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1. Introduction

The algebraic structure of Ricci tensor in general relativity was inves-
tigated by many authors (see, e.g., Petrov [1], Plebański [2], Penrose [3],
Hall [4], Plebański and Stachel [5]). In particular, in 1964, an algebraic clas-
sification of the traceless Ricci tensor Cab in real 4-dimensional Lorentzian
manifolds was given by Plebański in his distinguished work in Acta Physica
Polonica [2]. Investigation of this problem was motivated by the obvious
relation between traceless Ricci tensor and the tensor of matter Tab. Ple-
bański proved that there were exactly 15 different types of the tensor of
matter. In [2], the algebraic structure of Cab is investigated from several
points of view. First, Cab is considered as a matrix. Then the structure
of the so-called Plebański spinors has been investigated. It appeared that
any tensor of matter can be represented as a superposition of three energy-
momentum tensors of the electromagnetic type. Careful analysis of this fact
was the third line of studies on the properties of Cab presented in [2].

(53)
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In the seventies, a great deal of interest was devoted to the complex
4-dimensional spaces. It appeared that the Plebański algebraic classification
of the traceless Ricci tensor could be easily carried over to the complex
spacetimes [6]. Since it does not make any sense to distinguish between
spacelike and timelike vectors in complex spaces, one could expect that
the structure of Cab in complex spaces should be less complicated then the
analogous structure in the Lorentzian case. Surprisingly, there appeared
17 different types of the traceless Ricci tensor in complex spacetime. Some
of these types do not have their counterparts in real Lorentzian case. Results
from [6] allowed one to understand better the complex relativity and the
differences between complex and real manifolds.

It is worth to note that in both papers [2, 6], the spinorial formalism has
been intensively used [7–9]. It helped to simplify the calculations and allowed
to define spinorial objects (like the Plebański spinors), which appeared to
be essential in further analysis.

Recently, the real 4-dimensional spaces equipped with the metric of
the neutral (ultrahyperbolic) signature (+ + −−) has attracted the great
deal of interest. The Walker and Osserman spaces, integrable systems,
self-dual and anti-self-dual structures, para-Hermite and para-Kähler struc-
tures — these all concepts are related to the real 4-dimensional, neutral
spaces. Especially interesting are recently discovered relations between real
4-dimensional, neutral Einstein spaces equipped with the para-Kähler struc-
ture and the 5-dimensional spaces equipped with the (2, 3, 5)-distributions
[10, 11]. Thus, it seems that the 4-dimensional pseudo-Riemannian spaces
with neutral signature will play more and more important role in the theo-
retical physics.

Our paper is devoted to such spaces. We investigate the algebraic struc-
ture of traceless Ricci tensor Cab in the real 4-dimensional, neutral spaces.
To classify Cab, we follow the works by Plebański and Przanowski using the
same techniques. Our approach uses discrete classification (the number and
type of eigenvectors of Cab) and the continuous classification (the number
and type of eigenvalues of the characteristic polynomial of Cab). More-
over, we distinguish spacelike, timelike and null eigenvectors. The Plebański
spinors have the same structure as a self-dual or anti-self-dual Weyl spinors
and in neutral signature case, they can be divided into 10 different Petrov–
Penrose types. This way, we obtain another criteria helpful in classification
of the traceless Ricci tensor. Finally, we arrive at 33 different types of Cab.
We realize that the structure of the traceless Ricci tensor is much richer that
we could suspect.

It is well-known that real analytic spaces can be obtained from the com-
plex spaces as the real slices. In many cases, real analytic spaces with the
metric of the neutral signature can be obtained from the complex ones par-
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ticularly simple. It is enough to replace complex variables by real ones and
holomorphic functions by real analytic ones. However, in classification of
the Cab, there appear subtle differences between complex spaces and real
neutral spaces. Single complex type of Cab splits in a few subtypes in the
real case. It is related to the existence of the spacelike and timelike vectors
in real spaces. In Section 3, we point all these differences by listing generic
complex types and real types into which these complex types split.

We believe that our work fills the gap left by the works of Plebański
and Przanowski published in Acta Physica Polonica B and will be helpful
in analysis of non-Einsteinian para-Hermite and para-Kähler spaces. Some
applications of ideas presented here have been already used in our work [12].

The paper is organized as follows. In Section 2, a portion of basic facts
about the null and orthonormal tetrad in both complex and real neutral
spaces is presented. Then we discuss the different types of the roots of
the 4th order polynomial and the criteria which allow to distinguish these
types. The polynomials with the complex and real coefficients are both
discussed. The essential difference between Petrov–Penrose classification of
the 4-index, dotted and undotted totally symmetric spinors in complex and
real neutral spaces are also sketched. Finally, the new symbol of the type of
traceless Ricci tensor is introduced (2.17). At the first glance, this symbol
is more complicated then the symbols used by Plebański and Przanowski in
[2, 6]. We believe however, that the great number of different types of Cab

in real neutral spaces and the complexity of the degeneration schemes (like
Scheme 2) justify using such a symbol.

Section 3 is devoted to the detailed classification of the traceless Ricci
tensor. We present the canonical forms of Cab and we discuss its possible
degenerations. Also, the Petrov–Penrose type of the Plebański spinors is
analyzed. The results are gathered in the tables and also the graphs of
possible degenerations are presented. Concluding remarks end the paper.

2. Preliminaries

2.1. Formalism

In this section, we present the foundations of the formalism used in this
paper. For more detailed treatment, see [7–9].

