# ONSET OF $\eta$ -NUCLEAR BINDING\*

Avraham Gal<sup>a</sup>, Nir Barnea<sup>a</sup>, Betzalel Bazak<sup>b</sup>, Eli Friedman<sup>a</sup>

 <sup>a</sup>Racah Institute of Physics, The Hebrew University 91904 Jerusalem, Israel
<sup>b</sup>IPNO, CNRS/IN2P3, Univ. Paris-Sud, Univ. Paris-Saclay 91406 Orsay, France

(Received September 12, 2017)

Recent  $\eta$  few-nucleon stochastic variational method calculations that study the onset of  $\eta$ -nuclear binding are reviewed. The energy dependence of the  $\eta N$  subthreshold interaction is treated self-consistently. These calculations suggest that a minimum value Re  $a_{\eta N} \approx 1$  fm is needed to bind  $\eta^{3}$ He, whereas  $\eta^{4}$ He binding requires a minimum value Re  $a_{\eta N} \approx 0.7$  fm.

DOI:10.5506/APhysPolB.48.1781

### 1. Introduction

The  $\eta N$  near-threshold ( $E_{\rm th} = 1487$  MeV) interaction is attractive, owing to the  $N^*(1535)$  resonance to which the *s*-wave  $\eta N$  system is coupled strongly. This was first shown in a  $\pi N - \eta N$  coupled channel model [1] and confirmed in fully chiral meson–nucleon coupled channel models that generate dynamically the  $\frac{1}{2}^{-} N^*(1535)$  resonance, *e.g.* [2]. These and other models have been used to calculate  $\eta$ –nuclear quasibound states with widely different predictions. Experimental searches for such states in proton, pion or photon induced  $\eta$ -production reactions are inconclusive. Regarding the onset of  $\eta$ –nuclear binding, Krusche and Wilkin [3] state: "The most straightforward (but not unique) interpretation of the data is that the  $\eta d$  system is unbound, the  $\eta^4$ He is bound, but that the  $\eta^3$ He case is ambiguous." This ambiguity stems from the strong energy dependence exhibited by the  $dp \rightarrow \eta^3$ He production reaction cross section over the first 0.5 MeV excitation, naively suggesting that a nearby S-matrix pole could be in action. However, the  $\eta^3$ He scattering length deduced from a recent fit [4]

$$a_{\eta^{3}\text{He}} = \left[-(2.23 \pm 1.29) + i(4.89 \pm 0.57)\right] \text{ fm},$$
 (1)

although of the right sign of its real part, does not satisfy the other necessary condition Re - a > Im a for a quasibound state pole.

<sup>\*</sup> Presented at the 2<sup>nd</sup> Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, Kraków, Poland, June 3–11, 2017.

With  $\eta^{3}$ He almost bound, one might expect that the denser <sup>4</sup>He nucleus is more likely to exhibit weak binding. However, a recent Faddeev–Yakubovsky evaluation [5] of the scattering lengths  $a_{\eta^{A}\text{He}}$  for both He isotopes, A = 3, 4, finds this not to be the case, with the denser <sup>4</sup>He apparently leading to a stronger reduction of the subthreshold  $\eta N$  scattering amplitude than in <sup>3</sup>He.

The present overview reports and discusses recent few-body stochastic variational method (SVM) calculations of  $\eta NNN$  and  $\eta NNNN$  using several semi-realistic NN interaction models together with two  $\eta N$  interaction models with strength sufficient to study the onset of  $\eta$ -nuclear binding in the He isotopes [6–8].

