M)/[fe1 (M)]q , (10)

whose vertical average is just Fq, as shown in Eq. (1). If, at large M ,
F eq (M) does not vanish even at q = 5, say, that must mean the existence
of a spike in some bin, where n ≥ q even though the average 〈n〉 per bin
may be miniscule. Such a value of F eq (M) must deviate strongly from the
vertical average 〈Fq(M)〉v, and represents the type of erratic fluctuations
that we want to quantify. We note that such erraticity cannot happen in
the analysis of the Ising model because of the definition of hadrons in terms
of cells that are not extremely small [2]. To focus on the deviation of F eq (M)
from 〈Fq(M)〉v, let us define

Φq(M) = F eq (M)/ 〈Fq(M)〉v , (11)
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and consider the pth power of Φq(M) before averaging, i.e.,

Cp,q(M) =
〈
Φpq(M)

〉
v
, (12)

where p is ≥ 1, but need not be an integer. Clearly, with large p, the events
with large F eq (M) make more important contribution to the vertical average,
and that probes more into the large n tail of Pn whenM is large. If Cp,q(M)
has a scaling region in which it behaves as

Cp,q(M) ∝Mψq(p) , (13)

the phenomenon is referred to as erraticity [13–15, 17]. Compared to Eq. (2),
it evidently represents a step beyond intermittency. Since at p = 1,
C1,q(M) = 1, so ψq(1) = 0, any non-vanishing ψq(p) is a window toward
a new territory in fluctuations.

In the situation where ψq(p) depends linearly on p (a case which we shall
show to be generated by SCR), then the slope at p = 1 carries information
beyond p = 1. We define

µq =
d

dp
ψq(p)|p=1 (14)

and refer to it as an erraticity index that is independent of M and p. We
advocate the use of µq as a measure of the dynamical fluctuations in heavy-
ion collisions. On the one hand, it is observable at the LHC, while on the
other hand, it can be related not only to quark–hadron PT [17] but also to
classical chaos [11, 12].

To study the M dependence of Cp,q(M) for p > 1, we see in Fig. 5
that there are two scaling regions: (a) M < 300, and (b) M > 104, where
straight lines are drawn connecting the points in those regions. It is also
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Fig. 5. Scaling behaviors for Cp,q(M).
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possible to identify a linear region in between those two regions, but no
attention will be given to that region in this paper. Figure 5 is for p = 2,
and is representative of the behavior of Cp,q(M) at other values of p. The
two scaling regions roughly correspond to the lower and upper regions seen
in Fig. 1. In Sec. 2, we have investigated the intermittency behavior in
the lower region. We now give attention to the upper region where sharp
spikes in small bins can give rise to erraticity. However, we first focus on the
immediate neighborhood of p = 1. We cannot present a figure like Fig. 5
for p = 1 because C1,q(M) = 1 identically. The closest to it would be the
derivative of Cp,q(M) at p = 1. From Eq. (12), we have

Σq(M) =
d

dp
Cp,q(M)|p=1 = 〈Φq lnΦq〉v , (15)

where the notation of using Σq suggests entropy due to the last expression
above. Although the connection with entropy [11, 12] is not of crucial im-
portance here, its connection with µq is directly relevant since the scaling
behavior in Eq. (13) implies

Σq(M) ∝ d

dp
Mψq(p)

∣∣∣
p=1

= µq lnM. (16)

The above expression is not to be taken to mean that Σq(M) is proportional
to lnM in general. Equation (13) is an expression of the scaling behavior
(for M in the upper scaling region in our present consideration) without the
implication that there can be no constant background, so also in Eq. (16)
Σq(M) may have the form of σq+µq lnM at largeM . In Fig. 6, we show the
result on Σq versus lnM from SCR. We can identify the last three points
at M > 104 as showing some degree of linear behavior. However, when we
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Fig. 6. Semilog plot of the M dependence of the entropy function Σq(M).
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plot Σq versus Σ2 as in Fig. 7, the linear region becomes quite extensive.
Denoting the slope in general by ωq0(q), we have

ωq0(q) =
∂Σq
∂Σq0

=
∂Σq(M)/∂ lnM

∂Σq0(M)/∂ lnM
=

µq
µq0

. (17)

It should be noted that SCR has not been tuned to fit any real data from the
LHC, but it does provide concrete representations of what we have discussed
so far in theoretical terms.
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Fig. 7. Linear plot of Σq versus Σ2.

