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Tunneling is one of the most bizarre phenomena in quantum mechanics.
An attempt to understand it led to the next natural question of how long
does a particle need to tunnel a barrier. The latter gave rise to several
definitions such as the phase, dwell, Larmor and traversal times among
others. A short review of the evolution of these time concepts, followed
by an account of experiments involving field-induced tunnel ionization and
electron tunneling in a solid state junction is presented here. Whereas
the former experiments use sophisticated techniques involving femtosecond
laser pulses and determine the tunneling time by mapping the angle of
rotation of the field vector to time, like the hands of a watch, the latter
provides a simpler method through the measurement of current-voltage
characteristics of the junction.
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1. Introduction

The definition of time has always intrigued philosophers and physicists
equally. Whereas in the opinion of philosophers such as Immanuel Kant,
space and time are the framework within which the mind is constrained to
construct its experience of reality, a more pragmatic view was to consider
time as something that we use a clock to measure. In physics, time appears
as a parameter, be it through Newton’s second law, F = dp/dt, in classical
physics or the Schrödinger equation, i~∂Ψ/dt = HΨ , in quantum mechanics.
We may then ponder if there is a way to measure time without referring to
the parametric time. In other words, is there an expression which represents
a time interval without directly depending on the parameter t? The answer
to this question indeed leads us to the quantum time concepts developed
in connection with collisions or scattering in three dimensions (3D) and
tunneling in one dimension (1D). As we shall see in the next sections, both
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these times in 3D and 1D are “interaction times” of the subatomic particles
involved. Their definitions [1] follow from similar conceptual considerations
and find meaning in physical processes [2, 3].

2. Evolution of quantum time concepts

We are a long way from 1928 when Gamow published his pioneering
work [4] on the tunneling of alpha particles in radioactive nuclei. Though
tunneling seems to be a well-understood phenomenon with ramifications
in many branches of physics, the amount of time spent by a particle in
tunneling remains controversial. One of the earliest papers [5] on the topic
studied the time evolution of a wave packet and concluded that there is
no appreciable delay in the transmission of the packet through the barrier.
Though the question of tunneling time as such did not attract much attention
for another 25 years, it is interesting to note that the dwell time concept
which was proposed by Smith [6] in 1960 appeared earlier in a different guise
in a 1938 paper by Kapur and Peierls [7] on the study of cross sections with
resonances. The dwell time, τD, is a stationary concept and corresponds
to the time spent by a particle in a given region of space with interaction.
Smith derived the collision time in three dimensions (3D) and extended it
to the multichannel case of elastic scattering with resonance formation. He
constructed a lifetime matrixQ which was related to the scattering matrix S
as, Q = −i~SdS†/dE, such that the diagonal elements Qii gave the average
lifetime of a collision beginning in the ith channel. In the one channel, elastic
scattering case, this expression reduces to the phase time delay (τ̃φ(E) =
dδ/dE, with δ being the scattering phase shift) derived by Wigner and
Eisenbud [8] earlier. However, whereas the expression due to Smith which is
derived from a time delayed radial wave packet is consistent with a lifetime
matrix which is Hermitian, any Eisenbud-type lifetime matrix violates time
reversal invariance [9]. The collision time of Smith reduces in 1D to the
dwell time in tunneling [10] which is given as, τD(E) =

∫ x2
x1
|Ψ(x)|2 dx/j,

where, |Ψ(x)|2 gives the probability density and j the current density for a
particle tunneling through a potential barrier with energy E = (~k)2/2m.
It is then natural to expect a relation between the dwell time (τD) and the
phase time (τφ) which was indeed derived in [11] and given by τφ(E) =
τD(E)−~[=mR/k] dk/dE . The last term here arises due to the interference
of the incident and the reflected waves in front of the barrier, and makes the
phase time singular near threshold. The relation was shown in the 3D case
to be [12], τ̃φ(E) = τ̃D(E) − ~µ[tR/π] dk/dE. For large energies however,
the phase and dwell times are the same. A relation between the phase time
delay and number of resonances can be found in [13].



Electron Tunneling Times 1827

In the years to follow, more definitions of tunneling time arose in differ-
ent contexts. For example, considering the spin precession of an electron in a
weak magnetic field, Büttiker [10] defined the Larmor time which was related
to the expectation value of the spin operator and reduced to the dwell time
in the particular case of a rectangular barrier. The generalized Büttiker–
Landauer time was derived later [14] and given by τBL = −~ ∂ ln |T |/∂V ,
which appears to be similar in form to the Pollak–Miller time [15, 16],
τPM = ~ ∂ ln |T |/∂E. The four tunneling times: the Larmor time, Buettiker–
Landauer time, Wigner’s phase time and Pollak–Miller time, originally de-
rived from very different physical assumptions were derived in a unified man-
ner within a Feynman path integral approach [17] using Gell-Mann–Hartle
decoherence functionals. The total wave function was expressed as a sum
over all possible “paths” with each path contributing a phase containing the
action for that path. At this point, we refer the reader to the review articles
[1, 16, 18, 19] and continue in the rest of the article to find out which of the
tunneling time definitions correspond to physically measured times.

3. Experimental extraction of electron tunneling times

The time spent by subatomic particles in tunneling potential barriers is
usually estimated to be extremely small and beyond the reach of experimen-
tal precision. Using the calculated values of free electron Fermi energies and
measured values of the work function, Hartman [20] estimated the phase
times for metal–insulator–metal sandwiches for several different materials
to be of the order of 10−16 s.

