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Symmetric pairs of coexisting attractors are commonly found in sym-
metric dynamical systems when symmetry breaking occurs. By contrast,
asymmetric bistability is rarely reported in either symmetric or asymmetric
dynamical systems because such behavior typically occurs in narrow regions
of parameter space and thus is often unnoticed. This paper describes an
exploration of the regular parameter space of the Rössler system and shows
examples of strange attractors coexisting with other strange attractors and
with limit cycles, and asymmetric pairs of limit cycles in limited parameter
space. A particular 1D path through parameter space is chosen to illus-
trate the various regions and the bifurcations that accompany the birth
and death of the coexisting asymmetric attractors.
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1. Introduction

In 1976 and 1979, Rössler proposed a class of relatively simple chaotic
system [1, 2]. Like the Lorenz system [3], it has three variables, seven terms,
and three parameters, but only a single quadratic nonlinearity. Because of its
simplicity, the Rössler system has been widely used for studying chaos and
related theoretical and experimental topics [4–17] such as bifurcations and
evolutions [4–8], optimal control [10, 11], optimal synchronization [12, 13],
and some topics associated with multistability [14–17]. Hens et al. [14]
predicted extreme multistability in a system of two coupled Rössler oscilla-
tors, and later Patel et al. [15] provided experimental observations of that
multistability in an electronic system consisting of two coupled Rössler os-
cillators. Postnov et al. [16] gave numerical examples using coupled Rössler
systems and model maps to explain the role of multistability in the transi-
tion to chaotic phase synchronization. Chandrasekar et al. [17] confirmed
the ubiquitous nature of the intensity induced chimeras by a system of glob-
ally coupled Rössler oscillators. However, multistability in a single Rössler
system has been relatively little studied [4, 18].

Multistability is important because it is a common phenomenon in na-
ture and can lead to unexpected and disastrous consequences in practical
engineering applications. Consequently, it has been of considerable interest
to scientists and has led to much active research [18–28]. Symmetric dynam-
ical systems are prone to produce a symmetric pair of coexisting attractors
[18, 23–26] when the symmetry of the solution is broken. However, asymmet-
ric systems can also exhibit multistability [27, 28]. Sprott et al. [27] showed
that even a simple three dimensional system can have three different kinds
of coexisting attractors, including point, periodic, and strange attractors.
Line equilibria in a system [28] can give different stability in the neighbor-
hood of the line, which also leads to different asymmetric multistable states.
Since the Rössler system has a simple asymmetric structure that gives chaos,
it is natural to ask if it has a normal region where coexisting asymmetric
attractors occur besides the cases mentioned by Barrio et al. [4].

Although multistability poses threats in some practical applications,
asymmetric multistability, especially coexisting attractors with different
manifolds, has potential value in other applications. For example, in elec-
tronic engineering, versatile analog signal generators can exploit changes in
initial conditions to alter the type of oscillation, which is easier to produce
with programmable technology than selecting different circuit parameters.
In addition, multistability is a common property of neural networks that
permit certain applications where monostable systems could be computa-
tionally restrictive [29]. Multistability of cellular neural networks can also
be applied to increase the storage capacity of associative memories [29, 30].
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Motivated by the wide focus on the Rössler system and the interest in
multistability, we explored the 3D parameter space for new examples of mul-
tistability in the Rössler system. Barrio et al. [4] have given a qualitative
analysis of the Rössler equation and mentioned several regimes of bistabil-
ity. However, their system parameter c is very large (like c = 48.5) and
all variables oscillate violently with large amplitude in contrast to the be-
havior of the conventional Rössler system. Here, we report bistability in
the normal range of parameters and show the various regimes of bistability
and the bifurcations that accompany the birth and death of the coexisting
asymmetric attractors. Freire et al. [5] studied the triple-zero bifurcation
in the 1979 Rössler equation, which is equivalent to the 1976 Rössler system
in the region where the equilibria exist. However, the chaotic attractors in
the 1979 Rössler system near the triple-zero degeneracy were spiral chaotic
attractors or screw chaotic ones. Our study of bistability shows that those
coexisting strange attractors in the 1976 Rössler system are basically spi-
ral chaotic attractors. In Section 2, we report coexisting strange attractors
in the Rössler system. In Section 3, the bifurcations are analyzed along a
particular 1D path through parameter space, and additional examples of
multistability are found. Conclusions are given in the last section.

2. Asymmetric strange attractors

The familiar Rössler system [1] is given by:

ẋ = −y − z ,
ẏ = x+ ay ,

ż = b+ z(x− c) . (1)

When a = b = 0.2, c = 5.7, the system is chaotic, as shown in Fig. 1
with Lyapunov exponents (LEs) of (0.0714, 0, −5.3943) and a Kaplan–
Yorke dimension of DKY ≈ 2.0132. The largest LE is calculated numerically
by following a reference trajectory and a nearby satellite trajectory whose
distance but not direction is readjusted at every time step. The largest LE
(λ1) is determined from the average of the logarithm (base e) of the growth
in distance for each time step divided by the size of the time step. The
other two LEs are determined using the fact that one must be zero and
the sum of the three is the average rate of state space expansion, which
is determined from the time average of the trace of the Jacobian matrix
[31, 32]. From the LE spectrum, the Kaplan–Yorke dimension is determined
from DKY = 2 − λ3/λ1 whose value for the standard Rössler system (1) is
close to 2.0296 [32].
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Fig. 1. (Color online) Rössler attractor from system (1) with a = b = 0.2, c = 5.7

and initial conditions (x0, y0, z0) = (−9, 0, 0).