The slopes in Fig. 7 are (for q0 = 2)

ω2(q) = 1.0, 24.2, 98.8, 164.2 for q = 2, 3, 4, 5 . (18)

To determine µq, we rely on Eq. (16) and Fig. 5 and obtain for q = 5

µ5 =
∂Σ5(M)

∂ lnM
= 2.1 . (19)

From Eq. (17), we get with the help of (18)

µ2 =µ5/ω2(5)=0.0128 , µ3 =µ2ω2(3)=0.309 , µ4 =µ2ω2(4)=1.265 .
(20)

These values of µq are shown in Fig. 8. One may choose a formula that
can fit all four points in that figure. However, for a reason that will shortly
become self-evident, let us choose a simple formula

µq = A(q − 1)B (21)

that can approximate the points of µq by a straight line in Fig. 8 with just
two parameters A and B, which can summarize economically the magnitude
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Fig. 8. (Color online) q− 1 dependence of the erraticity index µq. The points (red)
are from Eqs. (19) and (20). The solid and dashed lines are fits by the equation
shown.

and power-law increase in (q − 1). We require the straight-line fit to start
at 0.013 at q = 2 and to have a power-law dependence that can best fit the
three points at q − 1 = 2, 3 and 4, as shown by the solid line in Fig. 8. The
result is

A = 0.013 , B = 4.01 . (22)

These values of A and B represent our current findings for the erraticity in-
dices that characterize quark–hadron PT, as simulated by SCR. The dashed
line will be discussed at the end of this section.

It should be noticed that the scaling region in Fig. 7 is for the upper
6 points that correspond to M > 2× 103 in Fig. 6. That region includes the
upper region in Fig. 1. Thus, the erraticity behavior that we are focusing on
now is distinct from the intermittency behavior studied in Sec. 2, not only
in the characteristics of scaling, but more obviously in the region where the
scaling behavior occurs.

When the data from the LHC are analyzed, and the values of µq are de-
termined, the result can be compared with ours from SCR given in Eqs. (19)
and (20) or, in terms of A and B that are more revealing visually, as shown
in Fig. 9 on B versus A. In addition to the point labeled SCR, we have
added a point for the Ising model, for which

Ising : A = 1.2× 10−3 , B = 2.42 (23)

as given in [14]. The drastic difference between Ising and SCR in that plot
accentuates the different origins of erraticity of the two systems. For the
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Fig. 9. (Color online) Values of A and B in Eq. (21) for SCR (red) and Ising (blue).

Ising model, there is no time evolution; it has many fluctuating configura-
tions, all of which have clusters of all sizes but no sharp spikes that can give
rise to large Φq(M) at large M . It, therefore, has small µq, appearing in the
lower-left corner of the plot in Fig. 9. On the other hand, SCR can generate
particle emissions with large Φq(M) even at large M , for which µq can be
large and occupies the upper-right corner of the A–B plot, a region that
corresponds to high erraticity.

Equation (21) is a simple power law that makes possible our comparison
of SCR with the Ising model shown in Fig. 9, but there is no fundamen-
tal significance in that particular form. The apparent saturation of µq at
higher q in Fig. 8 suggests that a slight modification of Eq. (21) can represent
the values of µq better. Toward that end, we use

µq = A′
(
q − 1

q + 1

)B′

(24)

and show that with the values A′ = 51.6 and B′ = 7.51, the corresponding
curve in Fig. 8 is the dashed line that fits the points better. Of course, a
more elaborate formula with more parameters can always be found to yield
even more superior agreement, but that is unnecessary for our purpose here.

Studies of erraticity have been carried out by a number of experiments
almost exclusively in nuclear emulsions [34–37]. The highest collision energy
examined is 200AGeV at CERN SPS, which is still significantly less than
what is necessary to avoid averaging over φ and pT. Comparison of their
results on µq with ours would not be too meaningful, since the physics of
SCR is not applicable to those experiments. Nevertheless, it may be of
interest if those results can be recast in the form of Eq. (21) and entered as
points in Fig. 9.
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6. More analysis on Cp,q

In the preceding section, we introduced Cp,q(M) but focused on its prop-
erties in the neighborhood of p = 1. Now, we apply Eq. (13) to the high M
region in Fig. 5 and determine ψq(p) for the whole range of p up to 2; the
result is shown in Fig. 10. Evidently, the dependence on p is very nearly
linear, as noted earlier above Eq. (14). Thus, the slopes at p = 1 defined
in (14) contain properties of ψq(p) for all p < 2. Similar behaviors are
found in the lower M regions but will not be exhibited here. Our conclusion
on µq summarized in Figs. 8 and 9 is, therefore, a simple yet substantial
representation of erraticity.

p1 1.5 2

ψ
q
(p

)

0

0.5

1

1.5

2
black for low M
red for high M

q=2

q=3

q=4

q=5

p1 1.5 2

ψ
q
(p

)

0

0.5

1

1.5

2
q=2

q=3

q=4

q=5

Fig. 10. Scaling exponents ψq(p) versus p for four values of q.