Though a direct measurement of such small times does not seem feasible,
the advent of intense laser fields has made measurements on the tunneling
of bound electrons from atoms possible [21–23]. In [21], for example, an
(intensity averaged) upper limit of 12 attoseconds on the tunneling delay
time in strong field ionization using helium atoms was placed. More recently,
the authors in [23] find that the time delay in tunneling is zero for helium and
argon atoms within the experimental uncertainty of a few tens of attoseconds
(10−18 s). In this strong field ionization process, the electron tunnels through
the potential created by a superposition of the atomic Coulomb potential
and the laser field. The free electron is further accelerated by the laser field
and the tunneling time is determined by measuring the electron momentum
which depends on the strength of the field. In [24], the authors perform a
comparison of the extracted electron tunneling times with various theoretical
definitions and conclude that only the Larmor time and the probability
distribution of tunneling times constructed using a Feynman Path Integral
formulation are compatible with experiment.
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Worth mentioning here is also an experiment [25] using field emission
microscopy (FEM) [25]. Measuring the transversal momentum spread of
the electrons, emitted by an isolated center of the tip, the electron tunneling
time related with the field ionization of this center could be deduced. The
precision of the experiment lied in the preparation of ultra sharp silicon tips
(radius of curvature 10–20 nm) coated with 50–100 nm thick CaF2:Sm2+

layers which could be used as the field-emission sources, for which the tun-
neling current would be due to the field ionization of single isolated bivalent
samarium dopant ions.

Coming now to the tunneling of electrons through a solid state junction,
in [3], a novel method to extract the dwell times of electrons in metal–
insulator–metal sandwiches from current–voltage (I–V) characteristics was
presented. Tunneling of electrons in solid state junctions was studied earlier
in [26]. Reference [3] reported the I–V characteristics in an Al/Al2O3/Al
junction for temperatures ranging from 3.5 to 300 K. The experimental data
was then used to fit the barrier height and width (for a rectangular barrier)
using a standard semiclassical model for the I–V relation from [27]. The
fits led to a constant value of barrier width s ∼ 20.8 Å and a continuous
increase in the barrier height V0(T ) from 1.799 eV at 300 K to 1.83 eV
at 3.5 K. Temperature dependence of the energy gap, Eg(T )

exp, was also
determined and allowed the authors to determine the average phonon fre-
quency ω. An excellent fit to Eg(T )

exp was obtained with an average phonon
frequency, ω = 2.05 × 1013 sec−1 [3], in close agreement with the value of
ω = 2.24 × 1013 sec−1, determined from the speed of sound measurements
using picosecond ultrasonic technique in amorphous Al2O3. Having gained
confidence about the precision of the measurements from the above agree-
ment of the phonon frequencies, the barrier parameters were then used to
extract the temperature-dependent dwell times in tunneling. The average
dwell time τD was found to depend very weakly on temperature. The value
of τD was found to be 3.6×10−16 sec at mid-barrier energies. Extrapolating
the values of the measured times in the field ionization experiments (see
Fig. 3 of Ref. [24]) to widths comparable to the above junction, shows that
the order of magnitude of the times is similar. The importance of [3] lies in
the fact that knowledge of the tunneling time is obtained in a much simpler
experiment as compared to [24]. An extension of [3] including dissipative
effects was done in [28].

In passing, we note a recent experiment [29] based on the merger of
two fields [30] which have rapidly grown over the past few decades: optical
lattices (artificial crystals bound by light) and Bose–Einstein Condensates
(BEC). In [29] a direct measurement of the tunneling delay time through the
barriers of an optical lattice was performed by studying the time evolution of
a Rubidium-87 BEC after a sudden displacement of the lattice. The authors
report delay times of the order of tens of µs.
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4. Concluding remarks

We started the discussion in this article by asking if time which appears
as a parameter t can also be expressed as a quantity which does not explicitly
depend on the parameter, t. Indeed, we saw different quantum time concepts
which are defined in terms of the energy, wave function, energy-dependent
phases and flux of the tunneling particles. Apart from the definitions them-
selves, there exist relations which connect the times to quantities such as the
density of states. The energy derivative of the scattering phase shift which
gives the phase time delay for example, is given via the Beth–Uhlenbeck
formula by [31]

∑
l nl(E) − n0l (E) =

∑
l(2l + 1/π)(dδl/dE), where nl(E)

and n0l (E) are the densities of states with and without interaction respec-
tively. This relation leads to interesting interpretations involving “time ad-
vancement” or negative time delay in a scattering process involving unstable
states [32]. Similar relations can also be derived in 1D with the phase time
defined in terms of the phase of the transmission amplitude in tunneling [33].

Finally, we note that tunneling processes are inherently connected to the
survival and decay of unstable states [34]. This fact relates the tunneling
times as well as the collision times to the survival probabilities of the unstable
states. The half-life of a radioactive nucleus can be shown to be given by the
dwell time in the tunneling of alpha particles through a Coulomb barrier [2].
The dwell time can also be used to extract the non-exponential behaviour
of the decay law at large times [35] as predicted by quantum mechanics
[36]. Investigation of the quantum time concepts has indeed led to the
understanding of time in its different guises.
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