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We present a summary of our recent publication concerning the deriva-
tion of the extended Casimir–Polder (C–P) dispersive interaction between
two neutrons. Dynamical polarizations of the neutrons, recently derived
within Chiral Effective Theory, are used for the purpose. An account
of the higher frequency/energy behavior of these entities related to the
opening of one-pion production channel and the excitation of the ∆ reso-
nance are taken into consideration in our derivation of the C–P interaction.
The neutron–neutron system in free space is treated in details so are the
neutron–wall and the wall–neutron–wall systems. The case of tetraneutron
(a 4-neutron system) in a resonant state is then briefly considered. The 4n
C–P interaction is evaluated to assess its potential relevance to the ongoing
debate concerning the nature of the tetraneutron.
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1. Introduction

It is by now a given fact that hadrons are bound entities of fraction-
ally charged quarks and the ensuing effects of this picture results in their
electric and magnetic polarizabilities. The long-distance strong interaction
between neutrons arise from exchanges of quarks and gluons in colorless
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states (bosons) driven mainly by the underlying chiral symmetry of quantum
chromodynamics (QCD). The electromagnetic interactions between well-
separated neutrons arise from the Casimir–Polder (C–P) effect related to the
dipole polarizability [1–3]. Knowing the C–P interaction involving neutrons
is important from the practical point of view as it has relevance in ultracold
neutron physics and, in particular, in the understanding of the working of
neutron confining bottles. In this contribution, we give a summary of our
recent publication on the subject and also comment on the tetraneutron.

2. C–P interaction between two neutrons

Recently, we have investigated the neutron–neutron dispersive Casimir–
Polder interaction between two neutrons [4]. In that work, we assessed the
importance of internal excitation of the neutron and pion production on the
dynamic polarizabilities. We present in this section our results for the n–n,
C–P interaction.

As shown by Feinberg and Sucher [5], the asymptotic (r ∼ ∞) long-
distance electromagnetic interaction between two neutrons is given by the
Casimir–Polder potential

V∞CP,nn(r) = − ~c
4πr7

[
23
(
α2
n + β2n

)
− 14αnβn

]
+O

(
r−9
)

= V ∗CP,nn(r) +O
(
r−9
)
, (1)

with the notation of V ∗CP meaning the static limit of the nucleon dynamic
polarizabilities. Bernabéu and Tarrach, on the other hand, derived the anal-
ogous long-range potential between a proton and a neutron [2]

V∞CP,pn(r) = ~c α0

[
− αn
2r4

+
1

4πcMpr5
(11αn + 5βn) +O

(
r−7
)]

= V ∗CP,pn(r) +O
(
r−7
)
, (2)

whereMp is the proton mass and α0 = e2/4π ∼ 1/137 is the electromagnetic
fine structure constant. It exhibits the leading repulsive r−5 term from the
polarizabilities of the neutron induced by the charge of the proton, followed
by the r−7 interaction bilinear in the two nucleon polarizabilities.

In Ref. [4], we improved the above description by considering the fre-
quency dependence on the so-called dynamical dipole polarizabilities. At
distances large enough that exchange forces can be neglected, the Casimir–
Polder interaction between two neutrons follows from [3, 5]

VCP,ij(r) = −
α0

πr6
Iij(r) , (3)
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where

Iij(r) =

∞∫
0

dωe−2α0ωr
{
[αi(iω)αj(iω) + βi(iω)βj(iω)]PE(α0ωr)

+ [αi(iω)βj(iω) + βi(iω)αj(iω)]PM(α0ωr)
}
,

PE(x) = x4 + 2x3 + 5x2 + 6x+ 3 , PM(x) = −
(
x4 + 2x3 + x2

)
, (4)

and αi(ω) and βi(ω), respectively, are the dynamic electric and magnetic
dipole polarizability of particle i, and similarly for particle j.

Theoretical and experimental studies on the nucleon polarizabilities have
a long tradition in hadron physics, as they unravel important information
about the internal structure of hadrons (for a review, see [6]). Low-energy
analyses with photon energies up to the excitation of the ∆ resonance were
performed within the effective theory of QCD in such regime, namely, chiral
effective field theory [6–10]. The energy dependence of the neutron dipole
polarizabilities αn(ω), βn(ω) involve long expressions and integrals that are
far from simple. Given this, in [4] we proposed a parametrization with a
simpler form that takes into account the one-pion production cusp and the
∆ resonance contribution

αn(ω) =
αn(0)

√
(Mπ + a1)(2Mn + a2)(0.2a2)

2√(√
|M2

π − ω2|+ a1

)(√
|4M2

n − ω2|+ a2

)
[|ω|2 + (0.2a2)2]

, (5)

βn(ω) =
βn(0)− b21ω2 + b32Re(ω)(
ω2 − ω2

∆

)2
+
∣∣ω2Γ 2

∆

∣∣ (6)

with fitting parameters a1, a2, b1, b2, ω∆, and Γ∆. The parameter a1 is
formally a higher order effect, but is important to match the correct pion
production threshold, which controls the low-energy behavior of αn(ω) [7].
The square roots in Eq. (5) are attempts to incorporate the pion production
threshold behavior above which αn develops an imaginary part. The param-
eters ω∆ and Γ∆, respectively, are quite close to the n–∆ mass splitting and
the resonance width as exhibited in Table 1 of [4]. These specific forms also
assume the smooth and asymptotically decreasing behavior of αn and βn at
imaginary frequencies, which are expected from analyticity of the Compton
S-matrix and are used in the construction of our Casimir–Polder potentials.