## 2. $\eta N$ and NN interaction model input

Figure 1 shows  $\eta N$  s-wave scattering amplitudes  $F_{\eta N}(E)$  calculated in two meson-baryon coupled-channel models across the  $\eta N$  threshold where Re  $F_{\eta N}$  has a cusp. Both amplitudes exhibit a resonance about 50 MeV above threshold, the  $N^*(1535)$ . The sign of Re  $F_{\eta N}$  below the resonance indicates attraction which is far too weak to bind the  $\eta N$  two-body system. The threshold values  $F_{\eta N}(E_{\rm th})$  are given by the scattering lengths

$$a_{\eta N}^{\rm GW} = (0.96 + i0.26) \text{ fm}, \qquad a_{\eta N}^{\rm CS} = (0.67 + i0.20) \text{ fm},$$
 (2)



Fig. 1. Real and imaginary parts of the  $\eta N$  c.m. scattering amplitude near threshold in two meson-baryon coupled-channel  $N^*(1535)$  models: GW [9] and CS [10].

with lower values below threshold. Figure 2 shows subthreshold values of the strength function  $b_A(E)$  defined by an effective  $\eta N$  potential

$$v_{\eta N}(E;r) = -\frac{4\pi}{2\mu_{\eta N}} b_A(E) \delta_A(r) , \qquad \delta_A(r) = \left(\frac{\Lambda}{2\sqrt{\pi}}\right)^3 \exp\left(-\frac{\Lambda^2 r^2}{4}\right) ,$$
(3)

derived from the scattering amplitude  $F_{\eta N}^{\text{GW}}(E)$  of Fig. 1 for several choices of inverse range  $\Lambda$ . The normalized Gaussian functions  $\delta_{\Lambda}(r)$  are perceived in  $\neq$ EFT (pionless EFT) as a single  $\eta N$  zero-range Dirac  $\delta^{(3)}(\mathbf{r})$  contact term (CT), regulated by using momentum-space scale parameters  $\Lambda$ . Substituting the underlying short range vector-meson exchange dynamics by a single regulated CT requires that  $\Lambda \leq m_{\rho}$  (~ 4 fm<sup>-1</sup>).



Fig. 2. Real and imaginary parts of the strength function  $b_{\Lambda}(E)$  of the effective  $\eta N$  potential  $v_{\eta N}^{\text{GW}}(E)$ , Eq. (3), obtained from the scattering amplitude  $F_{\eta N}^{\text{GW}}(E)$  of Fig. 1 below threshold for four values of the scale parameter  $\Lambda$ .

Similarly, a  $\neq$ EFT  $V_{NN}(ij)$  is derived at leading order by fitting a single regulated CT ~  $\delta_A(r_{ij})$  in each spin-isospin *s*-wave channel to the respective NN scattering length. To avoid NNN and  $\eta NN$  Thomas collapse in the limit  $\Lambda \to \infty$ , one introduces a *universal* three-body regulated CT

$$V_3(ijk) = d_3^{\Lambda} \,\delta_{\Lambda}(r_{ij}, r_{jk}) \,, \qquad \delta_{\Lambda}(r_{ij}, r_{jk}) = \delta_{\Lambda}(r_{ij})\delta_{\Lambda}(r_{jk}) \tag{4}$$

by fitting to  $B_{\exp}({}^{3}\text{He})$ .  $B_{calc}({}^{4}\text{He})$  is found in this #EFT version [11] to vary moderately with  $\Lambda$  and to exhibit renormalization scale invariance by approaching a finite value  $B_{\Lambda\to\infty}({}^{4}\text{He}) = 27.8 \pm 0.2$  MeV that compares well with  $B_{\exp}({}^{4}\text{He}) = 28.3$  MeV. Using  $v_{\eta N}^{\text{GW}}(E)$ , we find that a potential collapse of  $\eta d$  has little effect on  $B(\eta {}^{A}\text{He})$  values calculated for  $\Lambda \leq 4$  fm<sup>-1</sup> [12].

