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Measurements of electron–positron annihilation rays have found appli-
cations in both a medical diagnosis and in solid state physics. A similar
equipment, located either close to or far from an investigated object, allows
to study some quantities either in the real or momentum space — medical
or physical investigations, respectively. In the paper, various mathematical
methods of computed tomography and their applications to objects having
the cubic and hexagonal symmetry are presented, showing some examples
of electron–positron momentum densities, which visualize the Bloch states
of the electron wave function.
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1. Introduction

The phenomenon of a low-energy positron–electron annihilation have
found applications in both a medical diagnostics and in a solid state physics
[1]. Since the probability of electron–positron (e–p) annihilation with emit-
ting n quanta γ is proportional to (1/137)n, in the case of antiparallel
spins of annihilating particles, the most probable is the 2γ process. Con-
servations laws cause that if the momentum p of the e–p pair is equal to
zero, generated 2γ rays are antiparallel, each one with the momentum mc
(m — electron mass, c –– light speed), while for |p| 6= 0, there is a dis-
tortion from the colinearity. However, because |p| � mc, this distortion is
very small, e.g. electrons inside the central Fermi surface (FS) are observed
for angles lower than 0.3◦ (see explanations in [2]). Thus, if counters are
located close to investigated object (medical PET), one obtains information
on a positron localization (real space r), while after moving counters far from
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the sample, one measures the angular correlation of annihilation radiation
(ACAR) which probes the e–p momentum density, ρ(p), in the extended
p-space. ρ(p), being crucial in understanding electronic properties of quan-
tum systems, is defined as

ρ(p) =
∑
kj

nkjδ(p− k −G)

∣∣∣∣∣∣
∞∫
−∞

e−ip·rΨkj(r, r)dr

∣∣∣∣∣∣
2

, (1)

where Ψkj(re, rp) and nkj are, respectively, the e–p wave function and the
occupation number of an electron state k in the jth band, G is the reciprocal
lattice vector. Momentum k extends over the first Brillouin zone, so-called
reduced zone.

ρ(p) can be measured via its single or double integrals (line (2D ACAR)
or plane (1D ACAR) projections, respectively) [3, 4] or even directly by
simultaneously measuring 2D ACAR and energies of 2γ rays [5]. Studying
projections along different integration directions, 3D densities ρ(p) can be
reconstructed from 1D or 2D ACAR spectra (abbreviation nD (1D, 2D, 3D)
denotes n-dimensional).

The problem of image reconstruction from projections came into be-
ing independently in various scientific fields from radio astronomy, geology,
physics or biology to medical diagnostics. Its mathematical solution was
proposed already in 1917 by Radon [6], who considered a real function in
the N -dimensional space and its integrals over (N − 1)-dimensional hyper-
planes. Radon provided a formula for the inverse transform (named the
Radon transform), which has many applications to partial differential equa-
tions [7]. Mathematical methods used for reconstructing ρ(p) from ACAR
spectra are described in Section 3.

2. Electronic structure studied by positrons

For studying the electronic structure of crystalline solids, particularly
the FS, different experimental techniques are used. Some of them, so-called
magnetic or quantum oscillatory techniques [8], allow to estimate only some
quantities related to the FS. Moreover, they are restricted to both low tem-
peratures and high-purity samples. Meanwhile, non-magnetic methods, as
angle resolved photoemission spectroscopy (ARPES), ACAR or Compton
scattering [9], which do not have such restrictions, yield information on
the shape of the FS in arbitrary points of the reciprocal space. Of course,
they have other limitations — see remark denoted as Ref. [2] and comments
in [3, 4, 10].

The FS topology, related to many material properties, is responsible
for variety of exotic phenomena as, e.g., unconventional superconductiv-
ity [11, 12], magnetism in the heavy rare earths [13], spin density waves or
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other phenomena which accompany quantum criticality [14, 15]. Positrons
annihilation and Compton scattering are used in such studies from the be-
ginning — the first experiment, which showed the webbing of the FS with
corresponding size of the webbing vector, linked with the magnetic ordering,
was just 2D ACAR experiment in Y [16].

ACAR and Compton scattering probe the FS via e–p and electron mo-
mentum density ρ(p) in the extended space p, respectively. This density,
defined in Eq. (1), contains unique information [17] — not only on the oc-
cupied momentum states (and hence the FS) but also on the electron wave
functions. It shows that in the periodic lattice, electron and positron wave
functions are the Bloch function and

ρ(p = k + G) =
∑
kj

nkj |Akj |2 δ(p− k −G) (2)

what means that in each band j, there is a “leading” term of the density
and the so-called “Umklapp” or higher momentum components (HMC) —
see Fig. 1, in which experimental 2D ACAR spectra for silver and quartz
are displayed.

Fig. 1. Anisotropic part of experimental 2D ACAR spectra for silver with px along
[111] [17] and 2D ACAR data for α-quartz (in the range of |p| up to 15 mrad) with
px along the hexagonal [001] axis [18] — left and right parts, respectively.

