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1. Introduction

Since the discovery of the radioactive decay law by Rutherford and Sody,
the belief that the decay law has the exponential form has become common.
This conviction was upheld by the Wesisskopf–Wigner theory of spontaneous
emission [1]. Further studies of the quantum decay process showed that
basic principles of the quantum theory led to rather widespread belief that
a universal feature of the quantum decay process is the presence of three
time regimes of the decay process: The early time (initial), exponential (or
“canonical”), and late time having inverse-power law form [2]. The question
arises, if indeed this is the true picture of quantum decay processes.

From the standard textbook considerations, one finds that if the decay
law of the unstable particle at rest has the exponential form of P0(t) =
exp [−Γ0 t

~ ], then the decay law of the moving particle looks as follows:

Pp(t) = exp

[
− Γ0 t

~ γ

]
, (1)

where t denotes time, Γ0 is the decay rate (time t and Γ0 are measured in the
rest reference frame of the particle) and γ is the relativistic Lorentz factor.
Formula (1) is the classical physics relation. It is almost common belief that
this formula is valid also for any t in the case of quantum decay processes
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and does not depend on the model of the unstable particles considered. The
problem seems to be extremely important because from some theoretical
studies it follows that in the case of quantum decay processes, this relation
is valid to a sufficient accuracy only for not more than a few lifetimes τ0 =
~/Γ0 [3–6]. All the above problems will be analyzed in the next parts of this
paper.

2. Unstable states in the rest system

The main information about properties of quantum unstable systems is
contained in their decay law, that is in their survival probability. If one
knows that the system in the rest frame is in the initial unstable state
|φ〉 ∈ H (H is the Hilbert space of states of the considered system), which
was prepared at the initial instant t0 = 0, one can calculate its survival
probability (the decay law), P0(t), of the unstable state |φ〉 decaying in
vacuum, which equals

P0(t) = |a0(t)|2 , (2)

where a0(t) is the probability amplitude of finding the system at the time t
in the rest frame in the initial unstable state |φ〉

a0(t) = 〈φ|φ(t)〉 ≡ 〈φ| exp [−itH]|φ〉 , (3)

H is the selfadjoint Hamiltonian of the system considered and |φ(t)〉 is the
solution of the Schrödinger equation for the initial condition |φ(0)〉 = |φ〉.
Here, the system units ~ = c = 1 is used. From basic principles of the
quantum theory, it follows that the amplitude a0(t) can be represented by
the Fourier transform of the mass (energy) distribution function ω(m) as
follows [7–9]:

a0(t) ≡
∞∫
µ0

ω(µ) e− i µ tdµ , (4)

where ω(µ) ≥ 0 for µ ≥ µ0 and ω(µ) = 0 for µ < µ0.
The simplest way to compare the decay law P0(t) with the exponential

(canonical) decay law Pc(t) = |ac(t)|2, where ac(t) = exp [−i t~(mφ − i
2Γφ)],

mφ is the rest mass of the particle φ, and Γφ is its decay width, is to analyze
properties of the following function:

ζ(t)
def
=

a0(t)

ac(t)
. (5)

There is |ζ(t)|2 = P0(t)
Pc(t)

. Analysis of properties of this function allows one to
visualize all the more subtle differences between P0(t) and Pc(t).
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3. Numerical studies: The Breit–Wigner model

Results of studies of numerous models presented in the literature show
that decay curves obtained for these models are very similar in form to
the curves calculated for ω(µ) having a Breit–Wigner form ω(µ) ≡ ωBW(µ)
(see [10] and analysis in [8])

ωBW(µ) =
N

2π
Θ(µ− µ0)

Γ0

(µ−m0)2 +
(
Γ0
2

)2 , (6)

where N is a normalization constant and Θ(µ) is a step function. So to
find the most typical properties of the decay curve, it is sufficient to make
the relevant calculations for ω(µ) modeled by the Breit–Wigner distribution
of the mass (energy) density ωBW(µ). The typical form of the survival
probability P0(t) is presented in Fig. 1. The form of the decay curves depends
on the ratio sR = mR

Γ0
, where mR = m0 − µ0: The smaller sR, the shorter

time when the late time deviations from the exponential form of P0(t) begin
to dominate. Within the considered model, the standard canonical form

Fig. 1. Decay curves obtained for ωBW(E). Axes: x = t/τ0; y: P0(t) = |a0(t)|2
(solid line), Pc(t) = |ac(t)|2 (dotted line). The case sR = mR

Γ0
= 1000.

of the survival amplitude ac(t), is given by the following relation, ac(t) =
exp [−i t~ (m0 − i

2 Γ0)]. Γ0 is the decay rate and ~
Γ0
≡ 1

Γ0
= τ0 is the lifetime

within the assumed system of units ~ = c = 1 (time t and Γ0 are measured
in the rest reference frame of the particle). The typical form of |ζ(t)|2 is
presented in Fig. 2.

