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We have applied the new approach of homotopic perturbation method
(NHPM) for wave- and heat-like equation featuring time-fractional deriva-
tive. A combination of NHPM and multiple fractional power series form
has been used the first time to present analytical solution. In order to il-
lustrate the simplicity and ability of the suggested approach, some specific
and clear examples have been given. All computations were done using
Mathematica.
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1. Introduction

In this research work, it has been proposed that the new HPM based on
the multiple fractional power series can be employed to solve the wave- and
heat-like equation featuring time-fractional derivative of the following form:

DéLU(.f,y,Z,t) = P(I’,y, Z)Uxa;—f—Q(l',y,Z)Uyy—I—L(l’,y, Z)Uzz —I—M(x,y, Z)v
O<z<a, 0<y<bd, 0<z<e, O<pu<2, t>0,

(1.1)
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where

v(0,y,2,t) = fi(y, 2,t),  va(0,y,2,t) = fa(y, 2, 1),
U(ana th) = gl(yv Z,t) ; U:E(Oa Y, Z>t) = 92(y7 Zat) )
U(07y727t) = hl(y’zvt) y Ux(07y727t) = hg(y,Z,t)

are boundary statues with under primary statues

7)(377247270) 290(1’71/,2)7 vt(mayvzao) :¢(x7y7z)

in which g is the order of fractional derivative. The function v(z,y, z,t)
describes temperature as a function of time and space, while vy, vy, and
v, are the second spatial derivatives (thermal conditions) of temperature
as a function within z, y, and z. In which P(z,y,z), Q(z,y,2), L(x,y, 2)
and M (x,y, z) are any functions within z, y and z.

In the case when

— 0 < u <1, equation (1.1) refers to the fractional heat-like equation
featuring variable coefficients,

— 1 < p < 2, equation (1.1) refers to the fractional wave-like equation
which patterns anomalous diffusive and sub-diffusive systems, alliance
of diffusion and wave propagation phenomena, description of fractional
random walk [1, 2].

There are some more books related to fractional calculus for interested read-
ers [3-5]. It should be noted that there are no accurate analytical solutions
for most fractional differential equations. Consequently, for such equations,
we have to employ some direct and iterative methods. Researchers have used
various methods to solve differential equations featuring fractional deriva-
tive (FDEs) and partial differential equations featuring fractional derivative
(FPDEs) in recent years. Some familiar methods are as follows: decom-
position and Adomian’s decomposition method [6, 7], variational iteration
method [8, 9], homotopic perturbation method [10, 11], homotopic analysis
method [12, 13| and so on [2, 14-19].

The arrangement of this work is as follows: we have presented some
basic idea of the optimum g-homotopic analysis method in Section 2. In
Section 3, the convergence of the suggested method is explained. Following
that, in Section 4, the application of NHPM to the wave- and heat-like equa-
tion featuring time-fractional derivative is illustrated, and some numerical
examples are presented. Finally, in Section 5, some conclusions regarding
the proposed method are drawn.
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2. Description of the new approach

To describe the NHPM for nonlinear time fractional PDE, we use
Di'v(¢, 7) + N[v(¢, 7)] = (¢, 7) (2.1)
along with
V¢, =a(Q), i=0,1, n—1, (2.2)

in which ¢ = (¢1,...,(n), n—1 < g < n, N are linear and nonlinear operators,
¢ and 7 signify the independent variables, v((, 7) is a indeterminate function,
D# denotes the Caputo fractional and h(¢, 7) is inhomogeneous term.

To get the solution of (2.1), by using this approach, we create the below
homotopic:

(1=9q) (DFV(¢, 7) —wo(¢, 7)) +¢ (DFV(C, 7) + N(V(C, 7)) = h((, 7)) = 0),

—~~
ro
w

or

DﬁV(C, T) = UO(C? T) - Q('UO(C, T) + N(V(Cv T)) - h(Ca T)) : (24)

Now, by operating L=! = I¥(.), we get

V(G 7) = VG ) + Han(é, ™)~ a2 ol 7) 4 NV 7) = hG, )
where 22)
Ve - S0 0 20

Let us present the solution of Eq. (2.;0as
VG =6 D ahG I PG (2)

where V;((, 7), j =0,1,2,3,..., are functions which should be specified.