We consider 4-dimensional manifold M equipped with the metric ten-
sor ds2. M could be complex analytic differentiable manifold endowed
with a holomorphic metric ds2 or a real 4-dimensional smooth differentiable
manifold endowed with a real smooth metric ds2 of the neutral signature
(+ +−−). Thus, one deals with complex relativity (CR) or with real ultra-
hyperbolic (neutral) relativity (UR).
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The metric ofM in null tetrad (e1, e2, e3, e4) reads

ds2 = gab e
aeb = 2e1e2 + 2e3e4 , (gab) :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (2.1)

In orthonormal tetrad (E1′ , E2′ , E3′ , E4′), the metric takes the form of

ds2 = ga′b′E
a′Eb′ = E1′E1′ + E2′E2′ − E3′E3′ − E4′E4′ ,

(ga′b′) := diag(1, 1,−1,−1) . (2.2)

The relation between null and orthonormal tetrad is
√

2E1′ = e1 + e2√
2E2′ = e3 + e4√
2E3′ = e1 − e2√
2E4′ = e3 − e4

⇐⇒


√

2 e1 = E1′ + E3′

√
2 e2 = E1′ − E3′

√
2 e3 = E2′ + E4′

√
2 e4 = E2′ − E4′

. (2.3)

In the spinorial formalism, the metric reads

ds2 = −1
2 gAḂg

AḂ , A = 1, 2 , Ḃ = 1̇, 2̇ , (2.4)

where gAḂ are given by(
gAḂ

)
:=
√

2

[
e4 e2

e1 −e3
]
. (2.5)

Let us consider now the pair of normalized undotted and dotted spinors,
(kA, lB), (kȦ, lḂ) kAlA = 1 and kȦlȦ = 1. They generate the new null
tetrad (ẽ 1, ẽ 2, ẽ 3, ẽ 4) according to the formulas:

√
2 ẽ 1 := kAlḂ g

AḂ ,
√

2 ẽ 2 := lAkḂ g
AḂ ,

−
√

2 ẽ 3 := kAkḂ g
AḂ ,

√
2 ẽ 4 := lAlḂ g

AḂ . (2.6)

Define the matrix gaAḂ by the relation gAḂ = gAḂ
a ea. The following identi-

ties hold
gaAḂg

bAḂ = −2δba , gaAḂg
aCḊ = −2δCAδ

Ḋ
Ḃ
. (2.7)
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Thus, we have
√

2 ẽ 1a = kAlḂ g
AḂ

a√
2 ẽ 2a = lAkḂ g

AḂ
a

−
√

2 ẽ 3a = kAkḂ g
AḂ

a√
2 ẽ 4a = lAlḂ g

AḂ
a

⇐⇒


ẽ2a g

a
AḂ

= −
√

2 kAlḂ
ẽ1a g

a
AḂ

= −
√

2 lAkḂ
ẽ4a g

a
AḂ

=
√

2 kAkḂ
ẽ3a g

a
AḂ

= −
√

2 lAlḂ

. (2.8)

2.2. The Petrov–Penrose classification of totally symmetric 4-index spinors

Algebraic classification of totally symmetric 4-index spinors has been
presented in classical paper [7], see also [2]. It can be applied for SD (or
ASD) part of the Weyl spinor CABCD (CȦḂĊḊ, respectively). We use these
results to classify the Plebański spinors (2.11). First, we consider complex
undotted Plebański spinor VABCD and its contraction with the arbitrary
1-index spinor ξA: Ω := VABCDξ

AξBξCξD. Clearly, Ω has the form of Ω =
(ξ2)4 V(z), where V(z) is a 4th order polynomial in z := ξ1/ξ2. Due to the
fundamental theorem of algebra, Ω can be always brought to the factorized
form Ω = (αAξ

A)(βBξ
B)(γCξ

C)(δDξ
D). Because of the arbitrariness of ξA,

we find
VABCD = α(AβBγCδD) . (2.9)

In general, 1-index spinors αA, βA, γA and δA are mutually linearly inde-
pendent. Such case corresponds to the case when the polynomial V(z) has
four different roots. The possible coincidences between spinors αA, βA, γA
and δA brought us to the well-known Petrov–Penrose diagram (Scheme 1).

α(AβBγCδD)

�� ((
α(AαBβCβD)

�� ((

α(AβBγCγD)
oo

�� ((
0 αAαBαCαD
oo α(AβBβCβD)

oo

Scheme 1: The Petrov–Penrose diagram.

In the complex case, there are 6 different Petrov–Penrose types of the
spinor VABCD. On the other hand, if we consider real totally symmetric
4-index spinor VABCD, then the scheme of the roots of V(z) is more compli-
cated. There appear 10 different Petrov–Penrose types. The symbols which
are usually used as abbreviations of the corresponding Petrov–Penrose types
of spinor VABCD and the scheme of the roots of the polynomial V(z) are
gathered in Table I. (In Table I, Z means that the root is complex, while R
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stands for the real root, the power denotes the multiplicity of corresponding
root, spinors αA, βA, γA and δA are complex, spinors µA, νA, ξA and ζA are
real, bar stands for the complex conjugation).

TABLE I

The Petrov–Penrose types of complex or real totally symmetric 4-index spinor.

Complex case Real case

Type VABCD = Roots of V(z) Type VABCD = Roots of V(z)

[I] α(AβBγCδD) Z1Z2Z3Z4 [I]r µ(AνBξCζD) R1R2R3R4

[I]rc µ(AνBαC ᾱD) R1R2ZZ̄

[I]c α(AᾱBβC β̄D) Z1Z̄1Z2Z̄2

[II] α(AβBγCγD) Z1Z2Z
2
3 [II]r µ(AνBξCξD) R1R2R

2
3

[II]rc µ(AµBαC ᾱD) R2ZZ̄

[D] α(AαBβCβD) Z2
1Z

2
2 [D]r µ(AµBνCνD) R2

1R
2
2

[D]c α(AαBᾱC ᾱD) Z2Z̄2

[III] α(AβBβCβD) Z1Z
3
2 [III]r µ(AνBνCνD) R1R

3
2

[N] αAαBαCαD Z4 [N]r µAµBµCµD R4

[−] 0 − [−] 0 −

It is clear that the Petrov–Penrose types of both real and complex to-
tally symmetric 4-index spinors VABCD are related to the nature of roots of
the corresponding polynomial V(z). It is well-known that such a 4th order
polynomial can be always brought to the canonical form. The criteria which
allow to distinguish the scheme of roots of the 4th order polynomial in the
canonical form are discussed in the next subsection.

