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Belief in slight Lorentz symmetry violation at available energies is an
imaginable part of belief in radically disparate physics near the Planck en-
ergy. As long as the effective field theory comprising new physics is formu-
lated in flat spacetime, the description of hypothetical Lorentz symmetry
violation within its formalism is consistent and tenable. If gravitation is
introduced into the effective theory in the form of curved manifolds sub-
ject to Einstein field equations, the formalism of the symmetry violation
encounters severe troubles. Either the dynamics of fundamental physical
fields becomes inconsistent, or one is forced to accept existence of a large
number of new species of fundamental matter beyond the Standard Model.
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In this talk addressed to nuclear physicists by a relativist, I present some
concepts on conceivable impact of gravitational interactions on discrete sym-
metries in elementary particle physics. These are purely theoretical ideas
since we live in this part of the universe where gravitation is very weak
(what is very fortunate for us) and its influence on particle interactions is
undetectable today. The concepts developed up to now concern the prob-
lems of whether Lorentz symmetries, both continuous and discrete, do hold
in curved spacetimes and in what way they may be violated. Particularly
interesting is the fate of discrete symmetries, C, P, T and CPT. I cannot,
however, focus my attention on the discrete symmetries alone since they
form a small sector of theory of Lorentz symmetries in the Standard Model
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Extension including gravitation. This framework has arisen owing to in-
creasing interest and progress in testing Lorentz invariance. Taking into
account the importance of Lorentz invariance, there are two motivations
for these investigations. Firstly, there is a significant increase of precision
of experiments due to advances in technology. (To date, there is no com-
pelling experimental evidence supporting any Lorentz symmetry violation.)
Secondly, there are theoretical suggestions that Lorentz symmetry may not
be exact at all interaction energies. The two leading theories of fundamen-
tal interactions, string theory („theory of everything”) and quantum grav-
ity (QG) suggest that the universe at energies close to the Planck energy,
EPl = (~c5/G)1/2 = 1, 2×1019GeV, is completely different from the universe
we live in. Both the theories remain in an early embryonic stage of their
development and are not capable of providing concrete descriptions of phys-
ical processes, nevertheless they suggest some kinds of Lorentz symmetry
violation (LSV). Here, I will focus on QG approach to Lorentz symmetries.
Actually, LSV in quantum gravity is a conjecture and no model of QG does
predict it uniquely. Therefore, there are two possibilities: (1) full QG does
predict LSV at E ≈ EPl, then by continuity, at least small LSV occurs at
low energies; (2) whereas exact QG is Lorentz invariant, it admits some
tensor fields having nonzero vacuum expectation values. In the latter case,
VEV6= 0 for these fields spontaneously break Lorentz symmetry of the low-
energy quantum state we live in, deceptively suggesting that exact QG also
violates the symmetry. One then concludes that low-energy experiments
cannot establish whether or not exact QG breaks Lorentz symmetry. In
consequence, the available approach to the issue is based on a low-energy
approximation to QG, called the Effective Field Theory (EFT). In prac-
tice, it takes the form of a non-quantum field theory with the Lagrangian
of the Standard Model plus various low-energy additional terms involving
all possible Lorentz symmetry violating operators coupled to physical fields
(of the Model) and the gravitational sector; this kind of EFT is dubbed the
Standard Model Extension (SME).

First, we explain what is meant by LSV in the framework of any EFT. Its
definition asserts that Lorentz symmetry is violated if the underlying action
integral for a physical field is not explicitly form-invariant under Lorentz
transformations (continuous and/or discrete). This definition holds in flat
Minkowski spacetime M4 (no gravity). Its meaning is shown in a simple
example [1]. M4 has metric ηµν and is endowed with an additional geometric
structure in the form of a fixed constant symmetric tensor field ζµν . In a
given inertial frame F, the field components have prescribed numerical values
ζµν = const. Consider a real massless scalar field φ(x) additionally coupled
to ζµν , then its action integral reads