Definition 2.1. A power series expansion

o0

S ¢ (r— 1) = co + er(r — Tl 4 calr — )
§=0

0<n—-1<pu<n, TOST

is named fractional power series PS around 7 = 7.
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Definition 2.2. A power series expansion of the form of
ij (1 —70)’ 0<n—-1<u<<n, 1<

is named multiple fractional power series PS around 7 = 7y.

Assume that the primary estimate of the solution of (2.1) can be repre-
sented as

w(¢, ) =D ¢(Q) gi(r), (2.8)
§=0
where ¢;(¢), 7 =0,1,2,3,..., are indeterminate coeflicients, and ¢;(7), j =

0,1,2,3,... are specific functions.
It is worth mentioning that if (¢, 7), and vo(¢, 7) are analytic about
7 = 0, their next Taylor series can be written as

o0

) =) (O (2.9)

Jj=0

Now, with (2.5) featuring (2.7) and (2.8), and equating the coefficients of p,
featuring the same power, we get

QO: %(437—) = C7 70 +ch Qn )),

[e.e]

¢ : Vi(¢,m) = —ch (gn(7)) = I7 (N (Vo (¢, 7) = h(C, 7))

(]21 ‘/2(C77_) = _Iﬁ (N (Vb(c’ 7-)7‘/1(C7 T))) )

Vi€, 7) = —IF (N (Vo(¢, 7), V(¢ 7)., Viea(€, 7)) - (2.10)

By solving these equations so that Vi((, 7) = 0, then Egs. (2.10) defer to
Vi(¢,7) =0, k=2,3,---. Accordingly, we will obtain the accurate solution
U(<7 7—) = ‘/O(Ca ) Ca TO + ch IH(]k )) (211)

k=0

3. Convergence analysis

A large number of problems can be treated by NHPM through applying
the methodology that has been elaborated in previous sections.
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Lemma 3.1. Suppose H, s are He’s polynomials [20]. Then, for the nonlin-
ear term N, the following relation is satisfied:

N (Zw‘) =Y Hiq'
=0 =0
Lemma 3.2. From Lemma 3.1, relation (2.10) is equivalent to the following
formula:
Vo€, m) = V(¢ m0)+ V5,
‘/I(Ca t) = _I#UO - (HO - h(Ca T)) ;
Vor1(C,m) = —I"(Hy) .

Theorem 3.3. NHPM that was used in the solution of (2.10) is equivalent
to the sequence that comes next

2 =Vi+Vot -+ Vy, 20 =0,
by using the iterative formula
1 = — 1" Ny (20 + Vo) = V5 + 1" (R((, 7)) (3.1)

where Vi = IMvg, and

Nn<zn:w>zzn:m,n:o,1,2,.--. (3.2)
=0 1=0

Proof. For n =0 from (3.1), we have
z1 = —I" Ny (z0 + Vo) = Vg +1# (h((, 7)) = —I*(Ho) — Vg + I* (R(C, 7)) -

Then,
Vi = —I"(Ho) = V5 + I" (h(C,7)) -

For n =1,

29 = —I'Ny (21 4+ Vo) = Vi + 1" (R((, 7))
= —I"(Ho+ Hy) — Vi + I" (h(¢,7))
= —I“(H1)+V1.

According to zo = Vi + Vo, we get Vo = —I#(H)).
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This theorem will be proved by a convincing induction. Let us assume
that Vi1 = —I*(Hy) for k =1,2,--- ,n — 1, hence

Zn+l = _I'uNn (zn + Vb) - ‘/0* + IM (h(C,T’))

