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THREE-PHOTON ENTANGLEMENT FROM
ORTHO-POSITRONIUM REVISITED∗

M. Nowakowski, D. Bedoya Fierro

Departamento de Física, Universidad de los Andes
Cra. 1E, 18A-10, Bogotá, Colombia

(Received August 21, 2017)

Entanglement of the three-photon from the decay of ortho-positronium
is re-analyzed. We use the full three-body phase space to write down the
entangled states classified according to the spin directions of the ortho-
positronium. Even in the case when the spin is perpendicular to the decay
plane, we find non-negligible phases entering the entangled state. This
has not been noticed before. We advocate a fixed quantization axis of the
spin for the sake of generality. A brief discussion of a three-dimensional
formalism for photons, including correlations, versus a two-dimensional one
is given.
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1. Introduction

It is not often that a device designed principally for medical applications
turns out to be useful also in probing fundamental issues of physics. J-PET
(Jagiellonian Positron Emission Tomograph) is a tomography machine based
on positron–electron annihilation with novel technological assesoire. It can
be used to test CP/T and CPT violation in the purely leptonic sector of
positronium [1] and probably also in probing non-locality aspects of quantum
mechanics by studying the three-photon entanglement from the decay of
ortho-positronium (which is a spin-1 bound state of electron–positron) [1, 2].
It is the latter topic which we will discuss in this paper. Of course, many tests
of locality have been already performed which confirm the non-local nature
of quantum mechanics. That still other tests are being suggested (among
other using the J-PET) lies in the underlying positivistic philosophy of any
natural theory which cannot be verified to one hundred per cent, but falsified
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by only one experimental result. Coming back to the topic of three-photon
entanglement from ortho-positronium, we will follow the seminal paper [3]
which paved the ground for the subject. In doing so, we recover most of the
results in [3], but find also important differences. One of our motivations to
revisit the subject is the interplay between relativistic dynamics/kinematics
and quantum entanglement.

2. Kinematics and decay dynamics

The spin-1 ortho-positronium decays into three photons where every pho-
ton is characterized by its momentum and polarization, γi = γ[ε(k̂i, λ),ki].
For circular polarization, we have the polarization vectors

ε
(
k̂i, λ

)
= − λ√

2
(cos θi cosΦi − iλ sinΦi, cos θi sinΦi + iλ cosΦi,− sin θi)

(1)
with λ = ±1 and the angles define the direction of each momentum by
k̂i = (cosΦi sin θi, sinΦi sin θi, cos θi). The energy-momentum conservation
at rest reads k1+k2+k3 = 0 and k1+k2+k3 = m ' 2me. The momentum
conservation defines a plane in which the photons move. The plane changes
its orientation from event to event. The unit vector n̂ = k1×k2

|k1×k2|
is perpen-

dicular to the plane. Often one chooses n̂ = ẑ and the question arises if we
can do it for one event or for the whole sample.

Briefly, the matrix element M is M = −
√
2V3 for Sz = 0 and M =

±V1+ iV2 for Sz = ±1. The vector function V is a lengthy expression [3, 4],
but an important one for the entanglement. We, therefore, give it in full
length here

V (k1, λ1;k2, λ2;k3, λ3)

= (λ1 − λ2)(λ2 + λ3)ε
∗
(
k̂1, λ1

) [
ε∗
(
k̂2, λ2

)
· ε∗
(
k̂3, λ3

)]
+(λ2 − λ3)(λ3 + λ1)ε

∗
(
k̂2, λ2

) [
ε∗
(
k̂3, λ3

)
· ε∗
(
k̂1, λ1

)]
+(λ3 − λ1)(λ1 + λ2)ε

∗
(
k̂3, λ3

) [
ε∗
(
k̂1, λ1

)
· ε∗
(
k̂2, λ2

)]
.

This function encodes the whole dynamics including the entanglement. For
instance, V (k1,±;k2,±;k3,±) = 0.

3. The three-photon entanglement

On the other hand, we find for instance V (k1,+;k2,+;k3,−) =

2ε∗(k̂3,−)f12 with fij = [1 − k̂i · k̂j ]. This leads directly to the coeffi-
cients of the entangled states classified according to the spin projections.
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For Sz = 0 andM = −
√
2V3, we obtain ε∗3(k̂i, λ = ±) = − sin θi. Therefore,

in this case, the unnormalized three parties entangled state comes out as

|Ψ〉Sz=0 = γ0 [|++−〉 − | − −+〉] + β0 [|+−+〉 − | −+−〉]
+α0 [| −++〉 − |+−−〉] (2)

with the coefficients

γ0 = sin θ3f12 , β0 = sin θ2f13 , α0 = sin θ1f23 . (3)