S =

∫
D

d4x

[
ηµν

∂φ

∂xµ
∂φ

∂xν
+ ζµν

∂φ

∂xµ
∂φ

∂xν

]
, (1)
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both S and integrand terms are scalars. Let L be a Lorentz transformation
from F to another inertial frame, y = Lx, then L maps the integration
domain D onto D′ = L−1(D). Since φ is a scalar, φ(x) = φ(L−1y) ≡ φ′(y),
the action is numerically unaltered

S =

∫
D′

d4y

[
ηµν

∂φ′

∂yµ
∂φ′

∂yν
+ ζ ′µν

∂φ′

∂yµ
∂φ′

∂yν

]
. (2)

Here, ηµν = η′µν = diag[1,−1,−1,−1] has this form in all inertial frames (is
form-invariant), whereas

ζ ′µν = LµαL
ν
βζ

αβ 6= ζµν

is not form-invariant since these are two different matrices. One infers that
the term ζµν∂µφ∂νφ in S causes LSV because it is not form-invariant un-
der L due to presence of a non-dynamical operator (tensor) ζµν which is
frame-dependent . I stress that the form-dependence arises since ζµν is non-
dynamical and expresses an additional fixed geometrical structure of flat
spacetime.

In some inertial frames, ζµν takes on particularly simple form and/or
is small implying that LSV is small there. In many models, the Lorentz
symmetry violating tensors, such as ζµν , may be reduced to a vector field
determining a distinguished direction in the spacetime. There is one well-
known example of a distinguished vector field defining a preferred (“con-
cordant”) reference frame: this is a timelike vector determining the rest
frame of the black-body cosmic background radiation being a remnant of
hot plasma epoch of evolution of the early universe. However, this field and
the preferred frame are related to the global evolving the Robertson–Walker
geometry of the universe, thus it is relevant on cosmological scales, whereas
all the Lorentz symmetry violating operators (tensor fields) are assumed to
work on microscopic scales.

Being a tensor, ζµν is always different from zero and thus it generates
LSV in all inertial frames. The existence of preferred frames (directions in
spacetime) is not necessary and occurs only in simple models of SME. If
there are two Lorentz invariance violating tensors, ζµν and χµν , then there
are no preferred frames.

As long as one considers EFT in flat spacetime, the concept of LSV
by specific fields coupled to known physical fields of the Standard Model is
theoretically well-defined [1–4]. Conceptual troubles arise when gravitational
interactions are included, particularly for discrete symmetries.
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In flat spacetime, the space inversion and time reversal are significant
since one uses inertial frames and Cartesian coordinates in them, which
reveal geometrical properties of the spacetime. Time coordinate measures
proper time elapsing in a given frame and spatial coordinates directly mea-
sure distances in space between simultaneous events. Inversion of time and
space has thus a direct geometrical meaning and it is of crucial importance
whether physical processes respect these geometrical symmetries. This is,
however, specific to flat spacetime with its metric affine structure. Gravi-
tation radically changes this picture. According to general relativity (GR),
gravitational interactions make the very spacetime a dynamical material
object, though quite specific; each gravitational field forms its own curved
spacetime. And a general curved spacetime has no symmetries, curvature
annihilates the linear affine structure. There are no priviledged reference
frames, neither inertial nor any other. Following fundamental concepts of
differential geometry, all possible reference frames are on equal footing and
accordingly spacetime coordinates applied in each of them are arbitrary and
are devoid of any geometrical interpretation. They are merely four num-
bers labelling in a continuous way spacetime points (events). Something
similar occurs to the notion of space. In flat spacetime, each inertial frame
determines a slicing of the spacetime by a collection of spaces defined as
3-dimensional sets of events simultaneous in this frame. In a curved space-
time, the time coordinate of a given coordinate system also defines the space
as a hypersurface of events having the same value of this coordinate, but
taking into account the arbitrariness of choice of time coordinate, the cor-
responding slicing of the spacetime by spaces is to a large extent arbitrary.
I emphasize that in gravitational field a time coordinate is distinct from the
proper time measured by physical clocks (and each clock has its own proper
time equal to the length of its worldline, so that there is no common proper
time) and spatial coordinates are distinct from geometrically defined spatial
distances.