Of course, similar classification can be applied for the dotted 4-index
spinors VȦḂĊḊ and for the “dotted” polynomial V̇(ż).

2.3. Traceless Ricci tensor

The relation between traceless Ricci tensor Cab and its spinorial image
CABĊḊ reads

Cab = g AĊ
a g BḊ

b CABĊḊ ⇐⇒ CABĊḊ = 1
4Cab g

a
AĊ
gb

BḊ
(2.10)

(compare (2.7)). Using spinorial image CABĊḊ of the traceless Ricci tensor
Cab, one defines the undotted and dotted Plebański spinors by the relations
[2, 8]

VABCD := 4C ṀṄ
(AB CAC)ṀṄ , VȦḂĊḊ = 4CMN(ȦḂC

MN
ĊḊ)

. (2.11)
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The dotted and undotted Plebański spinors are totally symmetric VABCD =
V(ABCD) and VȦḂĊḊ = V(ȦḂĊḊ).

The characteristic polynomial of the matrix Ca
b of the traceless Ricci

tensor reads

W(x) := det (Ca
b − xδab) =

4∑
i=0

(−1)iC
[i]
x4−i ≡ C

[0]
x4− C

[1]
x3 + C

[2]
x2− C

[3]
x+ C

[4]
,

(2.12)
where the coefficients C

[i]
are given by

C
[0]

:= 1 , C
[k]

:= Ca1
[a1
...Cak

ak]
, k = 1, 2, 3, 4 . (2.13)

Since the matrix Ca
b is traceless, we find that C

[1]
:= Ca

a = 0 so, finally, the

characteristic polynomial W(x) takes the form

W(x) = x4 + C
[2]
x2 − C

[3]
x+ C

[4]
. (2.14)

In UR coefficients, C
[i]
∈ R. Criteria which allow us to distinguish the

properties of the roots of W(x) have been widely discussed in [8, 13–15].
Define

−8J := 1
2C
[3]

2 − 4
3C
[2]
C
[4]

+ 1
27C

[2]

3 , I := C
[4]

+ 1
12C

[2]

2 , K := 1
4C
[3]

L := 1
6C
[2]
, N := 1

4C
[2]

2 − C
[4]
, P := −9C

[3]

2 − 2C
[2]

(
C
[2]

2 − 4C
[4]

)
.

(2.15)

Then, the discriminant of polynomial (2.14) reads

∆ = 256
(
I3 − 27J2

)
. (2.16)

As it was mentioned in the previous subsection, there are exactly 9 cases
which should be distinguished using the criteria from Table II.

In CR, the coefficients C
[i]

are complex. There are only 5 distinct cases

(see Table III).
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TABLE II

Roots of the quartic equation with real coefficients.

Criteria Roots

∆ < 0 R1R2ZZ̄

∆ > 0 L < 0 and N > 0 R1R2R3R4

L ≥ 0 or N < 0 Z1Z̄1Z2Z̄2

∆ = 0 I 6= 0, J 6= 0 P > 0 R1R2R
2
3

(K 6= 0 or N 6= 0) P < 0 R2ZZ̄

I 6= 0, J 6= 0 J < 0 R2
1R

2
2

K = N = 0 J > 0 Z2Z̄2

I = J = 0 N 6= 0 and K 6= 0 R1R
3
2

N = K = 0 R4

TABLE III

Roots of the quartic equation with complex coefficients.

Criteria Roots

∆ 6= 0 Z1Z2Z3Z4

∆ = 0 I 6= 0, J 6= 0 P 6= 0 Z1Z2Z
2
3

P = 0 Z2
1Z

2
2

I = J = 0 L 6= 0 Z1Z
3
2

L = 0 Z4

2.4. Terminology and symbols

To classify traceless Ricci tensor in UR, we use the notation similar
to Plebański’s notation from [2] and the Plebański–Przanowski notation
from [6]. The number of eigenvectors are considered as a main criterion,
while the properties of the eigenvalues and the form of the minimal polyno-
mial serve as subcriteria.

The complete information about the type of the matrix, (Ca
b) is gathered

in the symbol
[A]j⊗[B]k [n1E1 − n2E2 − . . . ]v(q1q2... ) . (2.17)

Inside the square bracket, all different eigenvalues Ei, i = 1, 2, . . . , N0 to-
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gether with their multiplicities ni are listed. Of course,

n1 + n2 + · · ·+ nN0 = 4 ,

n1E1 + n2E2 + · · ·+ nN0EN0 = 0 . (2.18)

The last equality follows from the fact that the matrix (Ca
b) is traceless.

The characteristic polynomial takes the form of

W(x) =

N0∏
i=1

(x− Ei)
ni . (2.19)

A complex eigenvalue is denoted by Z and a real one by R. Real eigenval-
ues have additional superscript which denotes the type of the corresponding
eigenvector. Rs means that the eigenvector which corresponds to the eigen-
value R is spacelike, Rt — timelike, Rn — null, Rns — null or spacelike, Rnt

— null or timelike and, finally, Rnst means that the eigenvector can be of the
arbitrary type. [With respect to the orthonormal tetrad (2.2), the definitions
of spacelike, timelike and null vectors are as follows: V aVa > 0 means that
V a is spacelike, V aVa < 0 stands for a timelike vector and, finally, V aVa = 0
means that the vector is null].