= I (Z H) — Vg 4+ I (h(C, 1))
1=0

= = IM(H;) = Vg + I* (h((r))
i=0
= Vi+ Vot +V, = I"(Hy).
S0, Vi1 = —I*(Hy). O
Theorem 3.4. Suppose that B is a Banach space.
(i) > Vi gained convergence to s € B, if IN (0 < A < 1), subject to
k=0
Vn €N, [[Vall < A[Va-all,

o0
(1)) z =Y Vi is satisfied in
k=1
z=—I"'N(s+ Vo) = V5" + 1" (h((,7)) .
Proof. (i) The result will be

l2ns1 = zall = [Varall S MVl < X2 Vel < - <XV

For any n,m € N, n > m, we derive

[zn = 2mll = l(zn = 2n—1) + (2n—1 = 2n—2) + - + (Zm+1 — Zm) ||
< lzn = zn-1ll + l2n—1 = zn—2l| + - + [[2m+1 — 2mll
< A Voll + NP THVol| 4 - ATV
< (AP AT AT V|
< AN LA+ ) [V

)\m—f—l
< Voll -
< vl
Therefore, lim ||z, — 2| = 0. Then, z, is a Cauchy sequence in
,1M—00

the Banach space and so, it is convergence, i.e. 3 z € B subject to
o0
lim z, = >V, ==z

n—00 ne1
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(77) From (3.1), yields to

n—o0

lim zpyy = —I" lim Ny (zn + Vo) + 1" (A(C, 7))

— —JI" lim N, (in> — Vg + I (h(¢, 7))

n—00
k=0

Thus,

n—oo

z = —I" lim N, (ZHk — Vg + 1" (h(¢, 7))

n—oo

= —I* lim N, (im) Vo + 1 (h(C, 7)) -
k=0

o0 o0
By Eq. (3.2) and N < > quk> = S Hp¢" for ¢ = 1, we derive
k=0 k=0

e (Em)

Hence,

z = —I'N (in> — Vo +I* (h(¢, 1))
k=0

= —I"N (s+ Vo) = V5 + 1" (h(¢,7)) -

4. Test examples

Now, we apply NHPM based on the multiple fractional power series to
solve heat- and wave-like equation featuring time fractional derivative. All
computations were done using Mathematica. In this section, the following
symbols will be defined:

. . N

B ¥ BN (X5 B
ox* 0y

Test example 4.1. We purpose the 2D fractional heat-like equation [8]:

Div(z,t) =
v(0,t) =

(T 1) 0<z<l, O<pu<l, t>0,(4.1)
) v(1,t) = E,(t"), v(z,0) = 2%, (4.2)

S =
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Assume wvg(z, t) = > ep(x)t™, V(x,0) = g(z). Solving Eqs. (4.1)—(4.2)
n=0
for Vi (z,t), one will obtain as follows:

(T @)\ (VRPN R )
itnt) = (uf(u) #F(u)>+t ' ( pl (I (p+3) I'(p+3) )
ey (wzl"(;z + 1) (x) o) (2u+ 1))

2T (3 + 1) TBu+1)
220 (2u + 1)t (x)
o (4p + 1)

(4.3)

By vanishing of Vi (z,t), the coefficients ¢, (x,y), n =1,2,3,..., lead to the
following result:

2 22 z?

co(x) = x°, ci(z) = ———m, ()= —— .
This implies that
v(z,t) = Vo(z,t)
22t 22 2230

2
T T+ T+l TGu+1

) +o= 22, (H).
(4.4)

We can see the estimate solutions featuring 4 = 1 and y = 1 in figure 1.
The estimate solutions featuring p = 1 acquired for several amounts of x, y
and ¢ applying NHPM can be seen in Table I.

(@) 13}

’:-'.‘;-‘-.-..,-.-

Al i o

Fig.1. (a) The analytical solution of Eqs. (4.1)—(4.2) for various = and ¢, when
p=1and y =1. (b) The accurate solution.
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TABLE 1

Approximate result of test example 4.1.

t T UNHPM VExact Absolute error

0.50 0.276292 0.276293 1.06285 x 10~°
0.1 | 0.75 0.380378 0.380408 0.0000297766
1.00 1.10517  1.10517  4.25141 x 10=¢

0.50 0.337375 0.337465 0.0000897019
0.3 | 0.75 0.759094 0.759296 0.000201829
1.00 1.3495 1.34986  0.000358808
0.50 0.411458 0.41218  0.000721984
0.5 | 0.75 0.925781 0.927406 0.00162446
1.00 1.64583  1.64872  0.00288794

