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Both the FINUDA and AMADEUS experiments evidenced a low Σ+

momentum component when investigating Σ+π− pairs produced in K−

nuclear capture. This component is interpreted as a consequence of the
Gamov state formation, with the hyperon trapped in the Coulomb field of
the residual nucleus. Description of such states and their participation in
the capture reaction is presented. Some consequences are indicated.
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1. Introduction

An enhancement of events at low Σ+ energies, close to the Σ+ formation
threshold, was observed by FINUDA [1], in Σ+π− correlated pairs produced
by K− hadronic captures at rest on 6Li target. Such a phenomenon is
absent in the Σ− momentum spectrum of the corresponding Σ−π+ sample
and this indicates its electromagnetic origin. Monte Carlo simulations of
Σ+ energy loss in the target does not seem to properly describe the low
Σ+ momentum spectrum. A low Σ+ momentum peak structure was also
measured by AMADEUS (see Ref. [2]) in the reaction

K− 12C → Σ+π−R , (1)
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where the residual R is 11B when no fragmentation occurs. The low-energy
Σ+ events amount to some percent of the total Σ+π− sample. The solid
carbon fibre target is much thiner in this case, so the Σ+ energy loss cannot
explain the observed phenomenon. Moreover, the low-momentum structure
is not observed in [2] when the K− is absorbed on a solid 9Be target.

In agreement with old measurements (see review [3]), the spectrum of Σ+

momentum is characterised by a broad distribution centered at ∼ 200 MeV/c
with an additional threshold enhancement in the 20±15 MeV/c momentum
range, which appears very narrow on the nuclear momentum scale. In our
analysis, the low-momentum peak is attributed to the interaction of Σ+ with
the residual nucleus. A fraction of the hyperons is trapped into a Gamov
state formed by the interplay among an attractive nuclear potential and the
repulsive Coulomb barrier. In Section 2, the properties of such states are
described. We show that the Gamov state formation offers an explanation
to the measured low-momentum enhancement in the Σ+ distributions.

2. The origin of the anomalous threshold peak
in the Σ+ momentum

The formation mechanism of the low-momentum peak can be described
in terms of a sequence of processes:

— first, theK− meson undergoes hadronic captureK−p→ Σ+π−, which
is described by a transition matrix T. The residual R is considered as
a spectator,

— the Σ+ is trapped by the Coulomb potential of R into a Gamov state,

— the Gamov state decays into R and Σ+ of low total momentum qΣR.

The three-step mechanism indicated above is analysed below in a quasi three-
body system consisting of: meson K(π) baryon p(Σ) and residual system R.
We describe the process in the K−−12C centre-of-mass system, the initial
12C nucleus is understood as a bound state of R an p.

The following system of Jacobi coordinates will be used:

— r — which is the relative R — baryon coordinate,

— R — which is the relative coordinate of the meson respect to the R
— baryon centre of mass.

Coordinates referring to the final system are marked with primes.
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The final state is specified by three momenta. The Gamov state system,
consisting of the R–Σ will be denoted by G, the total momentum is then
pG = pR + pΣ and the relative momentum is

qΣR = α′pΣ − β′pR , (2)

where α′ = mR/(mΣ+mR) and β′ = mΣ/(mΣ+mR). The third momentum
which is necessary to determine the state is the pion momentum pπ. The
final wave function is expressed as

ΨF = exp[iR′(pπ +pG−pK)]

∫
dR dr G(r′, r) T δ(rKp) ΦK(R, r) ΦN (r) ,

(3)
where G is Green’s function describing propagation of the ΣR pair. For in
flightK− captures, the total c.m. system is not fixed, pK representsK− me-
son momentum in centre-of-mass system and ΦK = exp(iαrpK). For atomic
captures, pK = 0 and ΦK becomes an atomic function ΦL(R) for a given an-
gular momentum L state. The operator T describes transfer of strangeness.
It is assumed to be of zero range, as the KN force range is known to be
very short, and depends on the invariant mass of the meson–baryon pair
measured in terms of the final momenta. Thus, T ≡ TKpΣπ(MΣπ) and the
reaction in question offers a chance to study this energy dependence. The
energy in the KN centre-of-mass system is a sum of the bound nucleon
and kaon energies reduced by recoil of the pair with respect to the resid-
ual system R. The upper kinematic limit of the MΣπ spectrum is given by
MN − BN + EK , where BN in the last nucleon binding energy, EK is the
kaon kinetic energy. For atomic captures, the kinematic limit is 1416 MeV in
carbon, for the in-flight capture the corresponding kinematic limit is pushed
up of about 14 MeV for pK = 120 MeV (typical momenta of the charged
kaons produced at the DAΦNE factory). This covers the profile of Λ(1405)
resonance which dominates the K−p interaction.