Superscript v denotes the number of eigenvectors. Numbers qi in the
round bracket determine the form of the minimal polynomial, i.e., the poly-
nomial of the lowest possible order with the leading term equal to 1 such
that Wmin(Ca

b) = 0. Namely, the minimal polynomial of the matrix (Ca
b)

has the form of

Wmin(x) =

N0∏
i=1

(x− Ei)
qi . (2.20)

Finally, the symbol [A]j ⊗ [B]k defines the Petrov–Penrose types of the
Plebański spinors, VABCD and VȦḂĊḊ, respectively (2.11). For example,
[III]r ⊗ [N]r means that VABCD is of the type [III]r, while VȦḂĊḊ is of the
type [N]r.

3. Classification of the traceless Ricci tensor in UR

3.1. Parent Types

The eigenvalue criteria (Table II), the number and the type of eigen-
vectors and the Petrov–Penrose type of the undotted and dotted Plebański
spinors allow to distinguish exactly 33 types of the traceless Ricci tensor.
They appear as the degenerations of 9 parent Types (according to Plebański’s
terminology, “Types” by capital “T”). Each of these parent Types has the
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minimal equation being exactly the Hamilton–Cayley equation. The sym-
bols of the Types are quite similar to the symbols of Petrov–Penrose types
of the Plebański spinors. To distinguish them, we do not put the symbol
of the Types into the square bracket (as we do in the case of the Petrov–
Penrose types of the Plebański spinors). Types I and II have subscripts “r”
(all eigenvectors real), “c” (all eigenvectors complex) or “rc” (two eigenvec-
tors complex, one or two eigenvectors real). Types III and IV have only real
eigenvectors. However, Type III admits two null eigenvectors (subscript “n”),
one null eigenvector and one timelike (subscript “t”) or one null eigenvector
and one spacelike (subscript “s”). We use the symbols of the parent Types
in the CR like in [6] (I, II, IIIC , IIIN and IV).

TABLE IV

Parent Types of Cab.

Type Symbols of the parent Types

Ic [I]c⊗[I]r
[
Z1 − Z̄1 − Z2 − Z̄2

]4
(1111)

, [I]r⊗[I]c
[
Z1 − Z̄1 − Z2 − Z̄2

]4
(1111)

Irc [I]rc⊗[I]rc
[
Z − Z̄ −Rs

1 −Rt
2

]4
(1111)

Ir [I]c⊗[I]c [Rs
1 −Rs

2 −Rt
3 −Rt

4]
4
(1111) ,

[I]r⊗[I]r [Rs
1 −Rs

2 −Rt
3 −Rt

4]
4
(1111)

IIrc [II]rc⊗[II]r
[
Z − Z̄ − 2Rn

]3
(112)

, [II]r⊗[II]rc
[
Z − Z̄ − 2Rn

]3
(112)

IIr [II]rc⊗[II]rc [Rs
1 −Rt

2 − 2Rn
3 ]

3
(112) ,

[II]r⊗[II]r [Rs
1 −Rt

2 − 2Rn
3 ]3(112)

IIIn [D]r⊗[II]r [2Rn
1 − 2Rn

2 ]
2
(22) ,

[II]r⊗[D]r [2Rn
1 − 2Rn

2 ]
2
(22)

IIIs [III]r⊗[III]r [Rs
1 − 3Rn

2 ]2(13)

IIIt [III]r⊗[III]r [Rt
1 − 3Rn

2 ]2(13)

IV [N]r⊗[III]r [4Rn]1(4) ,
[III]r⊗[N]r [4Rn]1(4)

In the next section, we present the canonical forms of the parent Types
and Tables of possible degenerations together with the continuous charac-
teristics of the matrix (Ca

b). For the canonical forms, we use both null and
orthonormal tetrads. The classification of the traceless Ricci tensor in com-
plex spaces can be treated as a “generic” classification for the UR. This is
why we list the Plebański–Przanowski types described in details in [6] (we
keep the original symbols of types used in [6]). For the Plebański–Przanowski
classification, we use the abbreviation PP classification.
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3.2. Type I (4 eigenvectors)

3.2.1. Type Ir (4 real eigenvectors; 2 spacelike and 2 timelike eigenvectors)

The canonical form of Cab for the parent Type Ir reads

Cab = Rs
1E1′aE1′b +Rs

2E2′aE2′b −Rt
3E3′aE3′b −Rt

4E4′aE4′b

= 1
2

(
Rs

1 −Rt
3

)
(e1ae1b + e2ae2b) + 1

2

(
Rs

1 +Rt
3

)
(e1ae2b + e2ae1b)

+1
2

(
Rs

2 −Rt
4

)
(e3ae3b + e4ae4b) + 1

2

(
Rs

2 +Rt
4

)
(e3ae4b + e4ae3b) .

(3.1)

The eigenvectors and corresponding eigenvalues are:

E1′ ←→ Rs
1 , E2′ ←→ Rs

2 , E3′ ←→ Rt
3 , E4′ ←→ Rt

4 .

The eigenvalues have to satisfy

Rs
1 +Rs

2 +Rt
3 +Rt

4 = 0 .

Using (2.8), one finds the form of the Plebański spinors

VABCD = 1
2

(
Rs

1 −Rt
3

) (
Rs

2 −Rt
4

)
(kAkBkCkD + lAlBlC lD)

+1
2

((
Rs

2 −Rt
4

)2 − (3Rs
1 +Rt

3

) (
Rs

1 + 3Rt
3

))
k(AkBlC lD) ,

VȦḂĊḊ = 1
2

(
Rs

1 −Rt
3

) (
Rs

2 −Rt
4

) (
kȦkḂkĊkḊ + lȦlḂlĊ lḊ

)
+1

2

((
Rs

2 −Rt
4

)2 − (3Rs
1 +Rt

3

) (
Rs

1 + 3Rt
3

))
k(ȦkḂlĊ lḊ) . (3.2)

Investigation of the polynomials V(z) and V̇(ż) (defined in Subsection 2.2)
proves that both Plebański spinors are, in general, of the Petrov–Penrose
types [I]r or [I]c. Define the quantity σ1 by the formula

σ1 :=
(
Rt

3 −Rs
1

) (
Rt

3 −Rs
2

) (
Rt

3 +Rs
1 + 2Rs

2

) (
Rt

3 + 2Rs
1 +Rs

2

)
. (3.3)

Then we get the criterion

σ1 < 0 ⇐⇒ both VABCD and VȦḂĊḊ are of the type [I]r ,

σ1 > 0 ⇐⇒ both VABCD and VȦḂĊḊ are of the type [I]c . (3.4)
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TABLE V

Subtypes of the Type Ir.