#### 3. Energy-independent #EFT $\eta$ -nuclear few-body calculations

Figure 3 shows  $\eta$  separation energies  $B_{\eta}$  from #EFT SVM calculations of  $\eta^{3}$ He and  $\eta^{4}$ He using energy-independent  $\eta N$  potentials  $v_{\eta N}(E = E_{\rm th})$ fitted to given real values of  $a_{\eta N}$  for chosen values of  $\Lambda$ . The figure suggests that binding  $\eta^{3}$ He ( $\eta^{4}$ He) requires that  $a_{\eta N} \geq 0.55$  fm (0.45 fm), compatible with an effective value Re  $a'_{\eta N} = 0.48 \pm 0.05$  fm derived for a nearly bound  $\eta^{3}$ He [4]. The figure does not show that once  $\eta d$  becomes bound, beginning at  $a_{\eta N} \approx 1.2$  fm for  $\Lambda = 4$  fm<sup>-1</sup> [6], values of  $B_{\eta}^{\Lambda=3,4}(\Lambda > 4$  fm<sup>-1</sup>) diverge [12].



Fig. 3. Separation energies  $B_{\eta}$  obtained in SVM calculations of  $\eta^{3}$ He and  $\eta^{4}$ He using #EFT NN and  $\eta N$  real interactions, the latter fitted to values of  $a_{\eta N} < 1$  fm, plus a universal NNN and  $\eta NN$  three-body CT (4), as a function of  $1/\Lambda$ .

#### 4. Energy dependence in $\eta$ -nuclear few-body systems

The  $N^*(1535)$  resonance induces strong energy dependence of the scattering amplitudes  $F_{\eta N}(E)$ , Fig. 1, requiring the use of energy-dependent potentials  $v_{\eta N}(E_{\text{input}})$  in  $\eta$ -nuclear few-body calculations. It is shown in Ref. [8] that this generates a continuous  $\eta N$  two-body energy distribution in the subthreshold region, with output expectation value

$$\langle E_{\text{output}} \rangle = E_{\text{th}} - \frac{B}{A} - \xi_N \frac{1}{A} \langle T_N \rangle + \frac{A-1}{A} \langle E_\eta \rangle - \xi_A \xi_\eta \left(\frac{A-1}{A}\right)^2 \langle T_\eta \rangle , \quad (5)$$

where  $\xi_{N(\eta)} = m_{N(\eta)}/(m_N + m_\eta)$ ,  $\xi_A = Am_N/(Am_N + m_\eta)$ ,  $T_N$  and  $T_\eta$  are nuclear and  $\eta$  kinetic energy operators in appropriate Jacobi coordinates, B is the total binding energy and  $E_\eta = (H - H_N)$  with each Hamiltonian defined in its own c.m. frame. Self consistency requires  $\langle E_{\text{output}} \rangle = E_{\text{input}}$ , satisfied after a few iterations in the  $\eta N$  subthreshold regime. Applications of self consistency (sc) to meson-nuclear systems are reviewed in Ref. [13]. For recent  $K^-$ -atom and  $K^-$ -nuclear applications see Refs. [14, 15].

#### 5. Results and discussion

Our fully self-consistent  $\eta NN$ ,  $\eta NNN$  and  $\eta NNNN$  bound-state calculations [6–8] use the following nuclear core models: (i) #EFT with a threebody contact term [11], (ii) AV4p, a Gaussian basis adaptation of the Argonne AV4' NN potential [16], and (iii) MNC, the Minnesota soft core NN potential [17]. The N\*(1535) models GW [9] and CS [10] were used to generate energy-dependent  $\eta N$  potentials which prove to be too weak to bind any  $\eta NN$  system when using AV4p or MNC for the nuclear core model. Calculated  $\eta$  separation energies  $B_{\eta}$  are shown in Figs. 4 and 5.



Fig. 4.  $B_{\eta}(\eta^{3}\text{He})$  and  $B_{\eta}(\eta^{4}\text{He})$  as a function of  $1/\Lambda$  in #EFT few-body calculations using  $v_{nN}^{\text{GW}}$ , with (squares) and without (circles) imposing self consistency.



Fig. 5.  $B_{\eta}(\eta^{3}\text{He})$  and  $B_{\eta}(\eta^{4}\text{He})$  as a function of  $1/\Lambda$  in self consistent few-body calculations using sets of NN and  $\eta N$  interaction models, as marked.