In the case of silver, the isotropic average of 2D ACAR spectrum was sub-
tracted in order to visualize the anisotropy of the FS (neck in [111]) and the
1st and 2nd HMCs. The spectrum for quartz [18] contains two contributions:
one coming from para-positronium (a hydrogen-like e–p bound state) and
the second one (much broader) which comes from free positron annihilation.
Since the positronium is itself thermalized before annihilation, its momen-
tum distribution will be very narrow which at finite resolution looks like a
very sharp peak at zero momentum. There are also Umklapp contributions
at the reciprocal lattice vectors, which demonstrates that para-positronium
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also propagates in the Bloch states. Its sharp shape illustrates a high quality
of the 2D ACAR spectrometer after replacing the Anger camera by the new
HIDAC system [19] — see Fig. 3 in [18].

3. Reconstruction techniques

We discuss techniques used both in a medical tomography and in recon-
structing e–p momentum densities ρ(p) from 2D ACAR data, i.e. from line
projections of ρ(p)

N(p′y, p
′
z) =

∞∫
−∞

dp′xρ(p) , (3)

where (p′x, p′y, p′z) denotes rectangular system connected with the equipment.
Mathematical solutions of Eq. (3) can be classified into two categories:

(1) series expansions, known as algebraic reconstruction techniques (ART)
[20], in which integral (3) is reduced to the sum; (2) transform methods [21],
which consist in various analytical inversion of the Radon transform. Be-
cause ART algorithms require much more memory and computation time
than transform methods, for a long time they have not been used in both
medical and ACAR experiments imaging.

In transforms methods, the reconstruction of 3D densities is reduced to
a set of reconstructions of 2D densities, performed independently on the
succeeding parallel planes. The exception is Pecora’s method [22, 23] in
which for each 2D spectrum, one estimates some number of 1D spectra to
apply a reconstruction algorithm for plane projections [3].

To the first 2D ACAR measurements, until the year 1989 [3], similarly
as in a medical imagine, the filtered back-projection (FBP) technique had
been applied. When the computing power increased, more advanced meth-
ods were introduced, however still from the group of the transform methods:
the fast Fourier transform (FFT) [24] and Cormack’s method (CM) [25],
being multiply applied to 2D ACAR data (Refs. [17–32] (CM) and [63–82]
(FFT) cited in [3]). As concerns a system of linear equations, in princi-
ple, it could be solved by the matrix inversion. However, because of its
high dimensionality, ART are based on the iterative algorithms with using
optimisation methods, e.g. quadratic or entropy optimisation and Bayesian
analysis. For the first time, such a technique (with using Maximum Entropy
Method (MEM) [26]) was applied to 2D ACAR data for Gd [27].

Recently, the Munich 2D ACAR spectrometer at the Maier-Leibnitz ac-
celerator laboratory in Garching has been launched. The first measurements
were performed on Cr [28] in the antiferromagnetic and paramagnetic phases
and on Cu [29]. For Cu, three 2D ACAR spectra were measured and 3D ρ(p)
were reconstructed using MEM with taking into account the full symmetry
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of the reciprocal lattice, i.e. performing reconstruction of 3D density in the
whole space at the same time instead of independently on 2D planes. In the
next paper [30], devoted to studying the FS of the localized ferromagnetic
Heusler compound with using spin-polarized positrons, the authors intro-
duced into the MEM both the experimental resolution and the noise. Here,
we would like to notice that all these is also done within the MEM proposed
for reconstructing densities from both plane [31] and line [26] projections,
applied to Gd [27]. However, because of the hcp symmetry of Gd, where on
each of the planes, perpendicular to the c axis, points p are independent,
the most sensible is to perform reconstructions on each of 2D planes inde-
pendently. The similar remark concerns tetragonal and trigonal structures
— here only the cubic structures, having three axis of the highest order,
make an exception. Of course, when one performs reconstruction on 2D
planes, one should deconvolute experimental spectra before reconstructing
ρ(p), what was just done for Gd data [27] (within procedure [32]).

Of course, reconstructed 3D densities always must have the full 3D sym-
metry of the reciprocal space (or crystal in the case of studying quantities
in the real space). For the cubic symmetries, if the reconstruction is per-
formed independently on 2D planes, perpendicular to [001] direction (i.e.
the cubic symmetry is treated as a structure with one rotation axis of the
4th order), it is done by imposing (on reconstructed 3D ρ(p)) the symmetry
requirement [33] (see Fig. 2)

ρ (px, py, pz) = ρ (py, pz, px) = ρ (px, pz, py) . (4)

The symmetry requirement can be also introduced via expanding re-
constructed densities into the cubic harmonics. This particular algorithm
(rather complicated and time consuming), applied to both models and 2D
ACAR experimental data in LaB6 [33], not only filters the experimental
noise but also enhances some details of the reconstructed densities. Thanks
to such a procedure, it was possible to reproduce a very small element of the
FS in LaB6, not seen when applying, to the same experimental data, either
FBP or CM.

The ART method used in [28–30] and [34] with a parametrization of
the FS treated explicitly during the reconstruction (instead of determined
afterwards from the reconstructed densities as done by others) is described
in detail in Refs. [35, 36].