PP classification Neutral signature classification

Eigenvalues Type I Eigenvalues Type Ir

Z1Z2Z3Z4 [C1 − C2 − C3 − C4]4 R1R2R3R4
[I]r⊗[I]r [Rs

1 −Rs
2 −Rt

3 −Rt
4]4(1111)

[I]c⊗[I]c [Rs
1 −Rs

2 −Rt
3 −Rt

4]4(1111)

Z1Z2Z
2
3 [C1 − C2 − 2N ]3 R1R2R

2
3

[D]c⊗[D]c [2Rs
1 −Rt

2 −Rt
3]4(111)

[D]r⊗[D]r [Rs
1 − 2Rnst

2 −Rt
3]4(111)

[D]c⊗[D]c [Rs
1 −Rs

2 − 2Rt
3]4(111)

Z2
1Z

2
2 [2N1 − 2N ]2 R2

1R
2
2

[D]c⊗[D]c [2Rs
1 − 2Rt

2]4(11)

[D]r⊗[D]r [2Rnst
1 − 2Rnst

2 ]4(11)

Z1Z
3
2 [C1 − 3N ]2 R1R

3
2

[−]⊗[−][Rs
1 − 3Rnst

2 ]4(11)

[−]⊗[−][Rt
1 − 3Rnst

2 ]4(11)

Z4 [4N ]1 R4 [−]⊗[−][4Rnst]4(1)

[I]c⊗[I]c [Rs
1 −Rs

2 −Rt
3 −Rt

4]
4
(1111)

�� )) ,,

[I]r⊗[I]r [Rs
1 −Rs

2 −Rt
3 −Rt

4]
4
(1111)

��
[D]c⊗[D]c [2Rs

1 −Rt
2 −Rt

3]
4
(111)

�� ))

[D]c⊗[D]c [Rs
1 −Rs

2 − 2Rt
3]
4
(111)

uu ))

[D]r⊗[D]r [Rs
1 − 2Rnst

2 −Rt
3]
4
(111)

uu �� ((
[D]c⊗[D]c [2Rs

1 − 2Rt
2]
4
(11)

))

[−]⊗[−][Rt
1 − 3Rnst

2 ]4(11)

��

[−]⊗[−][Rs
1 − 3Rnst

2 ]4(11)

uu

[D]r⊗[D]r [2Rnst
1 − 2Rnst

2 ]4(11)

rr
[−]⊗[−][4Rnst]4(1)

Scheme 2: Degeneration scheme of the Type Ir.
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3.2.2. Type Ic (4 complex eigenvectors)

The canonical form of the Cab for the parent Type Ic has the form of

Cab =
1

2

(
Z1+Z̄1

)
(E2′aE2′b−E4′aE4′b)+

i

2

(
Z1−Z̄1

)
(E2′aE4′b+E4′aE2′b)

+
1

2

(
Z2+Z̄2

)
(E1′aE1′b−E3′aE3′b)+

i

2

(
Z2−Z̄2

)
(E1′aE3′b+E3′aE1′b)

=
1

2

(
Z1+Z̄1

)
(e3ae4b+e4ae3b)+

i

2

(
Z1−Z̄1

)
(e3ae3b−e4ae4b)

+
1

2

(
Z2+Z̄2

)
(e1ae2b+e2ae1b)+

i

2

(
Z2−Z̄2

)
(e1ae1b−e2ae2b) . (3.5)

The eigenvectors and corresponding eigenvalues are:

1√
2

(E2′ + iE4′) ←→ Z1 ,
1√
2

(E2′ − iE4′)←→ Z̄1 ,

1√
2

(E1′ + iE3′) ←→ Z2 ,
1√
2

(E1′ − iE3′)←→ Z̄2 .

The constraints for the eigenvalues read

Im(Z1) 6= 0 , Im(Z2) 6= 0 , Re(Z1) + Re(Z2) = 0 .

The Plebański spinors are

VABCD = 2Im(Z1)Im(Z2)(kAkBkCkD + lAlBlC lD)

−
(
2(Im(Z1))

2 + 2(Im(Z2))
2 + 8(Re(Z1))

2
)
k(AkBlC lD) ,

VȦḂĊḊ = −2Im(Z1)Im(Z2)(kȦkḂkĊkḊ + lȦlḂlĊ lḊ)

−
(
2(Im(Z1))

2 + 2(Im(Z2))
2 + 8(Re(Z1))

2
)
k(ȦkḂlĊ lḊ) (3.6)

and they both are, in general, of the type [I]r and [I]c. To distinguish these
two types, we have the following criterion

Im(Z1)Im(Z2) < 0 ⇐⇒ VABCD is of the type [I]c

and VȦḂĊḊ is of the type [I]r ,

Im(Z1)Im(Z2) > 0 ⇐⇒ VABCD is of the type [I]r

and VȦḂĊḊ is of the type[I]c . (3.7)

It is interesting to note that only the subtype [I]r⊗[I]c [Z1− Z̄1−Z2− Z̄2]
4
(1111)

allows the degeneration into the type [D]r⊗[D]c [2Z − 2Z̄]4(11).
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TABLE VI

Subtypes of the Type Ic.