Green’s function G is built in terms of two solutions, regular Φ and out-
going Φ+, of the Schrödinger equation involving Σ–R interaction potential.
We split this potential into long and short ranged parts

V = Vl + iWs = Vcul + Voρ(r) + iWoρ(r) (4)

and solve for G in the standard way of the two potentials problem. The
short-ranged imaginary iWs part describes nuclear absorption of the hy-
peron. The long-ranged part Vl is composed of the Coulomb and the nuclear
interactions. For low-Z nuclei and low-energy hyperon, only S-wave solu-
tions matter. Concerning the potential Vl, two wave function are found. The
radial function φ = Φ/r is obtained by solving the Schrödinger equation

− 1

2µ
φ(r)′′ + Vlφ = Eφ , (5)
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where in Eq. (5) µ is the reduced mass of the Σ–R system, and the boundary
condition at origin is φ(0) = 0, φ′(0) = 1. The second solution of Eq. (5)
(denoted φ+) fulfils the asymptotic condition of an outgoing Coulomb wave.
In practice, we cut Vcul at large distance and φ+ ∼ exp(iqΣRr). The Green
function for S-wave is given by

Gl

(
E, r, r′

)
=

2µ [φ+(r>)φ(r<)]

4π [rr′Wl(φ+, φ)]
, (6)

where Wl(φ
+, φ) is the Wronski determinant, r>(r<) denote larger(smaller)

of the two cordinates. The no-interaction limit (or high-momentum limit)
of Φ+ is the spherical Hankel function and similar limit for Φ is the Bessel
function. Calculations are performed with a Coulomb potential of uniformly
charged sphere, cut (at 30 fm). The outgoing solution is normalised at
r∞ = 50 fm to its asymptotic form.

For attractive Vl, localized solutions may exist at negative energies.
For positive energies, there might exists quasi-localized states due to the
Coulomb barrier i.e. Gamov states. Such solutions are characterised by
minute, damped by many orders, waves outside the barrier and happen at
discreet momenta QG and energies in a narrow region centered at values
EG = (QG)2/(2µ). The discrete values of momenta characterise the prop-
erties of the observed peaks better than the energies EG, which are more
directly related to resonances that would be observed in Σ–R scattering
states. Zeroes of the Wronski determinant in the complex energy plane
describe the position of Green’s function singularities at the Gamov levels
EG − iΓG/2. For the low Z systems in question, well-localized solutions
may exist. If the spacial densities ρ = |ΦG(r)/Φ(0)|2 in such a state are
cut at r∞, one can define r.m.s. radii of the Gamov system. In addition,
if one requires ρ(r∞) < 10−6, one obtains radii less than 10 fm and the
Gamov levels in the (0 < EG < 0.4) MeV range. These states are coupled
by T to the initial K meson capture states. Their widths are very small
(0.5 < ΓG < 20) keV. The region of EG indicated above sets the limits for
the depth of Vo potential well (−19.3 < Vo < −18.0) MeV. In light nuclei,
the Gamov states may exist provided there are no bound states. As no Σ
hyper-nuclear states have been found in the nuclei of interest, the Σ-nuclear
potential is not under theoretical control. The experimental investigation of
K− induced reactions in nuclear matter will furnish the real Gamov state
energy and real Vl.

The Gamov widths are very narrow, in the keV region, while the exper-
imental widths are about 0.2 MeV. A natural question arises if the exper-
imental widths are related to the imaginary part of the nuclear potential
which describes the Σ → Λ conversion. The Ws contributes to full Green’s
function G given by the “two potential” integral equation which reads in the



On Gamov States of Σ+ Hyperons 1865

operator form

G = Gl +GliWs , G = Gl[1 + iWsG] . (7)