Modern computers are capable of examining millions of parameter com-
binations and initial conditions, seeking cases for which different initial con-
ditions produce different attractors for the same parameter values. The
algorithm used for finding coexisting attractors is as follows:

(I) Chose the parameters (a, b, c) randomly from a Gaussian distribution
with unit variance centered on the origin, but allow the center of the Gaus-
sian to wander around the parameter space by moving it to the location of
where a new bistable solution is found.

(II) For each parameter combination, two initial conditions are chosen
randomly from a Gaussian distribution of unit variance centered on the last
bistable case that was found, and a quantity that is expected to be different
such as the center of mass is calculated for each attractor.

(III) Since the position of the center of mass of different attractors may
be similar, a more complicated quantity given by the time average of x +
|x| + y + |y| + z + |z| was used, and the criterion for bistability was taken
as a 10% difference in this value for the two chosen initial conditions. No
effort was made to find cases with more than two coexisting attractors. The
vast majority of the cases fail this test, but out of millions of trials, dozens
of bistable candidates were identified.

This algorithm found a number of cases where there are two coexisting
strange attractors in the Rössler system, one example of which occurs for
a = 0.29, b = 0.14, c = 4.52 shown in Fig. 2 with the waveform shown
in Fig. 3. These two attractors have different Lyapunov exponents (LEs)
of (0.0397, 0,−3.6120) and (0.0346, 0,−3.8953), respectively, and the corre-
sponding Kaplan–Yorke dimensions DKY are 2.0110 and 2.0089. These two
coexisting strange attractors are different in shape and size, in contrast to
the symmetric pairs that are frequently found in symmetric systems with
symmetry breaking. Additionally, their basins of attraction are not a sym-
metric pair. Figure 4 shows a cross section of the highly structured basins of
attraction of the asymmetric strange attractors in the plane z = 15.55517,
where one of the two equilibrium points lies. In the white region exterior to
the basins, orbits are unbounded.
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Fig. 2. (Color online) Asymmetric strange attractors in the Rössler system (1) for
a = 0.29, b = 0.14, c = 4.52; black/red and gray/green attractors correspond
to the initial conditions IC1 = (−1.25,−0.72,−0.10) and IC2 = (0.72, 1.28, 0.21),
respectively.

Fig. 3. (Color online) Waveforms of the two coexisting strange attractors in the
Rössler system (1) for a = 0.29, b = 0.14, c = 4.52 — black/red for IC1 and
gray/green for IC2.

Fig. 4. (Color online) Cross section for z = 15.55517 of the basins of attraction
(gray/light blue and black/red) for the coexisting asymmetric strange attractors
at a = 0.29, b = 0.14, c = 4.52.
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The two equilibrium points E1,2 = ( c∓
√
Q

2 , −c±
√
Q

2a , c∓
√
Q

2a ) exist when
Q = c2 − 4ab ≥ 0. The one at E1 is close to the origin, while E2 is more
remote. Specifically, when a = 0.29, b = 0.14, c = 4.52, the two equilib-
rium points are E1 = (0.0090,−0.0310, 0.0310) and E2 ≈ (4.5110,−15.5552,
15.5552), which are a saddle focus with index-2 indicated by one real nega-
tive eigenvalue, and a complex conjugate pair with a positive real part, and
a spiral repellor with index-3 indicated by one real positive eigenvalue, and
a complex conjugate pair with a positive real part, respectively, according to
their eigenvalues (0.1417± 0.9896i,−4.5044) and (0.2720, 0.0045± 4.0682i).
Contrast these values with those for the standard Rössler system with pa-
rameters a = b = 0.2, c = 5.7, where the two equilibrium points are spi-
ral saddles at (0.0070,−0.0351, 0.0351) and (5.6930,−28.4649, 28.4649) with
eigenvalues (0.0970± 0.9952i,−5.6870) and (0.1930,−0.0000± 5.4280i), in-
dicating they are index-2 and index-1, respectively.

The equilibrium point E1 lies on the basin boundary between the two
strange attractors, presumably with its unstable manifold tangent to the
boundary. Initial conditions in the immediate vicinity of the equilibrium
are about equally likely to end up on either attractor. Thus, the attractors
are self-excited but could easily be missed if only one initial condition near
the equilibrium were chosen. The other equilibrium point E2, shown as a
small circle at the bottom center of Fig. 4, lies on the basin boundary of
one of the strange attractors, with some initial conditions in its vicinity
going to the attractor with others going to infinity. The basins have the
expected asymmetry about the z-axis and a fractal structure. The black
lines are cross sections of the corresponding strange attractors that nearly
touch their basin boundaries. Therefore, neither of these attractors is hidden
[33–36], but there could be others that are.