PP classification Neutral signature classification

Eigenvalues Type I Eigenvalues Type Ic

Z1Z2Z3Z4 [C1 − C2 − C3 − C4]4 Z1Z̄1Z2Z̄2
[I]c⊗[I]r

[
Z1 − Z̄1 − Z2 − Z̄2

]4
(1111)

[I]r⊗[I]c
[
Z1 − Z̄1 − Z2 − Z̄2

]4
(1111)

Z2
1Z

2
2 [2N1 − 2N ]2 Z2Z̄2 [D]r⊗[D]c

[
2Z − 2Z̄

]4
(11)

[I]c⊗[I]r [Z1 − Z̄1 − Z2 − Z̄2]
4
(1111)

[I]r⊗[I]c [Z1 − Z̄1 − Z2 − Z̄2]
4
(1111)

��
[D]r⊗[D]c [2Z − 2Z̄]4(11)

Scheme 3: Degeneration scheme of the Type Ic.

3.2.3. Type Irc (4 eigenvectors; two complex, one timelike and one spacelike
eigenvectors)

The canonical form of the Cab for the parent Type Irc is:

Cab = Rs
1E1′aE1′b −Rt

2E3′aE3′b

+
1

2

(
Z + Z̄

)
(E2′aE2′b − E4′aE4′b) +

i

2

(
Z−Z̄

)
(E2′aE4′b + E4′aE2′b)

=
1

2

(
Rs

1 −Rt
2

)
(e1ae1b + e2ae2b) +

1

2

(
Rs

1 +Rt
2

)
(e1ae2b + e2ae1b)

+
1

2

(
Z + Z̄

)
(e3ae4b + e4ae3b) +

i

2

(
Z − Z̄

)
(e3ae3b − e4ae4b) . (3.8)

The eigenvectors and corresponding eigenvalues are:

E1′ ←→ Rs
1 , E3′ ←→ Rt

2 ,

1√
2

(E2′ + iE4′) ←→ Z ,
1√
2

(E2′ − iE4′)←→ Z̄ .

The relations between eigenvalues read

Im(Z) 6= 0 , Rs
1 +Rt

2 + 2Re(Z) = 0 .
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The Plebański spinors have the following form:

VABCD =
(
Rs

1 −Rt
2

)
Im(Z)(kAkBkCkD − lAlBlC lD)

+1
2

((
Rs

1 −Rt
2

)2 − 4(Im(Z))2 − 16(Re(Z))2
)
k(AkBlC lD) ,

VȦḂĊḊ =
(
Rs

1 −Rt
2

)
Im(Z)(kȦkḂkĊkḊ − lȦlḂlĊ lḊ)

+1
2

((
Rs

1 −Rt
2

)2 − 4(Im(Z))2 − 16(Re(Z))2
)
k(ȦkḂlĊ lḊ) .

(3.9)

Both Plebański spinors for the nondegenerate Type Irc are of the Petrov–
Penrose type [I]rc.

TABLE VII

Subtypes of the Type Irc.

PP classification Neutral signature classification

Eigenvalues Type I Eigenvalues Type Irc

Z1Z2Z3Z4 [C1 − C2 − C3 − C4]4 ZZ̄R1R2
[I]rc⊗[I]rc

[
Z−Z̄−Rs

1−Rt
2

]4
(1111)

Z1Z2Z
2
3 [C1 − C2 − 2N ]2 ZZ̄R2 [D]r⊗[D]r

[
Z − Z̄ − 2Rnst

]4
(111)

[I]rc⊗[I]rc [Z − Z̄ −Rs
1 −Rt

2]
4
(1111)

��
[D]r⊗[D]r [Z − Z̄ − 2Rnst]4(111)

Scheme 4: Degeneration scheme of the Type Irc.

3.3. Type II (3 eigenvectors)
3.3.1. Type IIr (3 eigenvectors; one timelike, one spacelike and one null eigen-

vectors)

The canonical form of the Cab for the parent Type IIr is:

Cab = Rs
1E1′aE1′b −Rt

2E3′aE3′b +Rn
3(E2′aE2′b − E4′aE4′b)

+1
2(E2′aE2′b + E4′aE4′b − E2′aE4′b − E4′aE2′b)

= 1
2

(
Rs

1 −Rt
2

)
(e1ae1b + e2ae2b) + 1

2

(
Rs

1 +Rt
2

)
(e1ae2b + e2ae1b)

+Rn
3(e3ae4b + e4ae3b) + e4ae4b . (3.10)
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The eigenvectors and corresponding eigenvalues are:

E1′ ←→ Rs
1 , E3′ ←→ Rt

2 ,
1√
2

(E2′ − E4′)←→ Rn
3 .

The eigenvalues have to satisfy the relation

Rs
1 +Rt

2 + 2Rn
3 = 0 .

The Plebański spinors for the Type IIr can be brought to the form

VABCD = 1
2

(
2
(
Rs

1 −Rt
2

)
k(AkB −

(
3Rs

1 +Rt
2

) (
Rs

1 + 3Rt
2

)
l(AlB

)
kCkD) ,

VȦḂĊḊ = 1
2

(
2
(
Rs

1 −Rt
2

)
k(ȦkḂ −

(
3Rs

1 +Rt
2

) (
Rs

1 + 3Rt
2

)
l(ȦlḂ

)
kĊkḊ) .

(3.11)

Consider the quantity σ2

σ2 :=
(
Rs

1 −Rt
2

) (
3Rs

1 +Rt
2

) (
Rs

1 + 3Rt
2

)
. (3.12)

Then we find the following criterion

σ2 > 0⇐⇒ VABCD and VȦḂĊḊ are of the type [II]r ,

σ2 < 0⇐⇒ VABCD and VȦḂĊḊ are of the type [II]rc . (3.13)

TABLE VIII

Subtypes of the Type IIr.