From results of the model calculations presented in Fig. 2, it follows
that at the initial stage of the “exponential” (or “canonical”) decay regime,
the amplitude of these oscillations may be much less than the accuracy of
detectors. Then with increasing time the amplitude of oscillations grows,
which increases the chances of observing them. This is a true quantum
picture of the decay process at the so-called “exponential” regime of times.
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Fig. 2. A comparison of decay curves obtained for ωBW(µ) with canonical decay
curves. Axes: x = t/τ0, y: the function f(t) = (|ζ(t)|2 − 1) = P0(t)

Pc(t)
− 1,

(P0(t) = |a0(t)|2, Pc(t) = |ac(t)|2). The case sR = 1000.

4. Moving unstable systems

Analyzing moving unstable systems, one can follow the classical physics
results and assume that the unstable systems move with the constant veloc-
ity ~v, or guided by conservations laws assume that the momentum ~p of the
moving unstable system is constant in time. The assumption ~v = const was
used, e.g. by Exner [5] and also by Alavi and Giunti [12]. Exner obtained a
result that coincides with the classical result Pv(t) ' P0(t/γ) but detailed
analysis shows that this result was obtained assuming that the velocity ~v
is very small. Alavi and Giunti use this assumption and claim that their
result is the general one but more detailed analysis of their considerations
shows that their conclusion cannot be true. They use definition (2) of the
survival probability mentioned earlier: P0(t) = |a0(t)|2 of the unstable sys-
tem in rest. The final result is obtained in [12] for states connected with
the reference frame in which the system is in motion with velocity ~v. In this
new reference frame, the momentum of the particle equals ~km and ~km 6= ~p,
where ~p is the momentum of the same particle but in the rest frame of the
observer. The state of the moving unstable particle is described by a vector
|Φ~v 〉 which should be an element of the Hilbert space Hv connected with
this new reference frame in which the system is in motion but this problem
is not explained in [12]. Using states |Φ~v 〉, authors of [12] define the ampli-
tude (see (21) in [12]), a~v (t; ~x ) = 〈Φ~v | exp [−itH + i ~P · ~x ]|Φ~v 〉, where ~x is
a coordinate and ~P is the momentum operator. The interpretation of the
amplitude a~v (t; ~x ) is unclear: The vector exp [−itH + i ~P · ~x ] |Φ~v 〉 does not
solve the Schrödinger evolution equation for the initial condition |Φ~v 〉.

Searching for the properties of the amplitude a~v (t; ~x ), authors of [12]
use the integral representation of a~v (t; ~x ) as the Fourier transform of the
energy or, equivalently mass distribution function ω(m) (see, e.g. [7, 8]) and
obtain that (see (39) in [12])
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a~v (t; ~x ) =

∫
dm

[
ω(m)

∫
d3~p |φ(~p )|2 e

−iEm
(
~km

)
t + i~km · ~x

]
, (7)

where ω(m) = |ρ(m)|2 and ρ(m) are the expansion coefficients of |Φ~v 〉 in
the basis of eigenvectors |Em(~km),~km,m〉 for the Hamiltonian H (see (37)
in [12]). φ(~p ) is the momentum distribution such that

∫
d3~p |φ(~p )|2 = 1.

The energy Em(~km) and momentum ~km in the new reference frame men-
tioned are connected with Em(~p ) and ~p in the rest frame by Lorentz trans-
formations (see (33)–(35) in [12])

Em

(
~km

)
= γ

(
Em(~p ) + v p‖

)
, km ‖ = γ

(
p‖ + vEm(~p )

)
(8)

and ~km⊥ = ~p⊥, where km ‖ (~km⊥) and p‖ (~p⊥) are components of ~km and ~p
parallel (orthogonal) to the velocity ~v, and Em(~p ) =

√
m2 + ~p 2.

Using the amplitude a~v (t; ~x ), authors of [12] define the survival proba-
bility P~v (t) of the moving relativistic unstable particle as (see (40) in [12])

P~v (t) =

∫
d3x |a~v (t, ~x )|2∫

d3x |a~v (t = 0, ~x )
, (9)

then they present main steps of calculations of this probability. In conclu-
sion, they claim that the result of performed calculations shows that

P~v (t) = |a0(t/γ)|2 ≡ P0(t/γ) , (10)

where γ = 1/
√

1− v2 within the system of units used.
To prove this last relation, authors of [12] limited their considerations to

the case when for the decay width Γ , for mass of the particle M and for the
momentum uncertainty σ2p =

∫
d3~p |φ(~p )|2(pi)2 (i = 1, 2, 3), the condition

Γ � σp �M is assumed to hold. This is a crucial condition which allowed
them to approximate the energy Em(p) for all m from the spectrum of H
as follows:

Em(~p ) ' m (11)

neglecting terms of the order of ~p 2/m2. Note that integral (7) is taken over
all m from the spectrum σ(H) of H. This means that approximation (11)
has to hold for every m ∈ σ(H). Approximation (11) was used in [12] to
replace relations (8) by the following approximate one:

Em

(
~km

)
≡ γ

(
Em(~p ) + v p‖

)
' γ

(
m+ v p‖

)
, (12)

km ‖ ≡ γ
(
p‖ + vEm(~p )

)
' γ

(
p‖ + vm

)
. (13)
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A discussion of the admissibility of the mentioned conditions and ap-
proximations uses arguments similar to those one can find, e.g. in [5]. The
difference is that in [5] the approximation Ep(m) ' m + ~p 2/2m is used
instead of (11).