Despite the non-uniform behavior of Cp,q(M) in Fig. 5, we can identify
simpler features by examining the F -scaling type of properties in Cp,q versus
Cp0,q

Cp,q(M) ∝ Cp0,q(M)γp0 (p,q) . (25)

This relationship is shown in Fig. 11 for p0 = 2 and q = 5. Evidently, there
is a power-law behavior characterized by γp0(p, q), which is shown in Fig. 12
for q = 2, 5. The lines are fits of the points by the formula

γp0(p, q) = (p− 1)[1− (p0 − p)/q] , (26)

which provides a connection among all p in the interval 1 ≤ p ≤ 2. In regions
of M , where both Eqs. (13) and (25) are valid, we have

ψq(p) = γp0(p, q)ψq(p0) , (27)

which has no explicit M dependence, but depends strongly on the validity
of scaling. It is a relationship that can be checked experimentally.
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In Eq. (14), we have defined µq to be the derivative at p = 1. We can
extend the definition to any p and write

µq(p) =
d

dp
ψq(p) . (28)

Using Eq. (27) in (28), or from seeing that the local tangents of the lines in
Fig. 12 are all higher than the initial slope at p = 1, one can conclude that
µq(p) > µq for all p > 1. The average of µq(p) in the interval 1 ≤ p ≤ p0 is

µ̄q =
1

p0 − 1

p0∫
1

dpµq(p) =
ψq(p0)

p0 − 1
. (29)
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Using Fig. 10 for ψq(p0) at p0 = 2 so that µ̄q = ψq(2), we obtain the
dependence of µ̄q on q − 1 shown in Fig. 13. In adopting the formula

µ̄q = Ā

(
1− 1

q

)B̄
, Ā = 17.7 , B̄ = 9.38 (30)

to describe its behavior, we get the solid line in Fig. 13. Note that Eq. (30)
is very nearly, but not exactly, in the form of Eq. (24).

q-1
1 2 3 4

µ
q

10
-2

10
-1

10
0

10
1

Fig. 13. The average index µ̄q fitted by Eq. (30).

Another avenue for the exploration of the scaling behavior of Cp,q(M),
beside that of Eq. (25), is to consider its dependence on Cp,q0(M) with q0

fixed. Figure 14 shows the case for q0 = 5, obtained from SCR to illustrate
the behavior that can be described by

Cp,q(M) ∝ Cp,q0(M)χq0 (p,q) (31)

in the scaling region corresponding to large M . Although Fig. 14 shows
only the case of p = 2, the behavior is similar for all p in the whole range of
1 < p < 2. Thus, it is possible to determine χq0(p, q) that is constrained by
its value being 1 at q = q0. The dependency on q− 1 for various values of p
is shown in Fig. 15 for q0 = 5. Evidently, χ5(p, q) is not very sensitive to the
variation of p. Because the values of Cp,q0(M) for q0 = 2 vary over limited
range, we choose q0 = 5 for the benefit of maximum effect in the realization
of the scaling behavior in Eq. (31).

Using the power-law behavior of Eq. (13) in (31), we obtain the relation-
ship that is valid in the scaling region

ψq(p) = χq0(p, q)ψq0(p) . (32)
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Although this equation is distinctly different from Eq. (27), the similarity
of their appearances makes them a companion pair exhibiting different ex-
trapolations from fixed p0 or fixed q0.
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We can establish contact with our earlier study of properties in the neigh-
borhood of p = 1 by applying (32) to (14) and obtain

µq = χq0(1, q)µq0 , (33)

where the condition ψq0(1) = 0 has been used. Referring back to the slope
of Σq versus Σq0 , which has been denoted by ωq0(q) in (17), we now have

ωq0(q) = χq0(1, q) . (34)
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To check this relationship, we note that it is not possible to obtain χq0(1, q)
directly from (31) because Cp,q = 1 at p = 1. Figure 15 shows χ5(p, q) for
various values of p down to p = 1.1. To compare them to ω5(q), we calculate
ω5(q) by examining Σq versus Σ5, which is shown in Fig. 16; the slopes of
the straight lines are

ω5(q) = 0.0061, 0.136, 0.60, 1.0 for q = 2, 3, 4, 5 . (35)
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Fig. 16. Scaling behavior of Σq versus Σ5.