On the other hand, for Sz = ±1 andM = ±V1 + iV2, we have

ε∗1

(
k̂i, λ = ±

)
+ iε∗2

(
k̂i, λ = ±

)
= eiΦi(cos θi ± 1) . (4)

This leads to the entangled state of the form of

|Ψ〉Sz=±1 = γ
(1)
± |++−〉+ γ

(2)
± | − −+〉+ β

(1)
± |+−+〉+ β

(2)
± | −+−〉

+α
(1)
± | −++〉+ α

(2)
± |+−−〉 (5)

with

γ
(1)
± = e±iΦ3 (cos θ3 − 1) f12 , γ

(2)
± = e±iΦ3 (− cos θ3 − 1) f12 ,

β
(1)
± = e±iΦ2 (cos θ2 − 1) f13 , β

(2)
± = e±iΦ2 (− cos θ2 − 1) f13 ,

α
(1)
± = e±iΦ1 (cos θ2 − 1) f23 , α

(2)
± = e±iΦ1 (− cos θ2 − 1) f23 .

For the first case (Sz = 0), it is only if we choose a coordinate system such
that n̂ = ẑ (sin θi = 1) that the expression becomes simpler and coincides
with the one given in [3] for Sz = ±1. In the case of Sz = ±1 we do
not recover the expression in [3] for Sz = 0. Even if we choose the spin
quantization axis in the n̂ direction, we differ by the phases e±iΦi . Apart
from that, we have a different assignation for Sz = 0,±1. This means that
our coefficients depend explicitly on the coordinates (Φi) even if we take
θi = π/2. Dependence on Φi has also been noticed in [2] which appeared
after the talk presented in this paper was given.

How important are the phases? If, in addition to choosing the z-axis
perpendicular to the three-photon plane, we make a rotation of the x–y
coordinates, we can get rid of one phase. Factorizing a second phase (which
becomes global), we are certainly left with one relative phase. One can
demonstrate already in a simpler system (two particle entanglement) that a
phase will play a role in correlation functions which enter Bell’s inequalities.
Deforming a spin-singlet by writing

|00〉α =
1√
2

(
| ↑〉| ↓〉 − eiα| ↓〉| ↑〉

)
, (6)

the correlation function becomes
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α〈00|
(
â · S(1)b̂ · S(2)

)
|00〉α

= −1

4
[cosα cos θ + azbz(1− cosα)− (a× b)z sinα]

with the internal variable cos θ = â · b̂ and (external) variable ai and bi
(coordinates of the unit vectors). We can then safely state that in correla-
tion functions, the phases e±iΦi which we encountered will certainly play a
role. Incidentally, with linearly polarized photons reference [5] writes a two-
photon entanglement as 1√

2
[|H〉|V 〉 + eiα|V 〉|H〉], where |H〉 = (1, 0) and

|V 〉 = (0, 1) and the matrices used in the correlations are the Pauli matri-
ces. A related question comes then into mind. Shall we choose n̂ = ẑ? For
one single event this is certainly possible. If we do this for every subsequent
event, we will not be able to classify the entanglements according to the
spin projections of the positronium Sz = 0,±1 since we keep on changing
the quantization axis then. If we group together, say |Ψ〉Sz=0 with |Ψ〉Sz′=0,
we might be comparing and classifying wrongly. The condition that the state
factorizes (giving essentially rise to two-particle entanglement) is given by

β = 0 , γ = ±α ; γ = 0 , β = ±α ; α = 0 , γ = ±β . (7)

For θi = π/2, choosing one of the three cases above, we get a configuration at
the edge of the allowed phase space: two collinear momenta and with third
one anti-parallel, e.g. for γ = 0 and β = α. For an arbitrary spin quantiza-
tion axis for the spin-1 ortho-positronium, there are other configurations of
momenta for which the state factorizes.

In a three-party entanglement, there are two non-bisseparable classes:
W-class and GHZ-class (Greenberger–Horne–Zeilinger) which cannot be
transformed into each other by local operations [6]. Generically, one writes

|GHZ〉 = 1√
2
[|000〉+ |111〉] , |W〉 = 1

3
[|001〉+ |010〉+ |100〉] . (8)

If we have a three-party entanglement |φ〉 =
∑

ijk cijk|ijk〉, an invariant
measure of the entanglement is the so-called hyper-determinant

0 ≤ Hdet(cijk) = c2000c
2
111 + . . .+ . . . c000c110c001 + . . . ≤ 1/4 . (9)

If Hdet = 0 and the state does not factorize, then we have a W-class entan-
glement. If we choose n̂ = ẑ, the condition Hdet = 0 leads to factorization,
i.e., the configuration of two collinear and one anti-parallel three momentum
which we had before. Since by our choice of the z-axis, we might lose some
generality, could it be that we can reach the W-class in accordance with the
energy-momentum conservation? The constraint of the energy-momentum
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conservation makes the problem more complex than anticipated. We just
outline the first few steps. First, we perform a change of basis, from circular
to linear polarization |±〉 = |R/L〉, |H/V 〉 = |0/1〉 with |±〉 = 1√

2
[|0〉+ i|1〉].