PP classification Neutral signature classification

Eigenvalues Type II Eigenvalues Type IIr

Z1Z2Z
2
3 [C1 − C2 − 2N ]4 R1R2R

2
3

[II]rc⊗[II]rc [Rs
1 −Rt

2 − 2Rn
3 ]3(112)

[II]r⊗[II]r [Rs
1 −Rt

2 − 2Rn
3 ]3(112)

Z2
1Z

2
2 [2N1 − 2N ](1−2) R2

1R
2
2

[D]r⊗[D]r [2Rnst
1 − 2Rn

2 ]3(12)

Z1Z
3
2 [C1 − 3N ]3 R1R

3
2

[N]r⊗[N]r [Rs
1 − 3Rnt

2 ]3(12)

[N]r⊗[N]r [Rt
1 − 3Rns

2 ]3(12)

Z4 (3)[4N ]2 R4 [−]⊗[−][4Rnst]3(2)
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[II]rc⊗[II]rc [Rs
1 −Rt

2 − 2Rn
3 ]3(112)

�� (( ++

[II]r⊗[II]r [Rs
1 −Rt

2 − 2Rn
3 ]3(112)

ss vv ��
[D]r⊗[D]r [2Rnst

1 − 2Rn
2 ]3(12)

((

[N]r⊗[N]r [Rs
1 − 3Rnt

2 ]3(12)

��

[N]r⊗[N]r [Rt
1 − 3Rns

2 ]3(12)

vv
[−]⊗[−][4Rnst]3(2)

Scheme 5: Degeneration scheme of the Type IIr.

3.3.2. Type IIrc (3 eigenvectors; two complex and one null eigenvectors)

The canonical form of the Cab for the parent Type IIrc has the form of

Cab =
1

2

(
Z + Z̄

)
(E1′aE1′b − E3′aE3′b) +

i

2

(
Z−Z̄

)
(E1′aE3′b + E3′aE1′b)

+Rn(E2′aE2′b−E4′aE4′b)+
1

2
(E2′aE2′b+E4′aE4′b−E2′aE4′b−E4′aE2′b)

=
1

2

(
Z + Z̄

)
(e1ae2b + e2ae1b) +

i

2

(
Z − Z̄

)
(e1ae1b − e2ae2b)

+Rn(e3ae4b + e4ae3b) + e4ae4b . (3.14)

The eigenvectors and corresponding eigenvalues are given by

1√
2

(E1′ + iE3′) ←→ Z ,
1√
2

(E1′ − iE3′)←→ Z̄ ,

1√
2

(E2′ − E4′) ←→ Rn .

The conditions for eigenvalues are:

Im(Z) 6= 0 , Rn + Re(Z) = 0 .

The Plebański spinors read

VABCD = 2
(
Im(Z) k(AkB −

(
(Im(Z))2 + 4(Re(Z))2

)
l(AlB

)
kCkD) ,

VȦḂĊḊ = 2
(
−Im(Z) k(ȦkḂ −

(
(Im(Z))2 + 4(Re(Z))2

)
l(ȦlḂ

)
kĊkḊ) .

(3.15)
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This time, we find the following criterion:

Im(Z) > 0 ⇐⇒ VABCD is of the type [II]r

and VȦḂĊḊ is of the type [II]rc ,

Im(Z) < 0 ⇐⇒ VABCD is of the type [II]rc

and VȦḂĊḊ is of the type [II]r . (3.16)

TABLE IX

Subtypes of the Type IIrc.

PP classification Neutral signature classification

Eigenvalues Type II Eigenvalues Type IIrc

Z1Z2Z
2
3 [C1 − C2 − 2N ]4 ZZ̄R2 [II]r⊗[II]rc [Z − Z̄ − 2Rn]3(112)

[II]rc⊗[II]r [Z − Z̄ − 2Rn]3(112)

3.4. Type III (2 eigenvectors)
3.4.1. Types IIIs and IIIt (2 eigenvectors; one null and one spacelike or time-

like eigenvectors)

The canonical form of the Cab for the parent Type IIIt is:

Cab = −Rt
1E3′aE3′b +Rn

2(E1′aE1′b + E2′aE2′b − E4′aE4′b)

+E1′aE2′b + E2′aE1′b − E1′aE4′b − E4′aE1′b

= 1
2

(
Rn

2 +Rt
1

)
(e1ae2b + e2ae1b) + 1

2

(
Rn

2 −Rt
1

)
(e1ae1b + e2ae2b)

+Rn
2(e3ae4b + e4ae3b) + e1ae4b + e4ae1b + e2ae4b + e4ae2b . (3.17)

The eigenvectors and corresponding eigenvalues are

E3′ ←→ Rt
1 , e4 ←→ Rn

2 .

The eigenvalues have to satisfy the condition

Rt
1 + 3Rn

2 = 0 .

The Plebański spinors have the following form:

VABCD = −2
(
k(A + 8Rn

2 l(A
)
kBkCkD) ,

VȦḂĊḊ = −2
(
k(Ȧ + 8Rn

2 l(Ȧ

)
kḂkĊkḊ) . (3.18)
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For the nondegenerate Type IIIt, these spinors are both of the Petrov–
Penrose type [III]r.

The canonical form of the Cab for the parent Type IIIs reads

Cab = Rs
1E1′aE1′b +Rn

2(E2′aE2′b − E3′aE3′b − E4′aE4′b)

+E3′aE2′b + E2′aE3′b − E4′aE3′b − E3′aE4′b

= 1
2 (Rs

1 −Rn
2) (e1ae1b + e2ae2b) + 1

2 (Rs
1 +Rn

2) (e1ae2b + e2ae1b)

+Rn
2(e3ae4b + e4ae3b) + e1ae4b + e4ae1b − e2ae4b − e4ae2b . (3.19)

The eigenvectors and corresponding eigenvalues are:

E1′ ←→ Rs
1 , e4 ←→ Rn

2 .

The eigenvalues satisfy the relation

Rs
1 + 3Rn

2 = 0 .

The Plebański spinors read

VABCD = −2
(
k(A − 8Rn

2 l(A
)
kBkCkD)

VȦḂĊḊ = −2
(
k(Ȧ + 8Rn

2 l(Ȧ

)
kḂkĊkḊ) (3.20)

and they represent the Petrov–Penrose type [III]r.