These values are shown in Fig. 17 together with χ5(1.1, q), whose values are

χ5(1.1, q) = 0.007, 0.184, 0.653, 1.0 for q = 2, 3, 4, 5 . (36)

With the expectation that χ5(1, q) would be slightly lower than the above,
it is remarkable how close (36) approaches (35) in affirmation of (34).
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Fig. 17. (Color online) Comparison of ω5(q) (black) with χ5(1.1, q) (gray/red).
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With the combination of (33) and (34) that gives

µq = ωq0(q)µq0 , (37)

we can use it for q0 = 5 to calculate µq starting with µ5 = 2.1 from Eq. (19).
Thus, (35) implies

µq = 0.0128, 0.307, 1.26 for q = 2, 3, 4 (38)

in excellent agreement with Eqs. (20). It should be recognized that many
numerical values of ω2(q) and ω5(q) have been obtained by power-law fits of
points of Cp,q(M) and Σq(M), generated by SCR, and are not analytically
determined. Thus, the consistency demonstrated above by different routes
of deriving µq is non-trivial.

7. Conclusion

The properties of quark–hadron phase transition have been studied by
the use of an event generator SCR that simulates the dynamics of contrac-
tion and randomization of the quark medium in its transition to hadrons.
The principal difference between the hadronization process that we study
from other schemes, such as fragmentation or recombination, is that our
emphasis is on the spatial properties in (η, φ) of the emitted pions instead of
their pT distributions. Furthermore, the fluctuations of the particle distribu-
tions throughout (η, φ) are the crucial properties that we retain as essential
inputs into our analysis for observable signatures of quark–hadron phase
transition. In order that the fluctuation behaviors are not overwhelmed by
the background, it is necessary to make severe cuts in the admissible pT

range at low pT. That requires the hadron multiplicity to be very high so
as to make feasible the fine-grained analysis of the particle distribution in
(η, φ). That, in turn, implies that the collision energy must be very high.
For that reason, we have entitled this work with reference to the LHC, even
though no experimental data from the LHC have been used.

By the use of SCR, we have generated multiplicity distributions in as
many as 3 × 104 bins so that we can study both the fluctuations from bin-
to-bin in a given event and the event-to-event fluctuations at any fixed bin.
We have found that the normalized factorial moments exhibit two scaling
regions. In the lower scaling region, we concentrate on the intermittency
behavior and study the scaling index ν, while in the upper scaling region,
the focus is on the erraticity index µq.

The fact that our result on ν comes very close to the GL value gives sup-
port to the implication that SCR contains the essence of the QCD dynamics
responsible for quark–hadron phase transition. When shown in conjunction
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with the Ising result on ν(T ), we get a broader view of how our SCR re-
sult fits into the general scenario of second-order PT where temperature is a
control parameter. It suggests a project for the future to include tempera-
ture dependence in SCR in such a way that the randomization part is more
closely linked to the temperature T so as to generate a T -dependent ν(T ).
The realization of that project will be a challenge due to the fact that T is
not an observable. To correlate T to pT would get us into the more com-
plex domain of analyzing the fluctuation properties in all three kinematical
variables (pT, η, φ).

The study of the upper scaling region led us to the determination of the
erraticity index µq. The extensive scaling behavior of the entropy function
Σq(M) versus Σ2(M), shown in Fig. 7, convinces us that there is anM -inde-
pendent property that can be extracted. Their slopes (in linear plots) yield
ω2(q) that facilitates our determination of µq. In a simple parametrization
of the q dependence of µq, we have shown in Fig. 9 a comparison of the
results from SCR and Ising. It is clear that there are far more fluctuations
in SCR (larger A and B) than in Ising. Their differences provide a scale
to measure the differences of future experimental results compared to SCR,
especially those from the analyses of the LHC data.

For the moments-of-moments Cp,q(M), we have pushed p into the region
between 1 and 2, and found various properties that can be checked by exper-
iments. Since SCR has not been tuned to fit any data, the numerical results
of our findings at this stage are not as important as the template that SCR
provides in serving as a guide for the directions in which the real data can
be analyzed.

Ultimately, the question is what can be learned about quark–hadron
phase transition. The first part of our work here makes the contention that
the PT is of second order based on the ν value obtained in SCR being in
agreement with Ginzburg–Landau and Ising. But quark–hadron PT may
have more properties beyond what GL and Ising contain. If SCR is reliable
in generating very erratic fluctuations, then there is a rich territory ahead
for real experiments to explore. The study of such fluctuations at low pT has
largely been ignored at the LHC so far. Experimental investigation of hard
jet physics has mainly been following suggestions by theoretical predictions,
since QCD is a well-established theory. However, QCD has little to predict
at low pT. Experiments at the LHC that focus on the deconfined phase of
QCD matter are more concerned about the flow effects, as expected from
hydrodynamic models, than about the transition from quarks to hadrons.
Our event generator SCR is a very crude model that can easily be invalidated
in its details by the real data. Thus, soft physics is a fertile ground for
experiments to lead theory in the development of a realistic description of
the physics of confinement in a large system of quarks.
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