Test example 4.2. We purpose the 2D fractional heat-like equation [8]:

Div(x,y,t) = vge(x,y,t) + vyy(z,y,t), 0<z,y<2m, 0<pu<l, t>0,
(4.5)
subject to the boundary and primary conditions
v(0,y,t) = 0, v(2m,y,t) =0, v(z,0,t) =0, v(z,2m,t) =0,
v(x,y,0) = sin(z)sin(y) . (4.6)

m

Assume vo(z, y, t) = > cp(x, y)t"™, V(z,y,0) = g(x,y). Solving Egs. (4.5)—
n=0

(4.6) for Vi(z,y,t) leads to the following result:

B co(z,y)  2sin(z)sin(y)
et =1 <_ /jf’(u) - ul(w) )

VT e (2, y) N VA e 02 (2, 1) N N “co )(z,
Puts)  wlWI(nts)  wlGI (et
y)

Y
_Hw(_F@ﬂ+n@uwy+rw+nq@”@y> @0

y
+3)
I(3u+1) r(3u+1) + 1) >

r@u+n@@”@w>+F@u+D@@®uwn>+.

I'4p+1) I'4p+1)



86 D. BALEANU, B. AGHELI, R. DARZI
By vanishing of Vj(z,t), the coefficients ¢,(x,y), n = 1,2,3,..., will be
obtained as follows:

co(w,y) = —2sin(z)sin(y),

4sin(x) sin(y)
c(r,y) = ———,
8sin(z) sin(y)

C x’ o B —— I I

This implies that
v(z,y,t) = Vo(z,y,t)
2tH 1 2tH
= sin(x) sin — — +1
@it (e +* ( ey~ ) )

E,(—2t")sin(x) sin(y) .

(4.8)

In figure 2, we can see analytical solutions featuring 4 = 1 and y = 1
what is concluded for various amounts of x, y and t utilizing NHPM. The
analytical solutions featuring 4 = 1 acquired for various amounts of z, y

and ¢ applying NHPM are shown in Table II.

(a)

ib)

Fig.2. (a) The analytical solution of Egs. (4.5)—(4.6) for various = and ¢, when

uw=1and y =1. (b) The accurate solution.
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TABLE II

Approximate result of test example 4.2.

t T y UNHPM VExact Absolute error

0.50 0.50 0.188170  0.188184 0.0000147302
0.1 1075 0.75 0.380378  0.380408 0.0000297766
1.00 1.00 0.579676  0.579721 0.0000453779

0.50 0.50 0.125038  0.126144 0.0011059500
0.3 ] 0.75 0.75 0.252759  0.254995 0.0022356400
1.00 1.00 0.385192  0.388599 0.0034069900
0.50 0.50 0.0766163 0.0845567  0.0079403800
0.5 1] 0.75 0.75 0.1548770 0.1709280  0.0160512000
1.00 1.00 0.2360240 0.2604860  0.0244612000

Test example 4.3. Next, consider the 2D wave-like equation featuring
fractional derivative

va(xa Y, t) :% (:L'va(x, Y, t)+y2vyy(ac, Y, t)) )

O<z,y<l, l<pu<2, t>0, (4.9)
subject to

v(0,,8) =0, v(L,y,t) = y?Eu(2t")

v(z,0,t) =0, v(z, 1,t) = 2B, (2tH")

v(z,y,0) = 2%y?, vz, y,0) =0. (4.10)

With considering Vi (z,y,t), we obtain

(2 ey
Vi) = o (2t - )

+t2u (‘TZCO(Q’O) (.’IJ, y) y200(072) (l‘, y) o \/%47“61 ([E, y) >

20 (2p + 1) 202 + 1) I'(p+3)
Lo (Tt DO y) e+ e (zy) e,y
2I'(3u+1) 2I'(3p +1) I'(3u+1)
2 (2,0) 2 (0,2)
2T (44 + 1) 20 (4p + 1)

Considering the hypothesis Vi (x,y,t) =0, coefficients ¢, (x,y), n=1,2,3, ...
will be determined as follows:

4$2y2
I'(p+1)’

8$2y2
00(37,y) = 21’23/2 ) Cl(xvy) = 62($7y) =

_m’.”'
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Therefore, the solution of (4.9) is obtained

2 2 2t,u 41—,u 2 2t2p, 8 2 2t3p,
v(w,t):x2y2+ Yy + v 1my Y .
Pp+1)  I'(p+3)I(p+1) I'Gu+1)
= 2%2E,(2t").