TABLE X

Subtypes of the Types IIIt and IIIs.

PP classification Neutral signature classification

Eigenvalues Type IIIC Eigenvalues Type IIIt Type IIIs

Z1Z
3
2 [C1−3N ]4 R1R

3
2

[III]r⊗[III]r [Rt
1−3Rn

2 ]2(13)
[III]r⊗[III]r [Rs

1−3Rn
2 ]2(13)

Z4 [4N ]3 R4 [N]r⊗[N]r [4Rnt]2(3)
[N]r⊗[N]r [4Rns]2(3)

[III]r⊗[III]r [Rt
1 − 3Rn

2 ]2(13)

��

[III]r⊗[III]r [Rs
1 − 3Rn

2 ]2(13)

��
[N]r⊗[N]r [4Rnt]2(3)

[N]r⊗[N]r [4Rns]2(3)

Scheme 6: Degeneration scheme of the Types IIIt and IIIs.



72 A. Chudecki

3.4.2. Type IIIn (2 eigenvectors; both null)

We find here two subtypes. The canonical form of the Cab reads

Cab = e1ae1b + e4ae4b +Rn
1(e3ae4b + e4ae3b) +Rn

2(e1ae2b + e2ae1b) . (3.21)

The eigenvectors and corresponding eigenvalues are:

e4 ←→ Rn
1 , e1 ←→ Rn

2 .

For the first subtype, the Plebański spinors read

VABCD = −8(Rn
1)2 k(AkBlC lD) ,

VȦḂĊḊ = 2 (k(Ȧ + 2Rn
1 l(Ȧ)(kḂ − 2Rn

1 lḂ)kĊkḊ) . (3.22)

Undotted Plebański spinor for the first subtype of the Type IIIn is of the
type [D]r and the dotted one is of the type [II]r.

The second possibility is

Cab = e2ae2b + e4ae4b +Rn
1(e3ae4b + e4ae3b) +Rn

2(e1ae2b + e2ae1b) . (3.23)

The eigenvectors and corresponding eigenvalues are given by

e4 ←→ Rn
1 , e2 ←→ Rn

2 .

The second subtype is characterized by the following Plebański spinors

VABCD = 2 (k(A + 2Rn
1 l(A)(kB − 2Rn

1 lB)kCkD) ,

VȦḂĊḊ = −8(Rn
1)2 k(ȦkḂlĊ lḊ) (3.24)

and they are of the Petrov–Penrose types [II]r and [D]r, respectively.
The eigenvalues in both subtypes have to satisfy the relation

Rn
1 +Rn

2 = 0 .

[D]r⊗[II]r [2Rn
1 − 2Rn

2 ]2(22)

��

[II]r⊗[D]r [2Rn
1 − 2Rn

2 ]2(22)

��
[−]⊗[N]r [4Rn]2(2)

[N]r⊗[−][4Rn]2(2)

Scheme 7: Degeneration scheme of the Type IIIn.
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TABLE XI

Subtypes of the Type IIIn.

PP classification Neutral signature classification

Eigenvalues Type IIIN Eigenvalues Type IIIn

Z2
1Z

2
2 [2N1 − 2N ]a4 R2

1R
2
2

[D]r⊗[II]r [2Rn
1 − 2Rn

2 ]2(22)

[2N1 − 2N ]b4
[II]r⊗[D]r [2Rn

1 − 2Rn
2 ]2(22)

Z4 (2)[4N ]a2 R4 [−]⊗[N]r [4Rn]2(2)
(2)[4N ]b2

[N]r⊗[−][4Rn]2(2)

3.5. Type IV (1 null eigenvector)

Finally, for the Type IV, we find two subtypes with canonical forms
given by

Cab = e1ae1b + e2ae4b + e4ae2b (3.25)

or
Cab = e2ae2b + e1ae4b + e4ae1b . (3.26)

The eigenvectors and corresponding eigenvalues are:

e4 ←→ Rn , Rn = 0 .

The Plebański spinors for the first subtype read

VABCD = −2 kAkBkCkD ,

VȦḂĊḊ = −4 k(ȦkḂkĊ lḊ) . (3.27)

The Petrov–Penrose types of these spinors are [N]r and [III]r, respectively.
For the second subtype, we find

VABCD = −4 k(AkBkC lD) ,

VȦḂĊḊ = −2 kȦkḂkĊkḊ (3.28)

and the Petrov–Penrose types of Plebański spinors are [III]r and [N]r.
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TABLE XII

Subtypes of the Type IV.

PP classification Neutral signature classification

Eigenvalues Type IV Eigenvalues Type IV

Z4 [4N ]a4 R4 [N]r⊗[III]r [4Rn]1(4)

[4N ]b4
[III]r⊗[N]r [4Rn]1(4)

4. Concluding remarks

In this paper, we analyzed the algebraic structure of the traceless Ricci
tensor in 4-dimensional spaces equipped with the metric of the neutral signa-
ture. Detailed considerations brought us to the conclusion that there are 33
essentially different types of Cab in such spaces. Our classification is purely
algebraic. The alternate way of classification of traceless Ricci tensor in the
Lorentzian spaces was given by Penrose [3]. It is an interesting question how
the Penrose approach can be used in our case. We are going to study this
problem soon.

In our work [12], some of the types of Cab have been related to the ex-
istence of the so-called, congruences of the SD null strings. Another way of
further investigations is to find a more detailed classification of the congru-
ences of SD null strings and relate such a classification with the types of Cab

presented here. This question will be investigated elsewhere.
As mentioned in Introduction, we hope that our present work fills the

gap left by two papers by Plebański and Przanowski [2, 6] in Acta Physica
Polonica B.

Some points of the present paper were presented in July 2016 in Brno at
the 13th conference Differential Geometry and its Applications. The author
is indebted to Maciej Przanowski for his interest in this work and for help
in many crucial matters.
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