Figure 4 demonstrates in #EFT the moderating effect that imposing self-consistency, using  $v_{\eta N}^{\text{GW}}(E_{\text{sc}})$  rather than the threshold values  $v_{\eta N}^{\text{GW}}(E_{\text{th}})$ , bears on the calculated  $B_{\eta}$  values and their  $\Lambda$  scale dependence.

Figure 5 demonstrates the dependence of  $B_{\eta}$ , calculated self-consistently, on the choice of NN and  $\eta N$  interaction models. For physically acceptable scale values,  $\Lambda \leq 4$  fm<sup>-1</sup>, this model dependence is quite weak.

The  $B_{\eta}$  values shown here were calculated assuming real Hamiltonians, justified by  $\operatorname{Im} v_{\eta N} \ll \operatorname{Re} v_{\eta N}$  from Fig. 2. This approximation is estimated to add near threshold less than 0.3 MeV to  $B_{\eta}$ . Perturbatively-calculated widths  $\Gamma_{\eta}$  of weakly bound states amount to only few MeV, outdating those reported in Ref. [6]. Focusing on the AV4p results in Fig. 5, which are close to the #EFT results in Fig. 4, we conclude that  $\eta$ <sup>3</sup>He becomes bound for  $\operatorname{Re} a_{\eta N} \sim 1$  fm, as in model GW, while  $\eta$ <sup>4</sup>He binding requires a lower value of  $\operatorname{Re} a_{\eta N} \sim 0.7$  fm, almost reached in model CS. These  $\operatorname{Re} a_{\eta N}$  onset values, obviously, are *larger* than those estimated in Section 3 upon calculating with  $v_{\eta N}(E = E_{\text{th}})$  threshold input. Finally,  $\operatorname{Re} a_{\eta N} < 0.7$  fm if  $\eta$ <sup>4</sup>He is unbound, as might be deduced from the recent WASA-at-COSY search [18].

A.G. would like to thank Paweł Moskal for the invitation to participate in the 2<sup>nd</sup> Jagiellonian Symposium and for his kind hospitality.

#### REFERENCES

- [1] R.S. Bhalerao, L.C. Liu, *Phys. Rev. Lett.* **54**, 865 (1985).
- [2] N. Kaiser, P.B. Siegel, W. Weise, *Phys. Lett. B* **362**, 23 (1995).
- [3] B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2015).
- [4] J.J. Xie et al., Phys. Rev. C 95, 015202 (2017).
- [5] A. Fix, O. Kolesnikov, *Phys. Lett. B* **772**, 663 (2017).
- [6] N. Barnea, E. Friedman, A. Gal, *Phys. Lett. B* **747**, 345 (2015).
- [7] N. Barnea, B. Bazak, E. Friedman, A. Gal, *Phys. Lett. B* 771, 297 (2017).
- [8] N. Barnea, E. Friedman, A. Gal, Nucl. Phys. A 968, 35 (2017).
- [9] A.M. Green, S. Wycech, *Phys. Rev. C* **71**, 014001 (2005).
- [10] A. Cieplý, J. Smejkal, *Nucl. Phys. A* **919**, 46 (2013).
- [11] J. Kirscher, E. Pazy, J. Drachman, N. Barnea, *Phys. Rev. C* 96, 024001 (2017).
- [12] Consequences of  $\eta d$  collapse overlooked in Ref. [7] will be discussed elsewhere.
- [13] A. Gal et al., Acta Phys. Pol. B 45, 673 (2014).
- [14] E. Friedman, A. Gal, *Nucl. Phys. A* **959**, 66 (2017).
- [15] J. Hrtánková, J. Mareš, Phys. Lett. B 770, 342 (2017); Phys. Rev. C 96, 015205 (2017).
- [16] R.B. Wiringa, S.C. Pieper, *Phys. Rev. Lett.* **89**, 182501 (2002).
- [17] D.R. Thompson, M. LeMere, Y.C. Tang, Nucl. Phys. A 286, 53 (1977).
- [18] P. Adlarson et al. [WASA-at-COSY Collaboration], Nucl. Phys. A 959, 102 (2017).

1786