3. Bifurcations analysis

To explore the bifurcations and look for additional examples of bistabil-
ity, we define a new parameter α and construct a one-dimensional straight-
line path through the three-dimensional parameter space that passes though
the values for the standard Rössler attractor (0.2, 0.2, 5.7) when α = 0 and
through the parameters where two strange attractors coexist (0.29, 0.14, 4.52)
when α = 1,  a = 0.2 + 0.09α ,

b = 0.2− 0.06α ,
c = 5.7− 1.18α .

(2)

Along this path, limit cycles and strange attractors occur over the range
[−2.2, 1.8], and the corresponding bifurcations are shown in Fig. 5. The
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equations are solved using a fourth order Runge–Kutta integrator with adap-
tive step size with a largest value of 0.005. In this figure, α is slowly increased
from −2.2 with the quantities plotted in red and then slowly decreased from
α = 1.8 with the quantities plotted in green without changing the initial
conditions during the evolvement of the parameter. Regions where the two
curves overlap are plotted in black. Thus, areas of hysteresis and bistability
are indicated by the coexistence of solid red and solid green. In the figure,
A is the square root of the time average of (x−1.6)2+(y−1.6)2+(z−1.6)2,
which is an arbitrary quantity intended unlikely to be the same for two coex-
isting attractors and is plotted for the reference initial condition and for one
chosen randomly from its Gaussian neighborhood, L is the largest Lyapunov
exponent, K is the Kaplan–Yorke dimension, and M is the local maximum
values of the variable x. The quantity A is multivalued wherever there are
coexisting attractors, even ones not resulting from hysteresis.

Fig. 5. (Color online) Bifurcation diagram when α varies in the region [−2.2, 1.8].

For α < −2.17, the equilibrium near the origin is stable and attracts
initial conditions within its large basin of attraction. When α varies in
the selected region, a supercritical Hopf bifurcation of the equilibrium E2
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occurs at α ≈ −2.17 giving birth to a limit cycle with an angular frequency
ω = 1.0, which can be verified algebraically according to the Andronov–Hopf
bifurcation theorem with the characteristic equation F (λ) = λ3 + (c − a −
x)λ2 + (ax− ac+ z + 1)λ− az − x+ c = 0. Some other bifurcations along
different parameter paths are shown in [4]. After that, there is a typical
period-doubling sequence of bifurcations until chaos onsets at α ≈ −0.60.
The interval α ∈ (−0.6, 1.8) is chaotic with numerous periodic windows
including the region around α = 1.0 where the two strange attractors coexist
as shown in Fig. 2. The strange attractor is destroyed around α = 1.85,
presumably in a boundary crisis.

The largest region of bistability occurs around α ∈ (0.95, 1.05) as shown
in more detail in Fig. 6. This structure repeats on ever smaller scales in the
(presumably infinitely many) periodic windows in the range of α ∈ (1.2, 1.8).
The coexisting strange attractors within the periodic windows have their
own periodic windows, which implies that there are places such as α = 1.03
where a limit cycle coexists with a strange attractor as shown in Fig. 7.
These limit cycles undergo a period doubling route to chaos, which means

Fig. 6. (Color online) Bifurcation diagram in the region of coexistence [0.95, 1.05]

with an upward sweep (black/red) and a downward sweep (gray/green).
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that the strange attractor can coexist with limit cycles of arbitrarily large
periods. However, the periodic windows of these coexisting attractors stub-
bornly refuse to overlap anywhere along this path through parameter space,
although there are other parameters such as α = 0.595, where asymmetric
limit cycles coexist as shown in Fig. 8. These coexisting limit cycles appear
not to result from hysteresis.

Fig. 7. (Color online) Coexisting strange attractor and limit cycle in the Rössler
system for α = 1.03 (a = 0.2927, b = 0.1382, c = 4.4846). Black/red and
gray/green attractors correspond to two different initial conditions (−2, 1.28, 0.21)
and (1.5, 1.28, 0.21).

Fig. 8. (Color online) Coexisting limit cycles in the Rössler system for α = 0.595

(a = 0.2536, b = 0.1643, c = 4.9979). Black/red and gray/green attractors corre-
spond to two different initial conditions (0, 7.2, 0.3) and (3, 2.31, 0.1).

A similar computer search was unsuccessful for finding chaotic or periodic
solutions in the absence of any equilibria when Q = c2 − 4ab < 0 or when
the one close to the origin is stable according to the Routh criterion. So
in the whole parameter space, the Rössler system probably has no hidden
attractors, and no other types of bistability were found.



106 J.C. Sprott, C. Li

4. Conclusions

Despite its considerable interest and widespread use, the Rössler system
has previously unexplored regions in parameter space where it is bistable
with coexisting strange attractors and limit cycles. One particular path
through parameter space has been explored in detail here. It seems likely
that there are yet other regions in the three-dimensional parameter space,
including negative values of the parameters, where additional bifurcations
and examples of multistability exist. We encourage others to continue ex-
amining this venerable and dynamically rich system.
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