At this stage, one has to realize the presence of a third body, the π meson.
If one tries to solve Eq. (7) in the three-body context, say by iterations,
one finds a propagator projecting on the Gamov state |Φ〉〈Φ|/[E − EG +
iΓG/2 − Eπ(qπ)]. An integration over intermediate pion momenta smears
the Gamov singularity and results in a small effect due to small overlap
of the Gamov state with the nucleus. Thus, the “near singularity” close
to the real energy axis matter in Eq. (7) only in Green’s function Gl. We
use this approximation and determine G, and the factor [1 + iWsG] from
the Schrödinger equation (5) solved with the full potential V . Such an
equation also offers discreet quasi-localized solutions, but only in the far
non-physical region for E′ − iΓ ′/2, where the widths are large Γ ′ ∼ Wo,
that is in a few MeV range. Thus, the main effect of absorption is the iWsG
term which renormalizes the strength of coupling to the Gamov state. With
potential depth Ws(0) ' −15 MeV, characteristic of hyperonic atoms [5],
one finds 〈|1 + iWsG|〉2 ' 0.6. This number describes the loss of Σ due to
conversion. We conclude that the widths of experimentally observed states
are not given by nuclear absorption and do not test the potentialWs directly.
These widths are due to the π meson emission and follow the distribution
of |pΣ = Q/α + pπβ/α| given by Eq. (2). For low-momentum hyperons,
the pion momentum is almost constant (∼ 170 MeV/c) and the width of
the peak is determined by the distribution of the pπ,Q angle allowed by the
phase space. With Q→ 0, the width of peak reduces to a non-unmeasurably
small ΓG.

3. Amplitudes, spectral functions

The transition amplitude generated by the wave function (5) becomes

A =
T

Wl

∫
drΦ(r)Φp(r)ΦK(αr) exp(−iαpπr) (8)

and requires wave function for proton Φp(r) (taken from Ref. [4]) and kaon
ΦK . For captures in-flight, the latter is assumed to be a plane wave. For
atomic captures, one needs to know the distribution over atomic states. The
atomic transition terminates at L = 2 [6] which apparently is the dominant
angular momentum at the capture. The distribution of main quantum num-
bers is not known but it is not relevant as the absolute capture rates are not
measured.
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In the next step, the spectrum of hyperon momentum is obtained in
standard way integrating over dρ = d3p/E(p) for each particle

P (pΣ)dpΣ =

∫
dρπdρΣdρRδ(pi − pf)δ(Ei − Ef) |A|2 . (9)

The shape of the peak is determined by the Wronski determinant. An excel-
lent approximation |W (qΣR|2 ' δ(Q− qΣR)ω(Q) (whith ω a normalization
constant) helps the integration over the three-body phase space.

Figure 1 displays the results obtained for the K− mesons captured in
flight. This case is the easiest as the initial mesonic state is known and the
initial K-nucleus interaction is of moderate strength (it was neglected). The
high-momentum spectrum was calculated for several versions of resonant
(Breit–Wigner) transition amplitude T modelled to simulate the Λ(1405).
The dependence on the position of resonance is moderate. The position of
the peak observed by AMADEUS [2] is obtained with Q ' 15 MeV/c. For all
these amplitudes, one finds the low peak of right magnitude of about 3% of
the large peak. The shape of the Gamov peak cannot be tested because the
momentum resolution in this region is of several MeV/c. The distribution
has a very peculiar structure determined by the Gamov singularity in the
Wronski determinant, folded over limitations induced by the corner of the
available phase space where the peak is located.

Fig. 1. (Colour on-line) Momentum distribution of Σ+ following K− capture in-
flight on carbon nuclei. The thick grey/green distribution represents the Gamov
peak. Other curves describe the dependence of the spectrum on the position of a
40 MeV wide resonance with Er = 1410 MeV (red distribution), Er = 1420 MeV
(black distribution), T ≡ 1 (blue distributions) (from bottom to top). Normalisa-
tions are arbitrary, as only profiles are measured.
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4. Conclusions

The description of the anomalous low-energy momentum distribution
P (pΣ) in terms of the Gamov state gives consistent description of the FIN-
UDA and AMADEUS data. The mere fact of existence of the low-energy
peak puts strong limitation on the hyperon nucleus potential. The peak
strength is more complicated to analyse as it involves: peak position, KN
amplitude and nuclear absorption of Σ hyperons.

These two pieces of information are, to some extent, a substitute to
(apparently nonexistent) Σ hypernuclei. The FINUDA data are related to
hyperon 5He system. The only hypernucleus discovered is 4HeΣ [7]. It
would be very interesting to check whether the Gamov states of Σ+ can also
be formed in heavier nuclei. Positive answer would open a new branch of
hypernuclear spectroscopy.

The full understanding of pΣ spectrum, in particular the weight of the
anomalous peak, relative to the standard spectrum, might be more infor-
mative than the Σ hypernuclear spectroscopy would be. New experiments
would be very helpful.

We thank Nicolas Keeley for useful advice and Stefano Piano for consul-
tations.
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