In Fig. 3, model densities reconstructed from line projections via the ART
(with a simple iteration) and FBP procedure are compared. As can be seen,
the ART gives much better results. In this particular case, the CM gives
similar results to FBP, which is not surprising because this model density
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Fig. 2. Densities reconstructed from five model projections ([100], [110] and three
between), marked in the left, lower part of the figure. Upper part: densities on
the first plane P1, perpendicular to [001] (left part) and along [100] direction on
succeeding parallel planes (e.g. Pa, Pb). Lower right part shows densities after
applying the symmetry requirement (Eq. (4)), i.e. after averaging results in areas
numbered by 1 to 3 in the upper part.

is very sharp-edged, thus it is difficult to be described by a finite polynomials
series. This is the reason that the CM (and other techniques using expansion
into orthonormal polynomials) was never used in medical imaging.

Fig. 3. Model density reconstructed by the ART and FBP procedures [37].

What could be expected under applying such techniques to real e–p
momentum densities? Results for Gd (with using MEM and CM) [27] showed
that both methods give very similar results with a little supremacy of MEM,
which, though, was much more time consuming.

In the chapter “Overview of reconstruction methods” (page 82 in [36]),
Weber compares ART with other algorithms belonging to the transform
methods. Because discussed questions are important and perhaps they re-
quire additional research, I discuss some of them.
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1. It is not possible to incorporate the full crystalline symmetry with the
CM, as only 2D slices are reconstructed. This is true but only for the cubic
structures. However, for the cubic structures, the full crystalline symmetry
could be imposed on the reconstructed 3D densities via Eq. (4) — see the
text below and after Eq. (4).

2. The CM is not suited very well to detect the sharp discontinuities of
the Fermi breaks. It takes place for very particular models, as e.g. presented
in Fig. 3. It is not a case for real data when they represent e–p momentum
densities which are smeared not only by the equipmental resolution but also
via electron–electron correlations. Moreover, for sharp densities, one can
apply two step reconstruction — see Fig. 4 and the text starting from the
last paragraph on the page 1694 in [38].

3. All the reconstruction methods mentioned above (i.e.transform method)
have one thing in common: they are analytically exact if (i) the statistics is
infinitely good, (ii) the resolution is homogeneous, (iii) the discretization
of the measurement is infinitesimal small and (iv) an infinite number of
projections is measured. In an ACAR measurement none of these require-
ments are fulfilled exactly. In the CM, the expansion of data into orthogonal
polynomials has the mean-squares approximation properties, which reduces
experimental noise. As concerns point (iv) — on the contrary, one should
measure only a few directions but with high statistic (this question is also
discussed below in point 4). For example, in Gd (the same for Y [16]) for
a proper description of projections four functions gn(p) are sufficient. Fifth
function (g24(p)) is of the order of the experimental noise — see Fig. 1 in [27]
and Fig. 4 below, which shows that the fourth radial component of density
has also very small values.

Fig. 4. Functions ρn(p) in Y, in percent of ρ0(0), reconstructed either from two or
five projections. The meaning of presented ρn(p) is given in the figure, where the
numbers in parentheses mean the numbers of projections used in the reconstruction.
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4. Using the ART, the quality of the reconstruction is always getting
better the more information is used. In contrast, adding a projection with
very low statistics can worsen the result of a reconstruction if done with
DT, FBP or CM. For each method, it is better when the more information
is used. However, adding a projection at the cost of lowering statistic of
other projections can worsen results — particularly for directions lying so
close to each other that it is impossible to observe (in the limit of both
low experimental statistics and resolution) differences between such spectra.
This question is discussed in detail on pages 4 and 5 in [39].

4. Conclusions

Recent papers [26–30, 34–36] and results presented in Fig. 3 show that
the ART algorithm is very promising, reproducing an image of much better
quality than the FBP or other transform methods. To improve the quality of
imaging, it is very beneficial to combine various reconstruction techniques
— e.g. when the iteration is initialized by FBP. The full iterative recon-
struction could model not only the noise statistics, but also the geometry of
the equipment and other artifacts. This is particularly important in medi-
cal imaging because a significant improvement of picture quality creates an
opportunity for reduction of radiation dose.

The latest innovations in commercial CT systems and evolution of recon-
struction techniques, are described in [40]. In turn, in [41–46], the authors
present new possibilities with the use of the Jagiellonian University PET
(J-PET). It is the first PET scanner based on organic scintillators, which
has to register, additionally, 3γ quanta from decays of the ortho-positronium
(o-Ps) and its lifetime. Thanks to this, J-PET is also intended for basic re-
search, for example, discrete symmetries (time delineation or CPT symme-
try) in decay of positronium [45]. Moreover, authors plan to check if prop-
erties of the o-Ps, produced within cells, can be used as a diagnostic marker
for determining the degree of a tumor progression. The use of positron anni-
hilation lifetime spectroscopy (PALS) in cancer research is described in e.g.
Refs. [47–49].

I am very grateful to Professors S.B. Dugdale and P. Moskal for their
helpful remarks.
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