In figure 3, we can see the precise solutions featuring y = 1 and p = 2. In
Table III, we may view the analytical solutions featuring g = 2, which is
derived for several amounts of x, y and ¢ utilizing NHPM.

(a) 1]

Fig.3. (a) The analytical solution of Eqgs. (4.9)—(4.10) for various = and ¢, when
uw=2and y = 1. (b) The accurate solution.

TABLE III

Approximate result of test example 4.3.

t T z UNHPM VExact Absolute error

0.50 0.50 0.0690638 0.0690732 9.37986 x 10~
0.1 ] 0.75 0.75 0.3496360 0.3496830 0.0000474856
1.00 1.00 1.1050200 1.1051700 0.0001500780

0.50 0.50 0.0841683 0.0843662 0.00019789
0.3 ] 0.7 0.75 0426102  0.4271040 0.00100182
1.00 1.00 1.346690  1.3498600 0.00316625
0.50 0.50 0.102383  0.103045  0.000661996
0.5 1075 0.75 0.518314  0.521666  0.003351350
1.00 1.00 1.638130  1.648720  0.010591900
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Test example 4.4. In this example, we choose the 3D heat-like equation
featuring fractional derivative

Div(z,y, 2,t) = 'yt + 36 L (2200 (2,9, 2, 1) + Y2y, (7Y, 2, 1)
+ Z2Uzz(x’yyzat)) )

0<zy,z<1, O<pu<l, t>0, (4.12)
subject to
v(0,y,2,t) =0, v(l,y,2,t) = y4z4(E#(t“) -1),
v(x,0,2,t) =0, v(z, 1, 2,t) = 224 (E,(t") — 1),
v(z,y,0,t) =0, v(x,y,1,t) = x4y4(E“(t“) -1),
v(z,y,2,0)=0. (4.13)

m
Assume vo(z,y, z,t) = > en(z,y, 2)t", V(z,y,2,0) = g(x,y,z). Con-
n=0

sidering Vi (z,y, z,t), the equation gives

4,44 B
Vi(a,y, z,t) =tV (m vzt alwy, z)> L VT ucl(g;{y,z)
r(p+3)

aT0s)  ul(n)
NS 12200(002)(m y,2) AT y2e0(020) (1 y, 2)

_|_
ol () (u+ 1) ol () (u+ 1)
+ f4 n 13726() 200 J,‘ y Z +t3p 2M+1)62($7y72)
Iul (p) I I'(3u+1)
220 (p+ 1)01(002)(90 Y 2) LY M+1)01(020)(3«“ Y, %)

361" (3 + 1) 36 (3 + 1)
ﬂﬂu+)(”mxyz gt [ FLCuA 1D (@, y, 2)
36[(3u4% 361 (4p + 1)

36[K4u4k1) 36[(4u4—1) P

S0
4,4 4 4,4 4
4,4 4 Ty = T Yz
co(z,y,2) =2y 2", a(x,y,2) = =———, c2(v,9,2) = = -+~
o(z,y, 2) Yy 12,9, 2) T(ut1) 2(2,9, 2) TCu+1)
Therefore, we obtain analytical solution of Eq. (4.12)
:L'4y4z4t“ ﬁ4—um4y4z4t2u l,4y4z4t3u
v(x,y,z,t) = .
pl (1) I'ip+3)I(p+1)  I'Gu+1)
= syt EL (") - 1). (4.15)
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We can see the precise solutions featuring 4 = 1, y = 1 and z = 1,
in figure 4. The analytical solutions featuring ;1 = 1 acquired for several
amounts of x, y, z and ¢ applying NHPM can be seen in Table IV.

fa) ib)

Fig.4. (a) The analytical solution of Egs. (4.12)—(4.13) for various = and ¢, when
p=1,y=1and z=1. (b) The accurate solution.