In a generic spacetime, its curvature evolves in space and time and has
no symmetries. If there is no translational invariance in a timelike direction
(„in time”), there is no way of defining a time reversal T and if there is
no spacelike direction revealing translational invariance of space, then no
concept of space inversion P may exist.

What about special spacetimes possessing some symmetries: e.g. Schwarz-
schild’s (time translation and rotational symmetry about the space centre)
or the Robertson–Walker (space is homogeneous and isotropic)? In prin-
ciple, one might attempt to define some discrete symmetries in them, but
these would only fit this particular spacetime. And these would be of very
little usefulness. In fact, when in future the experiments will be sufficiently
precise, we will detect in particle interactions influence of the gravitational
field with low symmetry, being a nonlinear composition of the Sun’s, Earth’s
and cosmological gravity.
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In a curved spacetime, there are no global symmetries, yet the local
Lorentz invariance holds: at each point, there is the whole set of local Lorentz
(inertial) frames and none of them is preferred and there are no distinguished
directions at this point.

As concerns continuous LSV, one takes gravitational effects into account
in a simple way by applying the Minimal Coupling Principle ((MCP), some-
times called “minimal substitution rule”: one takes the Lagrangian of the
EFT under consideration expressed in Minkowski spacetime, assumes that
all the tensors present in it, which have initially been supposed to be Lorentz
covariant, are actually general covariant (under arbitrary nonlinear coordi-
nate transformations) and replaces Minkowski metric ηµν by a generic metric
gµν and finally, replaces partial derivatives by covariant ones. In this way,
the Lagrangian becomes generally covariant and it is expected that the terms
violating continuous Lorentz symmetry in flat spacetime will do it in pres-
ence of curvature [3] (that is, while having the generally covariant form).
The violation now means that at each spacetime point, there appears an
additional geometric structure (such as a preferred direction), independent
of the metric, which may distinguish one (or a class of) local Lorentz frame.

As motivated above, in gravitational fields, the discrete P and T sym-
metries have no sense. Yet in quantum field theory (QFT) in flat spacetime,
the CPT symmetry plays so fundamental role expressed in the CPT theo-
rem, that it is legitimate to ask of what occurs to it in curved spacetimes.
There appear two problems. First, there are severe conceptual troubles
with formulating a genuine quantum theory in a variable gravitational field,
particularly in presence of black holes. In consequence, the issue of a grav-
itational analogue of the CPT theorem in curved spacetimes is not urgent.
Second, it is obvious from the above discussion that establishing a satisfac-
tory definition of CPT symmetry in presence of curvature is hard if possible
at all. Nonetheless, the fate of CPT symmetry in gravitation, even weak,
should not be neglected. Recall that in lack of a genuine QFT, one em-
ploys a quasi-classical EFT. It seems plausible that some analogue of CPT
symmetry in GR should exist, though a precise definition is missing today.
And circumventing the issue of its definition, one may conjecture that this
„quasi-CPT” is violated in a way determined by again applying MCP [3]: in
gravitational field CPT symmetry is violated by the covariant form of those
terms in the action which violate exact CPT symmetry in flat spacetime.