We fit Eqs. (5) and (6) to the covariant formulation of baryon chiral
effective field theory (CB-χEFT) of Lensky, McGovern, and Pascalutsa [10],
which takes proper account of the nucleon recoil corrections to all orders.
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ForMn = 938.919 MeV and lettingMπ be a free parameter, we obtainMπ =
134.051 MeV, which is fairly close to the neutral pion mass (134.98 MeV).
The remaining parameters are given in [4]. The parametrizations yield dy-
namic polarizabilities, shown in Figs. 1 and 2, that visibly describe well the
results of [10] and remain well within the comparatively large theoretical
uncertainties [6, 10]. We also checked that our results are in qualitative
agreement with chiral EFT results at imaginary frequencies up to iMπ [4].
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Figure 1. (Color online) Dynamic electric (left) and magnetic (right) polarizabil-
ities, as functions of the photon energy ωγ . The gray/yellow circles are the CB-
χEFT results of Lensky et al. [10], while sets 1, 2, and 3 correspond to our
parametrizations using the numbers specified in [4].
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Figure 2. (Color online) C–P interaction for two neutrons, as a function of the
separation distance r. The bold red and thin blue lines correspond to the use of
dynamical and static dipole polarizabilities, respectively.

From our parametrizations (5), (6), we obtain the neutron–neutron C–P
interaction via Eqs. (3) and (4). The results are given in Fig. 2 as functions
of the separation distance. The bold red curves correspond to VCP,nn(r)
given by the dynamic polarizabilities previously shown, while the thin blue
curves correspond to the static limit αn(ω), βn(ω)→ αn(0), βn(0). It is clear
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from Fig. 3 that the effect of dynamical polarizabilities is to decrease the
magnitude of the potential up to distances as far as 200 fm. The expected
long-distance limit of Eq. (1) can be inspected in Fig. 3. We use parameters
from set 3, which illustrates well the qualitative behavior of the other sets.
In the dashed (red) curve we multiplied the C–P potential by s r6, where
s = 100 fm to fit in the figure. The long-dashed (blue) and solid black lines,
respectively, are the dynamic and static polarizabilities versions of VCP,nn

(the latter indicated by V ∗CP,nn in the figure), multiplied by r7. The thin
solid (red) line is the arctan parametrization [11] commonly used in atomic
physics (see, for example, Ref. [12]) to make the transition from the 1/r6

van der Waals to the asymptotic 1/r7 Casimir–Polder behavior [13].
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Figure 3. (Color online) The neutron–neutron C–P interaction as a function of the
separation distance r, multiplied by s r6 (dashed (red) line, with s = 100 fm) and
r7 (long-dashed (blue) line). The solid black line is the C–P potential from the
static limit of the dipole polarizabilities, multiplied by r7.

The dashed (red) curve evidences the 1/r6 behavior at small distances
up to ≈ 20 fm — a region that is dominated by energies larger than used to
set our parametrizations (5), (6). This can be checked via the dominance of
the exponential factor in Eq. (4): r . 20 fm involves photon energies larger
than (2α0 × 20 fm)−1 ∼ 670 MeV. The Delta resonance starts contributing
at about (2α0ω∆)

−1 ∼ 50 fm, mostly via βn(ω) which is numerically of
∼ 10%. Our results can, therefore, be considered valid for distances beyond
50 fm. The same reasoning applies to the contribution of the pion production
threshold, at around 100 fm. The expected asymptotic behavior (1) is only
reached for r & 103 fm, dominated by dynamic polarizabilities in the region
of ωγ . 10 MeV [4].
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In Ref. [4], we have also calculated the neutron–wall C–P interaction and
the wall–neutron–wall interaction. For completeness, we show the results in
Fig. 4 below and further details can be found in [4].
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Figure 4. Left panel: C–P interaction for a neutron and a wall as a function of
the separation distance r. Notation is the same as in Fig. 2. Right panel: C–P
interaction for a neutron between two walls as a function of the neutron position
from the midpoint z and the separation between the two walls L.

3. The C–P interaction among three and four neutrons

As we have discussed in Section 2, the C–P interaction between two neu-
trons is not very sensitive to the high frequency dispersive response of the
neutron connected with the opening of the one-pion production channel and
the excitation of the 3/2+∆ resonance. Nevertheless, the overall C–P inter-
action associated with the usual dipole–dipole dispersive force is appreciable
and detectable through careful analysis of low-energy n–n scattering.