TABLE IV

Approximate result of test example 4.4.

t T Y z UNHPM VExact Absolute error

0.50 0.50 0.50 0.0000256755 0.0000256765 1.03794 x 10~°
0.1 |0.75 0.75 0.75 0.0033313000 0.0033314300 1.34669 x 10~7
1.00 1.00 1.00 0.1051670000 0.1051710000 4.25141 x 106

0.50 0.50 0.50 0.0000853271 0.0000854147 8.75995 x 10~8
0.3 ]0.7 0.7 0.75 0.01107092 0.0110823 0.0000113657
1.00 1.00 1.00 0.34950000 0.3498590 0.000358808
0.50 0.50 0.50 0.000157674  0.000158379  7.05063 x 10~7
05107 0.75 0.75 0.020457600  0.020549100  0.00009147930
1.00 1.00 1.00 0.645833000  0.648721000  0.00288794000

Test example 4.5. We choose the 3D heat-like equation featuring frac-
tional derivative

2y222 + % ($2Ux$($, Y, z, t) + y%yy(wa Y, z, t)

+ 2v(z,y,2,1))
0<z,y,z<1, O<pu<l, t>0, (4.16)

Div(z,y,2,t) =z
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subject to
v(0,y,2,t) = (y2 + z2) E,(t"),
v(2,0,2,t) = (27 + 2%) B, (t"),
v(z,y,0,t) = (2% + ) E,(t"),
v(ly,z,t) = (L+9y* + 22) Eu(t") + 3 (y%2?) |
v(z, 1, 2,t) = (3:2 +1+ 22) E,(t") + § (2227) |
v(z,y,1,t) = (2* + y* + 1) E,(t") + £ (229?) |
)=0.

v(z,y,2,0 (4.17)

m

Assume vo(z,y, 2,t) = Z en(z,y, 2)t", V(z,y,2,0) = g(z,y,2). Solv-
ing Eq. (4.16) for Vi(z,y, 2 t) one obtains the following result:
co(w,y,2) @’ y? 22

‘/lxvyaz7t :tﬂ<_ + +

( ) pl'(p)  pl(p)  pl(p)  pl(p)

—|—t2,u ( \/7?272“61 (33, Y, Z) \/77?272#712200(07072) (.f, Y, Z)

I+ ) pl ()1 (i + 3)
ﬁ2*2”71x200(2’0’0)($, Y, 2) ﬁ272u71y200(0,2,0)(;¢7 Y, 2)
ul ()T (p+ 3) pl ()T (1 + 3) ) o
(4.18)

By vanishing of Vi(z,y, z,t), the coefficients ¢, (x,y,2), n = 1,2,3,--- will
be obtained as follows:

CO(fU,l/aZ) = '%2 +y2 +Z2a

2 +y* 42
01(9073172) = W,
x2+y2+z2
Cz(iU,y,Z) = m

Therefore, we obtain the analytical solution of Eq. (4.16)

th (2 +y* + 2°
v(z,y,z,t) = 22 +y? 422 - 1:U2y222—|- ( Y )

I'(p+1)
£21 (:EQ Ly? 4 22) £31 (952 T2t 22)
r2p+1) r(3u+1)

=E,t") (2 +y* + 2 ) §x2y222 (4.19)
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We can see the precise solutions featuring =1, y=1 and z =1,
in figure 5. The analytical solutions featuring u = 1 acquired for several
amounts of x, y, z and ¢ utilizing NHPM can be seen in Table V.

(@ L

Fig.5. (a) The analytical solution of Egs. (4.16)—(4.17) for various = and ¢, when
p=1and y =1, z=1. (b) The accurate solution.