However, one may challenge this simple conjecture because discrete sym-
metries, such as CPT, are global ones, whereas MCP assumes local, i.e. con-
tinuous transition from flat to curved spacetime. This subtle issue definitely
deserves a detailed study.
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Let us assume that application of MCP is sufficient at least in the case of
continuous LSV and seek its consequences. It turns out that continuous LSV
gives rise to the Einstein Equivalence Principle violation and other severe
troubles [1]; here, I will discuss consistency of the approach to symmetry
violation as such. In flat spacetime, LSV is achieved by introduction of a
constant tensor field ζµ1...µk with k indices (ζµν in the example with the
massless scalar field) which is directly coupled to physical matter fields. In
GR, the constant ζ must be replaced by a point-dependent ζµ1...µk(x) since a
constant tensor in one frame becomes point dependent under any nonlinear
coordinate transformation and this dependence must be established in the
initial frame. A priori there are two possibilities: either (1) ζ(x) is a fixed
non-dynamical field or (2) ζ(x) is a new (unknown) physical field with its
own equations of motion, then it is determined in each frame as a solution
satisfying given initial data.

It seems obvious that ζ(x) should be a fixed field without its own dy-
namics (and form “an absolute element of the theory”), but it usually leads
to inconsistencies. In most models, tensor ζ is decomposed into a product
of one or more vector fields. It is natural to assume that a constant ten-
sor in flat spacetime should be replaced by a covariantly constant tensor in
a curved spacetime, ∂αζµ1...µk = 0 ⇒ ∇αζµ1...µk = 0, and the constituent
vector fields also must be covariantly constant. This is, however, impossi-
ble: contrary to our intuition, which has been formed in Euclidean space,
in most curved spacetimes covariantly constant vector (and tensor) fields
do not exist; for example, there is no covariantly constant vector field on
the sphere. Spacetimes admitting covariantly constant vector fields are ex-
ceptional, e.g. plane gravitational waves. Instead, the tensor ζ(x) must be
carefully adjusted and there is no clear rule of how to do it uniquely. Sup-
pose that the spacetime metric depends on some parameters and for their
particular values the spacetime becomes flat (for instance, the mass is zero
in Schwarzschild metric). Adjust (usually non-uniquely) the tensor ζ(x) de-
pendent on these parameters so that ζ = const in the flat spacetime limit.
Now, take the above example of a scalar massless field φ coupled to the
adjusted ζµν(x); it may be shown that ζµν generates continuous LSV and
there is no hypothetical CPT violation [3, 4]. Now, the action functional for
φ includes the GR Lagrangian and reads [1]

S =

∫
D

d4x
√
−g
[

1

16πG
R+

1

2
(gµν + ζµν(x))

∂φ

∂xµ
∂φ

∂xν

]
. (3)

It gives rise to the Lagrange equations of motion for φ,

2φ+∇µ
(
ζµν

∂φ

∂xν

)
= 0 (4)
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and the Einstein field equations

Gαβ = 8πGTαβ ≡

≡ 8πG

[
∂φ

∂xα
∂φ

∂xβ
− 1

2
(gµν + ζµν(x))

∂φ

∂xµ
∂φ

∂xν
gαβ

]
. (5)

The Einstein tensor satisfies the Bianchi identity ∇β Gβα ≡ 0 which implies
four equations for the energy-momentum tensor ∇β T βα = 0. For Tαβ given
in (5), this yields

∇β T βα = − ∂φ

∂xα
∇µ
(
ζµν

∂φ

∂xν

)
− 1

2
∇α
(
ζµν

∂φ

∂xµ
∂φ

∂xν

)
, (6)

and this divergence cannot vanish for the adjusted ζµν and for each solution
φ of (4). This is clearly inconsistent (actually contradictory). The diver-
gence might be zero only for very special solutions φ, for instance φ = 0.
Furthermore, Eqs. (5) show that ζµν is a part of the source determining the
metric, contrary to the assumption that gµν and ζµν are independent of each
other.

To restore consistency one concludes:
in the presence of gravitation, the Lorentz symmetry violating tensor ζ must
be dynamical and represent a new kind of matter, beyond the Standard Model .

This is an unexpected prediction of the conjecture of LSV in low energy
EFT such as the Standard Model Extension. The same holds for the terms
violating the analogue of CPT symmetry. As a relativist, I doubt whether
postulating existence of so many (tens if not hundreds [4, 5]) new species of
fundamental matter is reasonable.
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