Finally, replacing Em(~km) and ~km under the integral sign in (7) by (12)
respectively (or in [12], in (41) by (33) and (34)) after some algebra, authors
of [12] obtain their relation (46) that was needed, that is the relation denoted
as (10) in this section. This result obtained within the conditions and ap-
proximations described above was the basis of the all conclusions presented
in [12].

Unfortunately, in [12], there is not any analysis of physical consequences
of assumed conditions and approximations used. Note that

(Em(~p ) ' m for all m ∈ σ(H)) ⇔ |~p | ' 0 , (14)

and |~p | ' 0 ⇔ (|~p⊥| ' 0 and p‖ ' 0). Note also that within the system of
units used, |v| < c = 1. This means that |vp‖| ≤ |v| |p‖| < |p‖| ' 0. This is
why approximations (12) cannot be considered as the correct and consistent
with the assumed in [12] relation (11). From the above analysis, it follows
that the only correct and self-consistent approximations are

Em

(
~km

)
' γ m , km ‖ ' γvm . (15)

The truth is that such approximations lead to the result P~v (t) = P0(γt),
which was never met in experiments. So, in the light of the above analysis,
the correctness of the final conclusions drawn in [12] is rather questionable.

Another possibility is to assume that ~p = const. This approach was
used by, e.g. Stefanovich [3] or Shirokov [4]. It leads to the results which do
not depend on that whether the assumed momentum ~p = const is small or
not. So let us consider now the case of moving quantum system with definite
momentum ~p. We need the probability amplitude ap(t) = 〈φp|φp(t)〉, (where
|φp〉 corresponds to the moving unstable system with definite momentum ~p ),
which defines the survival probability Pp(t)= |ap(t)|2. There is (see [3, 4, 11])

ap(t) ≡
∞∫
µ0

ω(µ) e− i
√
p2 + µ2 tdµ . (16)

Results of numerical calculations are presented in Fig. 3, where calculations
were performed for ω(µ) = ωBW(µ) and µ0 = 0, E0/Γ0 ≡ m0/Γ0 = 1000 and
cp/Γ0 ≡ p/Γ0 = 1000. Values of these parameters correspond to γ =

√
2.

According to the literature, for laboratory systems, a typical value of the
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ratio m0/Γ0 is m0/Γ0 ≥ O(103–106) (see e.g. [13]) therefore the choice
m0/Γ0 = 1000 seems to be reasonable minimum. Decay curves obtained
numerically are presented in Fig. 3.
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Fig. 3. Decay curves obtained for ωBW(µ). Axes: x = t/τ0; y — survival probabil-
ities: (a) Pp(t), (b) P0(t/γ), (c) P0(t).

Similarly to the case of quantum unstable systems at rest, one can cal-
culate the ratio Pp(t)/Pc(t/γ) in the case of moving particles. Results of
numerical calculations of this ratio are presented in Fig. 4, where calcula-
tions were performed for ω(µ) = ωBW(µ) and for µ0 = 0, m0/Γ0 = 1000,
cp/Γ0 ≡ p/Γ0 = 1000 and γ =

√
2.
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Fig. 4. Axes: x = t/τ0 — time t is measured in lifetimes τ0, y — ratio of probabil-
ities; solid line: Pp(t)/Pc(t/γ); dashed line: P0(t/γ)/Pc(t/γ).

5. Summary

From the results presented in Sec. 3, it follows that there is not any
time interval in which the survival probability (decay) law could be a de-
creasing function of time of the purely exponential form: In the case of
the Breit–Wigner model, in the so-called “exponential regime”, the decay
curves are oscillatory modulated with smaller or large amplitude of oscil-
lations depending on the parameters of the model. In Sec. 4, it has been
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shown that in the case of relativistic quantum unstable system moving with
constant momentum ~p, when unstable systems are modeled by the Breit–
Wigner mass distribution ω(µ), only at times of the order of lifetime τ0, it
can be Pp(t) ' P0(t/γ) to a better or worse approximation. At times longer
than a few lifetimes, the decay process of moving particles observed by an
observer in his rest system is much slower that it follows from the classical
physics relation Pp(t)

?
= exp [− t

γ Γ0]: There is Pp(t) > P0(t/γ), for t� τ0 in
such a case. It also appears that in the case of moving relativistic quantum
unstable system with constant momentum ~p, decay curves are also oscilla-
tory modulated but the amplitude of these oscillations is higher than in the
case of unstable systems at rest. The general conclusion is that there is a
need to test the decay law of moving relativistic unstable system for times
much longer than the lifetime.
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