TABLE V

Approximate result of test example 4.5.

t x Y z UNHPM VExact Absolute error

0.50 0.50 0.50 2.40329 2.4033 9.56567 x 10~6
0.1 1075 0.75 0.75 2.64449 0.0647883 0.0000108942
1.00 1.00 1.00 2.98217 2.98218 0.0000127542

0.50 0.50 0.50 1.00692 1.00719 0.000269106
03107 0.7 075 221796 2.21856 0.000605488
1.00 1.00 1.00 3.71517 3.71624 0.00107642
0.50 0.50 0.50 1.22917 1.23133 0.00216595
05107 0.7 075 271802 2.72289 0.00487339
1.00 1.00 1.00 4.60417 4.61283 0.00866381

Test example 4.6. We choose the 3D fractional wave-like equation

va(:n,y,z,t) = % (.’L‘2’sz(1',y,2«',t) +y2vyy(m,y,z,t) + Z2Uzz($aya Z7t)) )
0<z,y,2<1, 1< pu<2, t>0, (4.20)
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subject to

v(0,y, z,t) = cosh(t) ( ) v(x,0,z,t) = cosh(t) (:U2 - 22) ,
v(z,y,0,t) = cosh(t) (x +v%), v(1,y,2,t) = cosh(t) (1 +y* — 2%) ,
v(x,1,z,t) = cosh(t) (w +1-— zQ) , u(z,y,1,t) = cosh(t) (:(:2 + 9% — 1),
v(x,y, 2,0) = 22 +y? — 22, ve(x,y,2,0)=0. (4.21)

Assume vg(z,y, z,t) = Z n(z,y, 2)t" V(x,y, 2,0) = g(z,y,2). Solv-
ing Eq. (4.20) for Vi(z,y, 2 Z) one obtains the following result:
C(](l', Y, Z) x2 y2 22
‘/1x7y727t :tl‘<_ + -
( ) pl' (@) pl(p)  pl'(p)  pl(p)
ey (_ V2 Hei(ny,2) | VT2 2000 @y, 2)

r(u+1) pl ()1 (1 + 3)
+ \/7?2*2u71$200(27070) (z,y,2) \/7?272“7134200(0’2’0) (x,y,2) +
uD () (i + 1) pL (I (p+ 3)
(4.22)

By vanishing of Vi(z,y, z,t), the coefficients ¢, (x,y,2), n = 1,2,3,---
will be obtained as follows:

Co(l’,y,z) = 1:2 +y2 - Z2a

22 —|—y2 _ 2

Cl(xayaz) = W,
72 —|—y2 _ 2

02(x7yvz) = m

Therefore, we obtain the analytical solution of Eq. (4.20)

t (a2 +y? — 2%)
I'(p+1)
21 (x2 T2 Zz) . 31 (x2 T2 z2)
I(2p+1) I'(3u+1)
= (® +y* = 2°) Eu(t"). (4.23)

v(z,y,2,t) = 2® +y* — 2% +

We can view the precise solutions featuring u =2 , y = 1 and z = 1,
in figure 6. The analytical solutions featuring p = 2 acquired for several
amounts of x, y, z and ¢ applying NHPM can be seen in Table VI.
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Fig.6. (a) The analytical solution of Egs. (4.20)—(4.21) for various = and ¢, when
pw=2,y=1and z=1. (b) The accurate solution.

TABLE VI

Approximate result of test example 4.6.

t T Y z UNHPM VExact Absolute error

0.50 0.50 0.50 0.251251 0.251251 6.19504 x 1076
0.1 |0.75 0.75 0.75 0.565315 0.565315 1.39444 x 10713
1.00 1.00 1.00 1.005 1.005 2.47802 x 10713

0.50 0.50 0.50 0.261335 0.261335 4.07215 x 1010
0.3 10.75 0.75 0.75 0.588003 0.588003 9.16234 x 10710
1.00 1.00 1.00 1.04534  1.04534  1.62886 x 10~ °
0.50 0.50 0.50 0.281906 0.281906 2.42877 x 1078
0.5 ]0.75 0.75 0.75 0.63429  0.63429  5.46473 x 10~
.00 1.00 1.00 1.12763  1.12763  9.71508 x 1078

5. Conclusion

In this work, NHPM has been successfully employed to obtain a solution
of the time-fractional wave- and heat-like equations. This manner appeared
obviously a very effectual and potent technique in acquiring the solutions of
the offered equations. The result illustrates that a few iteration of NHPM
may outcome a good solution. Finally, this approach can be utilized to solve
other similar nonlinear problems in PDEs featuring fractional derivative.
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