3.1. The 3n C–P interaction

It is certainly of interest to investigate the C–P interaction among three,
four and more neutrons. The usual approach to this few and many-body
system through the introduction of a mean field is not appropriate here [15].
The non-additive dispersive C–P potentials for three and four neutrons can
be read off from this paper, and we give here the final results appropriate
for a given geometry. For an equilateral triangular configuration of three
neutrons with sides of length r, the general result of [15] would give

V CP
3n (r) =

24 × 79

35
~c
π

α3
n

r10
= 1.73

~c
π

α3
n

r10
, (7)

while the linear configuration n–n–n with the inner n–n separation being
r/2 gives

V CP
3n (r) = −186~c

π

α3
n

r10
. (8)
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The prediction of [15] for three neutral molecules as extended to neutrons in
this paper shows that the geometry plays a central role. The C–P interaction
is repulsive in the triangular case, while it is attractive in the linear case.
This is in contrast to the two-neutron C–P interaction which is universally
attractive.

3.2. The 4n C–P interaction and its potential relevance to the tetraneutron

We turn now to the C–P interaction in the case of a tetramolecule as
derived by [15] and as applied here for the 4-neutron system in the spatial
configuration of a regular tetrahedron, shown schematically in Fig. 5, with
a neutron at points A, B, C, and D, and segments AB, AC, AD, BC, BD,
and CD of length r,

V CP
4n (r) = −3× 41× 2689

215
~c
π

α4
n

r13
= −633~c

π

α4
n

r13
, (9)

which is universally attractive.

Figure 5. A tetrahedron with its circumsphere [14].

To summarize, with the value of the electric polarizability αn = 12.6 ×
10−4 fm3, we have the following results:

1. For the equilateral triangle,

V CP
3n (r) = 2.12× 10−7

1

r10
[MeV] . (10)
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2. For the linear chain, n–n–n with the n–n separation r/2

V CP
3n (r) = −2.28× 10−5

1

r10
[MeV] . (11)

3. For the regular tetrahedron configuration of edge length r, we have

V CP
4n (r) = −1.55× 10−9

1

r13
[MeV] . (12)

In all the equations above, r is in femtometer.
It is known that there is no bound dineutron. This fact became impor-

tant in so far as the recent production of Borromean nuclei, such as 6He and
11Li, where the structure is understood as a bound core plus two neutrons.
None of the two fragment subsystems are bound, e.g., 4He + n = 5He, n+n
are unbound, and similarly for 11Li considered as a stable core, 9Li are bound
to two neutrons; with 9Li + n = 10Li and n+ n = 2n being unbound.

There are also no bound or observable resonant trineutron states. The
cause for this is the Fermi nature of the neutron and the corresponding Pauli
exclusion principle.

The quest for bound tetraneutrons was started back in the early sixties
[16, 17], where the possible existence of the bound tetraneutron in the re-
action 4He(γ,π+)4H → 3H + n was claimed. This result was challenged by
[18] through the study of the byproducts of the induced and spontaneous
fission of uranium and californium. They obtained negative results.

The search for tetraneutrons was revived with the advent of secondary
beams of very neutron rich unstable nuclei such as 8He, 11Li, 14Be and 15B.
Reference [19] studied the reactions of these exotic nuclei with a carbon tar-
get, and detected tetraneutrons in the elastic breakup reaction 14Be+12C→
4n+ 10Be + 12C. These results posed a great challenge to nuclear structure
theory, as Pieper [20] has pointed out. Pieper used the most realistic nuclear
Hamiltonian at the time which predicts successfully many properties of the
nucleus, and could not find a bound tetraneutron system.

In 2016, Kisamori et al. [21] studied the reaction 4He (8He, 8Be) and
found a resonant tetraneutron state in the missing mass spectrum. This
energy of the tetraneutron resonance was found to be ER = 0.83 ±
0.63(statistical)∓1.25(systematic) MeV above the threshold of four-neutron
decay. The width of this resonance, ΓR, was found to be 2.6 MeV (Full Width
at Half Maximum). Clearly, ΓR > 2ER. Three theoretical papers [22–24]
contested the existence of a tetraneuron resonance as it would require the
inclusion in the four-body description a strong three-nucleon force which
would have an undesirable consequence on the other properties of the nu-
clear system. On the other hand, Fossez et al. [25] performed a realistic



The Casimir–Polder Interaction Between Two Neutrons and Possible . . . 1845

structure calculation which included the coupling to the continuum a reso-
nant 4n state at roughly the same energy of [21], but the width came out to
be larger than 3.7 MeV. Since the tetraneutron resonance is a wide resonance
in the sense that its width is larger than twice its energy, its decay would de-
viate appreciably from a simple exponential. The tiny C–P interaction may
play a role on the decay and lower the value of the width, though a care-
ful calculation of the influence of the C–P force on the basic nn scattering
length would be needed, and with this a reexamination of the 4n interaction
and decay properties can be assessed. This work is in progress.

4. Conclusions

In this contribution, we have discussed our recent findings about the
Casimir–Polder interaction between neutrons. In particular, we assessed the
importance of the pion production threshold and the ∆ resonance on our
dispersive potentials. We also considered the C–P interaction between three
and four neutrons. Relevance of our findings about the 4n C–P interaction
on the decay properties of the recently observed tetraneutron resonance is
pointed out. Further work on this last point is required to better pin down
the role of the 4n C–P interaction.
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