Then, for instance,

|Ψ〉Sz=0 = (α0 + β0 − γ0) |010〉+ (α0 − β0 − γ0) |100〉
+(−α0 − β0 + γ0) |001 + (α0 + β0 + γ0) |111〉 .

It is easy to calculate the hyper-detereminant on this basis. The result is

Hdet = (−α0 + β0 − γ0) (α0 − β0 − γ0) · (−α0 − β0 + γ0) (α0 + β0 + γ0) .
(10)

The main question regarding Hdet = 0 is whether this is possible in accor-
dance with energy-momentum conservation (see also [2]). This remains to
be our future task.

4. The two-dimensional versus the three-dimensional formalism

What do we mean exactly when we write, say |++−〉? Obviously, it is
the tensor product |++−〉 = |+〉⊗|+〉⊗−|〉. But what exactly is, say |+〉 or
what is its representation in a finite dimensional Hilbert space? Consider the
following: (1) we have a two-level system given by the two degrees of freedom
of the photon polarization λ = ±1, and (2) the photons carry momenta and
are entangled in their polarizations which depend on the directions of the
momenta, hence |+〉 = |+〉1 = |k̂1,+〉 = |ε(k̂1,+1)〉. But the polarization
vectors are three-dimensional objects. The mismatch between the number
of qubits ± and the dimension of the state vector comes from the fact that
photons are vector particles, but strictly speaking, do not have spin (defined
only in the rest frame). The standard correlation functions are of the form

〈Ψ |
(
â · σ(1)

)(
b̂ · σ(2)

)(
ĉ · σ(3)

)
|Ψ〉 (11)

with σi the two-dimensional Pauli matrices (this correlation enters inequal-
ities like the Mermin or Svetlichny inequality). This implies that the state
vectors are also two dimensional. This goes back to the so-called Jones
formalism where all polarization states are represented as two-dimensional
objects. In general, |ψ〉 = (cosφeiαx , sinφeiαy). If the difference between
the phases is π/2 and cosφ = sinφ, we get the circular polarization states
1√
2
(1, i), 1√

2
(1,−i). This is in accordance with the polarization vectors if

θ = 0 (and not π/2 ) i.e. we choose k̂ = ẑ. Indeed, we have then

ε
(
k̂,+

)
=
e−iΦ√

2
(1, i, 0) , ε

(
k̂,−

)
=
e−iΦ√

2
(1,−i, 0) (12)
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which is effectively two dimensional. However, we cannot choose for all
photons k̂ = ẑ especially when we have chosen once θi = π/2. For two
photons with k1 + k2 = 0, say in the decay of para-positronium with the
entanglement |Ψ〉para = 1√

2
[|++〉−|−−〉], we can do that if we choose k̂i = ẑ.

With three photons, we will have to choose a more appropriate formalism
and operators (corresponding to, say circular polarizations). We can do
that by going to the adjoint representation of SU(2) i.e., (Si)jk = −iεijk.
The eigenvectors to S3 are 1√

2
(1,±i, 0) which are the circular polarizations

states in a plane perpendicular to the z-axis. A third eigenvector (0, 0, 1)
is possible, but the photon will not have it. The eigenvectors to S1 and S2
are 1√

2
(0,±i, 1), 1√

2
(±i, 0, 1), respectively. The first state describes circular

polarized photons in a plane perpendicular to the x-axis etc. It makes then
sense to consider â · S and to calculate expectation values of the form of

〈Ψ |
(
â · S(1)

)(
b̂ · S(2)

)(
ĉ · S(3)

)
|Ψ〉 . (13)

5. Conclusions

The physics of the three-photon entanglement from positronium has all
the physical ingredients which makes the twentieth and the beginning of the
twenty first century physics: the positron necessary to form the positronium
is a decay product of a nuclear decay, it forms a leptonic bound state whose
physics is well-understood in the framework of Quantum-Electro-Dynamics
and, finally, the three-body entanglement has been a subject of intense stud-
ies in the last two decades. In this contribution, we have re-analyzed the
emtangled state of three photons from ortho-postronium in full generality
and found some differences as compared to [3].

We thank A. Botero and C. Viviescas for useful discussions and com-
ments.
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